首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
1. Hindlimb paw-shake responses were assessed before and after unilateral deafferentation (L3-S1) in chronic-spinal cats (n = 5), spinalized at the T12 level 1 yr earlier. Selected ankle flexor [tibialis anterior (TA)] and extensor [lateral gastrocnemius (LG)] and knee extensor [vastus lateralis (VL)] muscles were surgically implanted with chronic electromyographic (EMG) electrodes to determine mutable features of cycle characteristics and muscle synergies that are modulated by motion-dependent feedback as opposed to immutable features that are centrally programmed and not modulated by limb afference. 2. Paw-shake responses were difficult to elicit in the extensively deafferented hindlimb; this was true particularly during the first recovery weeks after deafferentation. By the end of the first month, however, brief responses of 1 or 2 cycles were commonly elicited in four of five cats, and responses of 3-7 cycles were common by the end of the second month in three of five cats. Initially, responses in the deafferented limb were elicited by stimuli applied to the dorsolateral thigh, an oval patch of skin innervated by intact S2 afferents. Over the 4-mo recovery period, however, the receptive field of the largely denervated skin expanded, and responses were also elicited by stimuli applied to the lateral aspect of the knee and shank, but usually not the paw. 3. In addition to fewer average cycles per response (5 vs. 10 cycles), paw shaking evoked in the deafferented hindlimb was characterized by longer-than-average cycle periods (124 vs. 98 ms), but the average cycle period varied widely among responses, ranging from 99 to 239 ms. Before deafferentation, the temporal organization of consecutive cycles was stereotypic; cycle periods increased linearly throughout a response. After deafferentation, however, there was no systematic relationship between cycle period and cycle number, and approximately 14% of the records with greater than or equal to 3 cycles were characterized by arhythmical sequences of EMG bursts. 4. At the ankle, LG burst duration was not altered by deafferentation, but TA onset and burst duration were affected. Before deafferentation, TA onset was invariant with respect to the beginning of the cycle, and burst duration increased linearly with cycle period. After deafferentation, however, TA onset was delayed, and the delay increased linearly with cycle period. Consequently, the TA burst duration was brief and unrelated to cycle period.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

2.
The effects of lower limb deafferentation were examined during execution of a balance recovery step following a forward fall induced by release of an initial inclined posture. The subjects were healthy control subjects and patients with a unilateral loss of the Achilles tendon reflex following S1 radiculitis. Deafferentation of healthy subjects was obtained by unilateral leg ischemia (four subjects) and by foot anesthesia (five subjects). The balance recovery step was characterized by the surface electromyographic (EMG) activity of right and left soleus and tibialis anterior muscles and the kinetics of the center of gravity and center of foot pressure. Experimentally induced and pathological deafferentation decreased the EMG activity of the ipsilateral soleus and lowered the vertical ground reaction force. The lower limb motor activity was more affected by loss of muscle proprioceptive afferents than by loss of plantar cutaneous afferents. Patients showed early and bilateral changes in soleus and tibialis activities, whichever side was affected. The step length of patients was also shorter than that of controls, but it remained similar before and after deafferentation in the healthy subjects. The results are discussed in terms of ipsilateral and crossed pathway connections and functional adaptive strategies.  相似文献   

