首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Extracellular and intracellular recordings were carried out from neurons in the region of the pontine reticular formation at the transition between the nucleus reticularis pontis oralis and caudalis, and in the pontis caudalis. Responses were studied after stimulation of the mesopontine cholinergic pedunculopontine nucleus in precollicular-postmammillary transected, paralyzed preparations. Recordings of neurographic activity in hindlimb flexor and extensor nerves served to detect changes in fictive locomotion and muscle tone induced by pedunculopontine nucleus stimulation or occurring spontaneously. Short duration trains of pedunculopontine nucleus stimulation induced long lasting responses, on average over 12s in duration, in one-third of pontine reticular neurons. These prolonged responses were stimulation frequency-dependent such that the longest durations were induced by stimulation at 20-60Hz. In some cells, stimulation at lower (10Hz) or higher (100Hz) frequencies induced responses of shorter duration or were absent, while in others, higher frequencies prolonged the excitatory effects of pedunculopontine nucleus stimulation.We conclude that these stimulation frequency-dependent effects may be related to the modulation of postural muscle tone and locomotion by the pedunculopontine nucleus.  相似文献   

2.

Study Objectives:

We recorded the effects of administration of the stimulant modafinil on the amplitude of the sleep state-dependent auditory P13 evoked potential in freely moving rats, a measure of arousal thought to be generated by the cholinergic arm of the reticular activating system, specifically the pedunculopontine nucleus (PPN).

Design:

Groups of rats were implanted for recording auditory evoked responses and the effects on P13 potential amplitude of intracranial injections into the PPN of neuroactive agents determined.

Measurements and Results:

The effects of intracranial injections into the PPN of modafinil showed that P13 potential amplitude increased in a dose-dependent manner at doses of 100, 200, and 300 μM. The effect was blocked by pretreatment with either of the gap junction an-tagonists carbenoxolone (300 μM) or mefloquine (25 μM), which by themselves slightly decreased P13 potential amplitude.

Conclusions:

These results suggest that modafinil increases arousal levels as determined by the amplitude of the P13 potential, an effect blocked by gap junction antagonists, suggesting that one mechanism by which modafinil increases arousal may be by increasing electrical coupling.

Citation:

Beck P; Odle A; Wallace-Huitt T; Skinner RD; Garcia-Rill E. Modafinil Increases Arousal Determined by P13 Potential Amplitude: An Effect Blocked by Gap Junction Antagonists. SLEEP 2008;31(12):1647–1654.  相似文献   

3.
Rapid eye movement sleep decreases between 10 and 30 days postnatally in the rat. The pedunculopontine nucleus is known to modulate waking and rapid eye movement sleep, and pedunculopontine nucleus neurons are thought to be hyperpolarized by noradrenergic input from the locus coeruleus. The goal of the study was to investigate the possibility that a change in alpha-2 adrenergic inhibition of pedunculopontine nucleus cells during this period could explain at least part of the developmental decrease in rapid eye movement sleep. We, therefore, recorded intracellularly in 12-21 day rat brainstem slices maintained in oxygenated artificial cerebrospinal fluid. Putative cholinergic vs. non-cholinergic pedunculopontine nucleus neurons were identified using nicotinamide adenine dinucleotide phosphate diaphorase histochemistry and intracellular injection of neurobiotin (Texas Red immunocytochemistry). Pedunculopontine nucleus neurons also were identified by intrinsic membrane properties, type I (low threshold spike), type II (A) and type III (A+low threshold spike), as previously described. Clonidine (20 microM) hyperpolarized most cholinergic and non-cholinergic pedunculopontine nucleus cells. This hyperpolarization decreased significantly in amplitude (mean+/-S.E.) from -6.8+/-1.0 mV at 12-13 days, to -3.0+/-0.7 mV at 20-21 days. However, much of these early effects (12-15 days) were indirect such that direct effects (tested following sodium channel blockade with tetrodotoxin (0.3 microM)) resulted in hyperpolarization averaging -3.4+/-0.5 mV, similar to that evident at 16-21 days. Non-cholinergic cells were less hyperpolarized than cholinergic cells at 12-13 days (-1.6+/-0.3 mV), but equally hyperpolarized at 20-21 days (-3.3+/-1.3 mV). In those cells tested, hyperpolarization was blocked by yohimbine, an alpha-2 adrenergic receptor antagonist (1.5 microM). These results suggest that the alpha-2 adrenergic receptor on cholinergic pedunculopontine nucleus neurons activated by clonidine may play only a modest role, if any, in the developmental decrease in rapid eye movement sleep. Clonidine blocked or reduced the hyperpolarization-activated inward cation conductance, so that its effects on the firing rate of a specific population of pedunculopontine nucleus neurons could be significant. In conclusion, the alpha-2 adrenergic input to pedunculopontine nucleus neurons appears to consistently modulate the firing rate of cholinergic and non-cholinergic pedunculopontine nucleus neurons, with important effects on the regulation of sleep-wake states.  相似文献   