3.
We investigated the ability of normal cats, trained to maintain a constant position while walking on a treadmill, to combine the paw-shake response with quadrupedal locomotion. Hindlimb paw-shake responses were elicited during walking after the right hindpaw was wrapped with tape. To assess intralimb and interlimb coordination of the combined behaviors, electromyographic (EMG) recordings from forelimb extensor muscles and from selected flexor and extensor muscles at the three major hindlimb joints were correlated with joint motion by using high-speed, cinefilm analysis. When paw shaking was combined with walking, the response occurred during the swing phase of the taped hindlimb. To accommodate the paw-shake response, swing duration of the shaking hindlimb and of the homolateral forelimb increased and was followed by a brief recovery step. Concurrently, to compensate for the response, stance durations of the contralateral forelimb and hindlimb increased. The magnitude of these adjustments in interlimb coordination was influenced by the number of paw-shake cycles, which ranged from one to four oscillations. Transitions between the muscle synergies for the paw-shake response and swing were smooth in the shaking limb. Early in the swing phase, when the flexor muscles were still active (F phase), the paw shake was initiated by an early onset of knee extensor activity, which preceded extensor activity at the hip and ankle. This action provided a transition from the general reciprocal synergy between flexor and extensor muscles of locomotion to the mixed synergy that is typical of the paw shake (30). Following the last paw-shake cycle, an extensor synergy initiated the E-1 phase of swing, and the resultant joint motion was in-phase extension of the hip, knee, and ankle to lower the paw for stance. Average cycle period and burst duration for muscles participating in the paw-shake response were similar to those reported for normal cats assuming a standing posture (28, 30). The average number of paw-shake cycles, however, decreased from eight to three when the response occurred during walking, suggesting that the response was truncated to provide for continued locomotion. Further, hip motion was variable when the paw shake was combined with swing, and sometimes the hip failed to oscillate and its trajectory was similar to that of an unperturbed swing phase. When hip joint oscillations occurred during the paw-shake response, they were in-phase with ankle motions.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

4.
Summary Swimming in a mammalian quadruped, the rat, is analyzed in kinematic (joint angles) and electromyographic (EMG) terms. Data were collected on the movements of the hip, knee, ankle, and toe joints and three principle extensors and three flexors of the right hindlimb and compared with similar data collected on the same rats during treadmill stepping. The flexion, or protraction phase of swimming and stepping had many elements in common, including a similarity of EMG activity patterns and corresponding limb movements. However, in the extension, or retraction phase, there were notable differences. Although joint-extensor muscles were all coactive in both conditions, the brevity of the swimming extensor phase precluded the characteristic variation in EMG activity levels seen in the extensors in stepping. The flexors, in particular semitendinosus (ST), exhibited bursts of activity at the end of the extensor phase of swimming which were not present during the comparable period of stepping. The extra burst in ST produced a very rapid knee flexion at this time. Whereas the range of hip joint movement was similar in the two conditions, the ranges of the knee and ankle joints were expanded during swimming.Overall, the evidence suggests that swimming is a very rapid form of a basic locomotor pattern in which the extensors are driven to their maximum contraction rate. The extra extension of the limb derives from the absence of ground reaction forces, allowing the knee and ankle joints to fully extend. The added bursts in the flexors remain to be explained. A discussion of these results in terms of current theories of single limb locomotor pattern generation is presented.  相似文献   

5.
Development of locomotor mechanisms in the frog   总被引:2,自引:0,他引:2  
Tadpoles swim by undulations of the body and tail, whereas frogs locomote by alternate (stepping) and synchronous (frog-kick) movements of the hindlimbs. The development of interlimb coordination was studied by recording the activity of hindlimb motoneurons from the left and right ninth ventral roots of the isolated central nervous system (CNS). Results showed that mechanisms responsible for interlimb coordination of stepping are functional when the hindlimb is still composed of undifferentiated mesenchyme and before the lateral motor column has stabilized (stage III). The early appearance of coordinated activation of hindlimb motoneurons suggests that innervation of appropriate target muscles is not a prerequisite for normal development of circuits that mediate interlimb coordination of stepping. Synchronous activation of left and right hindlimb motoneurons (fictive frog kicks) appeared later in development (stage XIV). Throughout larval development 1:1 frequency coupling between both alternating and synchronous bursts of hindlimb motoneurons and bursts of primary motoneurons (those innervating axial muscles) was found. Recordings of peripheral nerve activity showed that motoneurons innervating antagonistic muscles of the thigh burst in antiphase. This intralimb coordination was present at stage X, a foot paddle stage that was the earliest stage in which the peripheral nerves were successfully dissected. That the neural activity of the isolated nervous system described above indeed underlies coordinated locomotor movements of the hindlimbs was shown by single-frame videotape analysis of hindlimb movements produced by the otherwise isolated CNS. The stepping movements displayed by those preparations were consistent with patterns of electrophysiological burst activity recorded from the ventral roots and peripheral nerves. The ontogenetic sequence in which the different patterns of electrophysiological activity emerged is the same as that of the corresponding behaviors in the intact tadpole. Although there were developmental changes in the reliability with which coordinated activity in the ventral roots and peripheral nerves was observed, each mode of coordination remained qualitatively unchanged from its earliest appearance through metamorphosis. These results show that mechanisms underlying locomotor coordination of the hindlimbs develop very early in larval ontogeny of the frog and can function when isolated from the periphery.  相似文献   

6.
1. In the companion paper the gain of the stretch reflex in the ankle extensor muscles of normal cats was shown to increase after decerebration. The objectives of this study were 1) to identify the origin of the increased reflex and 2) to evaluate the contribution from afferents other than ankle extensor muscle afferents to the short-latency reflex. 2. Six cats were trained to stand unaided on four pedestals. Three cats were also trained to control the force exerted with the left hindlimb. The left soleus (SOL) and lateral gastrocnemius (LG) electromyogram (EMG), length, force, and temperature were recorded by chronically implanted electrodes and transducers. Measurements were taken before and after decerebration at the premammillary level. After decerebration limb temperature was returned to its normal range by the use of radiant heat. 3. Reproducible ramp-and-hold stretches and releases of the ankle extensor muscles were produced by a servo-controlled motor that rotated the left rear pedestal about the ankle joint. The length of the ankle extensor muscles changed by 2-3 mm within 30-35 ms after the onset of a ramp perturbation. Reflex responses before and after decerebration were compared at matched background values of muscle length and force. 4. In both the SOL and LG muscles, a short-latency EMG burst appeared 8-12 ms after stretch onset and lasted approximately 20 ms. After decerebration the onset of the rectified and smoothed EMG burst remained unchanged, but its area was increased by 36-89%. 5. The lateral gastrocnemius-soleus (LG-S) electroneurogram (ENG) was chronically recorded in two cats with a nerve cuff recording electrode implanted on the LG-S nerve. LG-S ENG activity started to increase soon after stretch onset and remained high during the entire ramp phase. The stretch-evoked LG-S ENG burst started approximately 8 ms earlier than the short-latency SOL and LG EMG bursts. It was interpreted to reflect mainly an increase in the activity of Group Ia and Ib muscle afferents, caused by increases in both muscle length and muscle force during the stretch. After the cats were decerebrated, for matched postural conditions, the area of the stretch-evoked LG-S ENG burst was increased by 29-35%. Because the length and force changes sensed by the muscle receptors before and after decerebration were similar, this suggests that the sensitivity of muscle spindles was increased as a consequence of altered activity in fusimotor neurons after decerebration.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