4.
Mesopontine cholinergic neurons influence midbrain dopaminergic neurons, and thalamic and cerebellar structures which have been implicated in the neuroanatomy of schizophrenia. It has been reported that there are approximately twice as many mesopontine cholinergic neurons in schizophrenics than in normals, using nicotinomide adenosine dinucleotide phosphatediaphorase histochemistry to identify the cholinergic neurons. The present study sought to replicate this finding by analysing mesopontine cholinergic neurons using an antibody against choline acetyltransferase. The mesopontine cholinergic neurons are located in the pars compacta and pars dissipata of the pedunculopontine nucleus, and in the laterodorsal tegmental nucleus. Quantitative computer imaging techniques were used to map the distribution of mesopontine cholinergic neurons. In addition, all medium-sized and large neurons in a region of interest containing the middle portion of the pedunculopontine nucleus pars compacta were counted in Nissl-stained sections. There was no difference between schizophrenic and normal brains in terms of: (i) the rostral-caudal length of the cholinergic cell complex, approximately 10 mm; (ii) the estimated total number of cholinergic neurons in the combined pedunculopontine nucleus and laterodorsal tegmental nucleus, approximately 20,000 cells unilaterally; and (iii) the combined number of cholinergic and non-cholinergic Nissl-stained neurons in the middle portion of the pedunculopontine nucleus. The present data do not support the previous observation of increased numbers of mesopontine cholinergic neurons in schizophrenia.  相似文献   

5.
Summary Extracellular single-neuron recordings were obtained from electrophysiologically identified nigrostriatal neurons in chloral hydrate anesthetized rats, in order to test the hypothesis that excitatory amino acid receptors are involved in responses of these neurons to electrical stimulation of the pontine region where the pedunculopontine nucleus (PPN) is located. The effects of iontophoretic application of excitatory amino acids and their antagonists as well as of cholinergic antagonists were tested on the fast orthodromic excitation of nigrostriatal neurons evoked by stimulation of the PPN region. The N-methyl-D-aspartate (NMDA) receptor antagonist D-a-aminoadipic acid as well as the cholinergic receptor antagonists mecamylamine and atropine failed to suppress the synaptic excitation of nigral neurons. The NMDA receptor antagonist DL-2-amino-5-phosphonovalerate exerted a weak depressant action on the synaptic response in a few neurons only. On the contrary, the broad spectrum antagonists of excitatory amino acid receptors kynurenic acid and gamma-Dglutamyl-amino-methyl-sulphonate were found to block simultaneously both the synaptic excitation and the neuronal responses to iontophoretic pulses of glutamate while leaving unaffected the neuronal responses to local application of acetylcholine or carbachol. The competitive antagonist of non-NMDA receptors 6-cyano-2,3-dihy-droxy-7-nitro-quinoxaline suppressed the synaptic excitation at ejection currents which antagonized neuronal responses to quisqualate and kainate. These results suggest that PPN excitatory fibers synapsing onto pars compacta nigrostriatal neurons utilize an excitatory amino acid as a synaptic transmitter acting preferentially on non-NMDA receptors.  相似文献   

6.
7.
Information to the cerebellum enters via many afferent sources collectively known as precerebellar nuclei. We investigated the distribution of cholinergic terminal-like structures in the mouse precerebellar nuclei by immunohistochemistry for vesicular acetylcholine transporter (VAChT). VAChT is involved in acetylcholine transport into synaptic vesicles and is regarded as a reliable marker for cholinergic terminals and preterminal axons. In adult male mice, brains were perfusion-fixed. Polyclonal antibodies for VAChT, immunoglobulin G-peroxidase and diaminobenzidine were used for immunostaining. In the mouse brain, immunoreactivity was seen in almost all major cholinergic cell groups including brainstem motoneurons. In precerebellar nuclei, the signal could be detected as diffusely beaded terminal-like structures. It was seen heaviest in the pontine nuclei and moderate in the pontine reticulotegmental nucleus; however, it was seen less in the medial solitary nucleus, red nucleus, lateral reticular nucleus, inferior olivary nucleus, external cuneate nucleus and vestibular nuclear complex. In particular, VAChT-immunoreactive varicose fibers were so dense in the pontine nuclei that detailed distribution was studied using three-dimensional reconstruction of the pontine nuclei. VAChT-like immunoreactivity clustered predominantly in the medial and ventral regions suggesting a unique regional difference of the cholinergic input. Electron microscopic observation in the pontine nuclei disclosed ultrastructural features of VAChT-immunoreactive varicosities. The labeled bouton makes a symmetrical synapse with unlabeled dendrites and contains pleomorphic synaptic vesicles. To clarify the neurons of origin of VAChT-immunoreactive terminals, VAChT immunostaining combined with wheat germ agglutinin-conjugated horseradish peroxidase retrograde labeling was conducted by injecting a retrograde tracer into the right pontine nuclei. Double-labeled neurons were seen bilaterally in the laterodorsal tegmental nucleus and pedunculopontine tegmental nucleus. It is assumed that mesopontine cholinergic neurons negatively regulate neocortico-ponto-cerebellar projections at the level of pontine nuclei.  相似文献   

8.
We have previously shown that the GABAergic nucleus zona incerta (ZI) suppresses vibrissae-evoked responses in the posterior medial (POm) thalamus of the rodent somatosensory system. We proposed that this inhibitory incerto-thalamic pathway regulates POm responses during different behavioral states. Here we tested the hypothesis that the cholinergic reticular activating system, implicated in regulating states of arousal, modulates ZI activity. We show that stimulation of brain stem cholinergic nuclei (laterodorsal tegmental and pedunculopontine tegmental) results in suppression of spontaneous firing of ZI neurons. Iontophoretic application of the cholinergic agonist carbachol to ZI neurons suppresses both their spontaneous firing and their vibrissae-evoked responses. We also found that carbachol application to an in vitro slice preparation suppresses spontaneous firing of neurons in the ventral sector of ZI (ZIv). Finally, we demonstrate that the majority of ZIv neurons contain parvalbumin and project to POm. Based on these results, we present the state-dependent gating hypothesis, which states that differing behavioral states-regulated by the brain stem cholinergic system-modulate ZI activity, thereby regulating the response properties of higher-order nuclei such as POm.  相似文献   