7.
Summary Nerve cuff electrodes were chronically implanted around multiple peripheral nerves in adult cats, including the medial and posterior articular nerves (MAN and PAN) to the knee while EMG electrodes were implanted into seven hindlimb muscles. Randomized load perturbations producing mid-range knee flexions at varying angular velocities were subsequently applied to awake cats. Recordings were initially obtained with knee joint innervation intact and then after local anaesthetic or saline control solution was injected into the knee. Averaged neurogram and EMG responses to the imposed movements were utilized to assess the contribution of joint mechanoreceptor activity to the evoked muscle responses. Additionally, spike-triggered averaging techniques and peri-stimulus time histograms of single joint afferent units isolated from the articular nerve cuffs were utilized to characterize unitary joint receptor responses. The averaged whole nerve response to knee joint perturbations on each of the cuffed articular nerves revealed phasic increases in activity relative to constant background levels. The earliest phasic responses on the articular nerves were initiated at latencies that were too short to be voluntary, occurring in the short latency (reflex) period. Detectable joint receptors were not recruited until after the earliest excitatory responses of agonist/antagonist muscle pairs acting across the knee had occurred, presumably resulting in mechanical loading of the knee joint capsule and subsequent activation of articular mechanoreceptors. Introduction of local anaesthetic into the knee was accompanied by marked diminution in joint afferent activity. Perturbation-evoked muscle responses were characterized by increased activity above background levels in all seven muscles studied, including antagonist muscle pairs. Local anaesthetic-mediated loss of knee joint mechanoreceptor input altered the latency, amplitude and duration of EMG responses in each muscle. The effect of joint anaesthesia in the short latency period was a generalized decrease in all muscle responses relative to normal and saline controls. The loss of afferent input after joint anaesthesia was also associated with altered muscle responses during the long latency period, when both reflex and voluntary mechanisms could potentially contribute to the generation of EMG activity. Interestingly, long latency activity after joint anaesthesia was characterized by unbalancing in the EMG responses of some antagonist muscle pairs. This alteration of normal antagonist pair co-contraction patterns served to increase the magnitude of the imposed perturbations, rather than to bring the movements under control. Analysis of single joint afferents isolated from whole joint nerve recordings demonstrated that some joint afferent units were tonically active at quiescent, mid-range knee positions. Additionally, isolated afferents demonstrated different time courses of response to imposed perturbations. Some afferents responded with decreased or absent firing activity (TONIC units) while other joint afferents responded with phasic bursts of activity which were greatly increased above their relatively low levels of tonic, background activity (TONIC-PHASIC units). In addition to TONIC and TONIC-PHASIC units, other joint afferents were identified which were only active after imposition of passive knee movements (PHASIC units). In conclusion, data obtained from whole joint nerve recordings as well as data from isolated, single joint afferents demonstrate that joint receptors can modulate short and long latency muscle responses to passively-imposed knee movements in the awake cat.Supported by Medical Research Council of Canada (MRC) grant MT5218. KWM is an MRC fellow  相似文献   

8.
Summary To determine the effects of atypical motion-related feedback on motor patterns of the paw shake, EMG patterns of selected flexor and extensor muscles were recorded under four conditions of joint immobilization (hip and ankle alone, hip-knee, hip-knee-ankle) and compared to responses evoked in the freely-moving hindlimb of the chronic-spinal cat. With only the ankle joint casted, paw shaking was easily evoked by applying tape to the paw, and cyclic characteristics were not altered. However, under the three conditions with hip-joint immobilization (hip alone, hip-knee, hip-knee-ankle), responses were difficult to obtain, and if elicited, the number of cycles within a response decreased and cycle periods were prolonged. The temporal organization of consecutive cycles, however, was not altered by immobilization of any joint(s). Ankle (LG) and hip (GM) extensor activity was relatively unaffected by conditions of joint immobilization. In contrast, hip flexor (IP) and knee extensor (VL) bursts were often absent under all three conditions of hip-joint immoblization, and if present, VL burst durations decreased under the casted hip-knee-ankle condition, while the onset of IP activity occurred early in the cycle with prolonged bursts under casted ankle and casted hip-knee-ankle conditions. The coactivity of the knee extensor (VL) and ankle flexor (TA) was disrupted by conditions of hip-joint immobilization: VL onset was dissociated from TA onset and coincident with LG onset. These results suggest that motion-related feedback from the hip joint is particularly important in the initiation, cycle frequency, and the number of cycles of paw-shake responses. The presence of atypical motion-dependent feedback from the hip joint altered activity of knee and ankle anterior muscles, while motion-dependent feedback from the ankle joint changed activity of the anterior hip muscle. Moreover, the results suggest a differential control of posterior and anterior muscles of the hindlimb, consistent with paw-shake limb dynamics.  相似文献   

9.
Bilateral section of dorsal roots was performed in 9 adult rats in order to ascertain whether the tendency to extension, the appearance of spontaneous electromyographic (EMG) activity in extensor muscles and other symptoms of postdenervation hypersensitivity after unilateral deafferentation are not due to the sensory inflow from the contralateral limb. EMG activity from the soleus (SOL) and tibialis anterior (TA) muscles was bilaterally recorded before and at various periods after deafferentation by a previously implanted electrode array. The postural activity in both SOL muscles disappeared after the operation. One to two days later, however, spontaneous tonic EMG activity, similar to that found in the SOL after unilateral deafferentation, appeared in these bilaterally deafferented muscles. The tonic spontaneous EMG activity in hind limb extensor muscles after deafferentation is apparently due to hypersensitivity of spinal neurones to supraspinal influences, since this activity completely disappears after myelotomy. The paradoxical inhibitory EMG response to stretch of the deafferented SOL frequently appeared 1–2 weeks after bilateral dorsal rhizotomy. The performance of movement was highly atactic after bilateral deafferentation. However, the basic locomotor EMG pattern persisted, although simultaneous activation of homonymous muscles was also occasionally recorded.  相似文献   