9.
The pars compacta and pars dissipata of the pedunculopontine nucleus contain cholinergic cell group Ch5, and the laterodorsal tegmental nucleus contains cholinergic cell group Ch6. The pedunculopontine nucleus has been implicated in a variety of functions, including mediation of rapid eye movement sleep and in extrapyramidal motor function, although the role of cholinergic and non-cholinergic neurons is unclear. Quantitative neuroanatomical techniques were used to map the distribution of cholinergic neurons in the mesopontine nuclei of the adult human brain. In addition, the number and distribution of comparably sized non-cholinergic neurons at selected anatomical levels were compared. An antibody raised against human choline acetyltransferase was used to stain immunohistochemically the mesopontine neurons in six brains, ranging in age from 28 to 60 years. The rostrocaudal length of the Cb5/Ch6 cell complex was approximately 10 mm. The estimated total number of cells was similar for all brains, and varied by less than 7%. The estimated average number of cholinergic cells in the combined pedunculopontine and laterodorsal tegmental nuclei was approximately 20,000, with 30% of the cells in the pedunculopontine nucleus pars compacta, 57% in the pedunculopontine nucleus pars dissipata and 13% in the laterodorsal tegmental nucleus. There was no correlation between cell number and age. Within areas of mesopontine tegmentum occupied by the Ch5 cholinergic neurons, there were often more noncholinergic neurons than comparably sized cholinergic neurons. The present study provides detailed maps of the distribution and number of mesopontine cholinergic neurons in the normal human brain. Many non-cholinergic neurons are intermixed with the cholinergic pedunculopontine neurons. One region of the pedunculopontine nucleus pars dissipata containing few cholinergic neurons, located adjacent to the ventral border of the pedunculopontine nucleus pars compacta, may correspond to the midbrain-extrapyramidal area as defined previously in rodent and in non-human primate. These data will be useful for quantitative neuropathological studies concerning the role of both cholinergic and non-cholinergic mesopontine neurons in diseases proposed to affect these neurons, including Parkinson's disease, schizophrenia and progressive supranuclear palsy.  相似文献   

10.
The ventral part of the cat oral pontine reticular nucleus (vRPO) is the site in which microinjections of small dose and volume of cholinergic agonists produce long-lasting rapid eye movement sleep with short latency. The present study determined the precise location and proportions of the cholinergic brainstem neuronal population that projects to the vRPO using a double-labeling method that combines the neuronal tracer horseradish peroxidase–wheat germ agglutinin with choline acetyltransferase immunocytochemistry in cats. Our results show that 88.9% of the double-labeled neurons in the brainstem were located, noticeably bilaterally, in the cholinergic structures of the pontine tegmentum. These neurons occupied not only the pedunculopontine and laterodorsal tegmental nuclei, which have been described to project to other pontine tegmentum structures, but also the locus ceruleus complex principally the locus ceruleus and peri-, and the parabrachial nuclei. Most double-labeled neurons were found in the pedunculopontine tegmental nucleus and locus ceruleus complex and, much less abundantly, in the laterodorsal tegmental nucleus and the parabrachial nuclei. The proportions of these neurons among all choline acetyltransferase positive neurons within each structure were highest in the locus ceruleus complex, followed in descending order by the pedunculopontine and laterodorsal tegmental nuclei and then, the parabrachial nuclei. The remaining 11.1% of double-labeled neurons were found bilaterally in other cholinergic brainstem structures: around the oculomotor, facial and masticatory nuclei, the caudal pontine tegmentum and the praepositus hypoglossi nucleus. The disperse origins of the cholinergic neurons projecting to the vRPO, in addition to the abundant noncholinergic afferents to this nucleus may indicate that cholinergic stimulation is not the only or even the most decisive event in the generation of REM sleep.  相似文献   

11.
Rowell PP  Volk KA  Li J  Bickford ME 《Neuroscience》2003,116(2):447-453
The thalamus receives a dense cholinergic projection from the pedunculopontine tegmentum. A number of physiological studies have demonstrated that this projection causes a dramatic change in thalamic activity during the transition from sleep to wakefulness. Previous anatomical investigations have found that muscarinic type 2 receptors are densely distributed on the dendritic terminals of GABAergic interneurons, as well as the somata and proximal dendrites of GABAergic cells in the thalamic reticular nucleus. Since these structures are the synaptic targets of cholinergic terminals in the thalamus, it appears likely that thalamic pedunculopontine tegmentum terminals can activate muscarinic type 2 receptors on GABAergic cells. To test whether activation of muscarinic type 2 receptors affects the release of GABA in the thalamus, we have begun pharmacological studies using slices prepared from the rat thalamus. We have found that the application of the nonspecific muscarinic agonist, methacholine, and the muscarinic type 2-selective agonist, oxotremorine.sesquifumarate, diminished both the baseline, and K(+) triggered release of [(3)H]GABA from thalamic slices. This effect was calcium dependent, and blocked by the nonselective muscarinic antagonist atropine, the muscarinic type 2-selective antagonist, methoctramine, but not the muscarinic type 1 antagonist, pirenzepine. Thus, it appears that one function of the pedunculopontine tegmentum projection is to decrease the release of GABA through activation of muscarinic type 2 receptors. This decrease in inhibition may play an important role in regulating thalamic activity during changes in states of arousal.  相似文献   