10.
The simultaneous control of the hindlimb paw-shake response and hindlimb walking at slow treadmill speeds (0.2-0.4 m/s) was examined in adult cats spinalized at the T12 level, 3-6 mo earlier. Paw shaking was elicited by either 1) application of adhesive tape or 2) water to the right hindpaw. To assess intralimb and interlimb coordination of the combined behaviors, activity from selected flexor and extensor muscles at the hip, knee, and ankle was recorded, and the kinematics of these joints were determined from high-speed cinefilm. When paw shaking was combined with hindlimb walking, the response in the stimulated limb was initiated during swing (F phase) of the step cycle. The onset of knee extensor activity provided the transition from the flexor synergy of swing to the mixed synergy of paw shake. At the end of the paw shake, an extensor synergy initiated the E-1 phase of swing, and the resultant joint motion was in-phase extension at the hip, knee, and ankle to lower the paw for contact with the treadmill belt. During the rapid (81 ms) paw-shake cycles, knee extensor and ankle flexor muscles exhibited single, coactive bursts that were reciprocal with coactive hip and ankle extensor bursts. This mixed synergy was reflected in the limb coordination, as knee flexion coincided with ankle extension and knee flexion coincided with ankle extension. Phasing of hip motions was variable, reflecting the role of the proximal in stabilization during paw shake (16). Although the number of paw-shake cycles combined during swing varied greatly from 2 to 14, average cycle periods, burst durations, and intralimb synergies were similar to those previously reported for spinal cats tested under conditions in which the trunk was suspended and hindlimbs were pendent (23, 27). For step cycles during which a long paw-shake response of 8-14 cycles occurred, swing duration of the shaking limb increased by 1 s, and during this prolonged interval, the contralateral hindlimb completed two support steps. Stance duration of the support steps was also prolonged. This adjustment maximized the duration of paw-contact and minimized any period of nonsupport by the contralateral hindlimb during paw shake. Completion of the paw-shake response was followed by either an alternating, or a nonalternating, gait pattern on the recovery steps. One spinal cat combined locomotion with short two-cycle paw-shake responses, and because the shortened response was limited primarily to the time ordinarily devoted to swing, interlimb adjustments were slight.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

11.
1. To compare the basic hindlimb synergies for backward (BWD) and forward (FWD) walking, electromyograms (EMG) were recorded from selected flexor and extensor muscles of the hip, knee, and ankle joints from four cats trained to perform both forms of walking at a moderate walking speed (0.6 m/s). For each muscle, EMG measurements included burst duration, burst latencies referenced to the time of paw contact or paw off, and integrated burst amplitudes. To relate patterns of muscle activity to various phases of the step cycle, EMG records were synchronized with kinematic data obtained by digitizing high-speed ciné film. 2. Hindlimb EMG data indicate that BWD walking in the cat was characterized by reciprocal flexor and extensor synergies similar to those for FWD walking, with flexors active during swing and extensors active during stance. Although the underlying synergies were similar, temporal parameters (burst latencies and durations) and amplitude levels for specific muscles were different for BWD and FWD walking. 3. For both directions, iliopsoas (IP) and semitendinosus (ST) were active as the hip and knee joints flexed at the onset of swing. For BWD walking, IP activity decreased early, and ST activity continued as the hip extended and the knee flexed. For FWD walking, in contrast, ST activity ceased early, and IP activity continued as the hip flexed and the knee extended. For both directions, tibialis anterior (TA) was active throughout swing as the ankle flexed and then extended. A second ST burst occurred at the end of swing for FWD walking as hip flexion and knee extension slowed for paw contact. 4. For both directions, knee extensor (vastus lateralis, VL) activity began at paw contact. Ankle extensor (lateral gastrocnemius, LG) activity began during midswing for BWD walking but just before paw contact for FWD walking. At the ankle joint, flexion during the E2 phase (yield) of stance was minimal or absent for BWD walking, and ankle extension during BWD stance was accompanied by a ramp increase in LG-EMG activity. At the knee joint, the yield was also small (or absent) for BWD walking, and increased VL-EMG amplitudes were associated with the increased range of knee extension for BWD stance. 5. Although the uniarticular hip extensor (anterior biceps femoris, ABF) was active during stance for both directions, the hip flexed during BWD stance and extended during FWD stance.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

12.
Mesencephalic cats can walk on a treadmill if the midbrain locomotor region is stimulated. The motor pattern of different hindlimb muscles is similar to that of th intact cat. The present experiments in the mesencephalic preparation test if the complex motor pattern in one hindlimb is causally dependent on the afferent signals arising in the same limb during walking. The electromyographical activity and the movement pattern during locomotion were compared before and after transecting all dorsal root fibres originating from one hindlimb. Flexor and extensor muscles at different joints may retain their general pattern after the dorsal root transection. This applies also to muscles such as the knee flexors, which have a short and early flexor burst and a second burst during the extension phase, and the short toe dorsiflexor , which has an early burst in the transition between flexor and extensor activity. After the dorsal root transection the pattern of activity may become more variable and it can even break down altogether. The present results demonstrate that the central nervous system devoid of phasic afferent inflow from one hindlimb can produce a complex motor output to this limb rather than a motor pattern degraded to a simple alternation between flexors and extensors.  相似文献   

13.
The three-dimensional kinematics of the hindlimb back-wipe were examined in spinal frogs. The component movements were identified and the relationship between stimulus position and hindlimb configuration was assessed. The planes of motion of the hindlimb were examined throughout the movement. The backwipe comprises three essential phases: a placing phase (I), in which the foot is drawn over the back of the frog and placed in a position near to the stimulus; a pre-whisk phase (II), in which the endpoint of the foot moves away from the stimulus; and a whisk/extension phase (III), in which the stimulus is removed. The pre-whisk phase contributes to force production for the whisk/extension (III). In the placing phase a systematic relationship was found between limb endpoint position and stimulus position in the rostro-caudal direction. The hip, knee and metatarsal joint angles were related to the position of the endpoint in the rostro-caudal direction. However, different frogs tended to adopt different strategies to remove the stimulus. In one strategy, when the knee angle was strongly related to the rostro-caudal stimulus position, the metatarsal angle was weakly related and vice versa. Other strategies were observed as well. There was no adjustment in limb endpoint position for stimulus placement in the medial-lateral direction. Consistent with this finding, the point on the foot at which stimulus contact occurred changed systematically as a function of medial-lateral stimulus placement. Thus, in order to remove the stimulus in different medial-lateral positions, the frog used a different part of the foot rather than moving the foot in the direction of the stimulus. In two frogs a relationship was observed between the elevation of the femur and the medial-lateral stimulus position. The motion planes of the hindlimb were studied by examining the instantaneous plane of motion of the endpoint and the planes of motion of adjacent limb segments. The motion of the endpoint was found not to be planar in any phase of the wipe. In contrast, planar motion of the femur and tibia was observed for all phases. Systematic changes in the orientation of these planes characterized the different phases. The position of the hindlimb was found to be variable prior to the placing phase. This variability was not related to stimulus position. However, in trials with multiple wipes, once an initial limb configuration was assumed, the limb returned to this configuration before each wipe in the sequence. Evidence for motor equivalence was sought in two ways. The pattern of hindlimb joint angles corresponding to a fixed position of the limb endpoint was examined, and the variability of the endpoint positions was examined for fixed stimulus positions. It was found that for a given endpoint position there was little variation in joint angles. However, for a fixed stimulus position there was greater variation in the endpoint position at the end of the placing phase.  相似文献   

14.
This study examined (1) how changes in head position affect postural orientation variables during stance and (2) whether changes in head position affect the rapid postural response to linear translation of the support surface in the horizontal plane. Cats were trained to stand quietly on a moveable platform and to maintain five different head positions: center, left, right, up, and down. For each head position, stance was perturbed by translating the support surface linearly in 16 different directions in the horizontal plane. Postural equilibrium responses were quantified in terms of the ground reaction forces, kinematics, dynamics (net joint torques), body center of mass, and electromyographic (EMG) responses of selected limb and trunk muscles. A change in head position involved rotation of not only the neck but also the scapulae and anterior trunk. Tonic EMG levels were modulated in several forelimb and scapular muscles but not hindlimb muscles. Finally, large changes in head orientation in both horizontal and vertical planes did not hamper the ability of cats to maintain postural equilibrium during linear translation of the support surface. The trajectory of the body’s center of mass was the same, regardless of head position. The main change was observed in joint torques at the forelimbs evoked by the perturbation. Evoked EMG responses of forelimb and scapular muscles were modulated in terms of magnitude but not spatial tuning. Hindlimb responses were unchanged. Thus, the spatial and temporal pattern of the automatic postural response was unchanged and only amplitudes of evoked activity were modulated by head position. Received: 14 October 1997 / Accepted: 22 April 1998  相似文献   

15.
The aim of this study was to investigate the effect of single joint displacement on the pattern of leg muscle electromyographic (EMG) activity during locomotion. For the first time, unilateral rotational hip or knee joint displacements were applied by a driven orthotic device at three phases of swing during locomotion on a treadmill. The response pattern of bilateral leg muscle activation with respect to the timing and selection of muscles was almost identical for displacements of upper (hip joint) or lower (knee joint) leg. The leg muscle EMG responses were much stronger when the displacement was directed against the physiological movement trajectory, compared with when the displacement was reinforcing, especially during mid swing. It is suggested that these response patterns are designed to restore physiological movement trajectory rather than to correct a single joint position. Displacements released at initial or terminal swing, assisting or resisting the physiological movement trajectory, were followed by similar and rather unspecific response patterns. This was interpreted as being directed to stabilise body equilibrium.  相似文献   

16.
Summary The current paper presents our initial efforts to establish an in vitro spinal preparation for investigating locomotor pattern generation in mice. We have characterized the step cycle timing from EMG activity in the gastrocnemius (G) and tibialis anterior (TA) muscles of freely moving intact adult as well as neonatal mice and then compared those data with rhythmic EMG activity in an isolated spinal cord-hindlimb preparation. The motor output during the first four days of life was evaluated in an effort to identify the optimal post-partum period for in vitro locomotor studies. The in vitro pattern generating capabilities of the lumbosacral region were tested in both nonhemisected and hemisected preparations. Spontaneous as well as NMDA evoked in vitro activity in the antagonist set of hindlimb muscles included sequences of: 1) synchronous bursting; 2) mixed synchrony and alternation; and/or 3) irregular alternations. The alternating bursting observed in vitro was more often an alternation of sequences rather than a cycle-to-cycle phasing between G and TA muscles. In summary, while there was evidence of reciprocal inhibition in neonates, the circuitry for cycle-to-cycle alternation between antagonists was found to be labile.  相似文献   

17.
The purpose of the study was to examine the pattern of electromyographic (EMG) activity of the rat soleus (SOL) and tibialis anterior (TA) muscles during treadmill locomotion at various speeds after 7 days of hindlimb unloading (HU). Raw EMG signals were processed to determine cycle duration, burst duration and mean EMG (burst surface divided by its duration). Cycle duration and SOL burst duration increased after HU (+7% and +5%, respectively) while TA burst duration decreased (?16%). After HU, the alternating pattern of activity between extensor and flexor muscles was maintained. Nevertheless, a co-activation of the two muscles was sometimes observed. The EMG pattern revealed no difference in the timing of the coordination between flexor and extensor muscles after HU. The delay between TA offset and SOL onset was increased (+12 ms), but this increase could be explained by the decrease in TA burst duration. Neither TA burst duration nor TA mean EMG were changed with increased treadmill speed, so that the flexor muscle activity was not related to speed of locomotion. These results would suggest that SOL activity is centrally programmed. Moreover, it is proposed that a decline in afferent feedback from SOL in rats which are suspended has an effect upon the locomotor pattern, leading to an hyperexcitability of SOL motoneurons and, via reciprocal inhibition, to a reduction in TA activity.  相似文献   

18.
Summary Rapid voluntary limb movements are accompanied by a triphasic electromyogram (EMG): the agonist muscle discharges briefly to generate the initial limb displacement and then, in sequence, an antagonist and second agonist burst occur. The origins of these bursts of EMG have been attributed to both peripheral and central sources. We attempted to determine in human subjects whether somesthetic afferent inputs related to passive muscle stretch or joint rotation were necessary for the appearance of the three bursts. EMGs were recorded while subjects performed rapid isotonic movements before and after forearm afferent function was blocked by ischemia. EMG patterns were also studied during phasic and sustained isometric contractions of forearm muscles.When the forearm was ischemically deafferented the triphasic EMG pattern persisted though the amplitudes of the three bursts were modified. In separate experiments, a similar three burst pattern was also observed while phasic isometric contractions were performed, but not when rapid-onset sustained isometric contractions were executed.These data support the view that somesthetic afferent information related to muscle length or joint rotation is not necessary for the occurrence of the three burst pattern during rapid motor behaviors. Since bursts of EMG activity were observed when torque rose and fell quickly during fast isotonic movements and phasic isometric contractions, the triphasic pattern appears to be a fundamental property of the central program underlying such rapid motor behaviors.  相似文献   

19.
We assessed the locomotor capacity of the left half of the spinal cord hindlimb enlargement in low-spinal turtles. Forward swimming was evoked in the left hindlimb by electrical stimulation of the right dorsolateral funiculus (DLF) at the anterior end of the third postcervical spinal segment (D3). Animals were held by a band-clamp in a water-filled tank so that hindlimb movements could be recorded from below with a digital video camera. Left hindlimb hip and knee movements were tracked while electromyograms (EMGs) were recorded from left hip and knee muscles. In turtles with intact spinal cords, electrical stimulation of the right D3 DLF evoked robust forward swimming movements of the left hindlimb, characterized by rhythmic alternation between hip flexor (HF) and hip extensor (HE) EMG discharge, with knee extensor (KE) bursts occurring during the latter part of each HE-off phase. After removing the right spinal hemi-enlargement (D8-S2), DLF stimulation still evoked rhythmic locomotor movements and EMG bursts in the left hindlimb that included HF-HE alternation and KE discharge. However, post-surgical movements and EMG bursts had longer cycle periods, and movements showed lower amplitudes compared to controls. These results show that (1) sufficient locomotor CPG circuitry resides within the turtle spinal hemi-enlargement to drive major components of the forward swim motor pattern, (2) contralateral circuitry contributes to the excitation of the locomotor CPG for a given limb, and (3) a sufficient portion of the descending DLF pathway crosses over to the contralateral cord anterior to the hindlimb enlargement to activate swimming.  相似文献   

20.
It is well established that the motor cortex makes an important contribution to the control of visually guided gait modifications, such as those required to step over an obstacle. However, it is less clear how the descending cortical signal interacts with the interneuronal networks in the spinal cord to ensure that precise changes in limb trajectory are appropriately incorporated into the base locomotor rhythm. Here we suggest that subpopulations of motor cortical neurones, active sequentially during the step cycle, may regulate the activity of small groups of synergistic muscles, likewise active sequentially throughout the step cycle. These synergies, identified by a novel associative cluster analysis, are defined by periods of muscle activity that are coextensive with respect to the onset and offset of the EMG activity. Moreover, the synergies are sparse and are frequently composed of muscles acting around more than one joint. During gait modifications, we suggest that subpopulations of motor cortical neurones may modify the magnitude and phase of the EMG activity of all muscles contained within a given synergy. Different limb trajectories would be produced by differentially modifying the activity in each synergy thus providing a flexible substrate for the control of intralimb coordination during locomotion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号