12.
We sought to determine whether pontomesencephalic cholinergic neurons which we have been shown previously to project to the substantia nigra and ventral tegmental area also contribute to the thalamic activation projection from the pedunculopontine and laterodorsal tegmental nuclei. Retrograde tracing, immunohistochemical localization of choline acetyltransferase and statistical methods were used to determine the full extent of the cholinergic projection from the pedunculopontine and laterodorsal tegmental nuclei to the thalamus. Progressively larger Fluoro-Gold injections in to the thalamus proportionally labeled increasing numbers of pontomesencephalic cholinergic cells both ipsi- and contralaterally in the pedunculopontine and laterodorsal tegmental nuclei. Multiple large thalamic injections left only a small fraction of the ipsilateral pontomesencephalic cholinergic group unlabeled. This small remainder did not correspond to the populations which project to the substantia nigra and ventral tegmental area, thereby indicating that substantia nigra- and ventral tegmental area-projecting cholinergic neurons must also project to the thalamus. We examined whether there existed any set of cholinergic neurons in the pedunculopontine and laterodorsal tegmental nuclei which did not innervate a thalamic target. The distribution of descending projections of the pedunculopontine and laterodorsal tegmental nuclei demonstrated that the unlabeled remainder cannot correspond to a purely descending group. We also show that substance P-positive cholinergic cells in the laterodorsal tegmental nucleus project to the thalamus. Further studies demonstrated that the small population of cholinergic cells left unlabeled from the thalamus were the smallest sized cholinergic cells, and included two groups of small, light-staining cholinergic cells located in the parabrachial area and central gray, adjacent to the main pedunculopontine and laterodorsal tegmental nuclei cholinergic groups. These small cells, in contrast to thalamic-projecting cholinergic cells, did not stain positively for reduced nicotinamide adenine dinucleotide phosphate-diaphorase. Taken together, these results indicated that all of the reduced nicotinamide adenine dinucleotide phosphate diaphorase-positive/choline acetyltransferase-positive neurons of the pedunculopontine/laterodorsal tegmental nuclei ascend to innervate some portion of the thalamus, in addition to the other targets they innervate. These findings indicate that the diverse physiological and behavioral effects attributed to the activity of pontomesencephalic cholinergic neurons should not be dissociated from their activating effects in the thalamus.  相似文献   

13.
Summary The projections of cholinergic and noncholinergic neurons of the rostral brainstem reticular formation to the visual thalamic nuclei (dorsal lateral geniculate — LG, lateral posterior — LP, and perigeniculate — PG) were studied in cat by using the retrograde transport of horseradish peroxidase conjugated with wheat germ agglutinin (WGA-HRP) combined with choline acetyltransferase (ChAT) immunohistochemistry. After thalamic injections, less than 10% of all retrogradely labeled neurons in the upper brainstem reticular core were located at most rostral (perirubral) levels where there are virtually no cholinergic elements. Approximately 75–80% of all HRP-positive neurons in the reticular formation were found between stereotaxic planes anterior 1 and posterior 2, in the peribrachial (PB) area of the pedunculopontine nucleus and in the laterodorsal tegmental (LDT) nucleus. The brainstem afferents to LG and PG thalamic nuclei essentially derive from PB neurons, with a small contribution from LDT cells, whereas the LP thalamic nucleus receives massive inputs from both PB and LDT brainstem nuclei. Of all HRP-positive elements visualized in the PB nucleus after an LG or a PG injection, 87% and 73%, respectively, were also ChAT-positive. Of all HRP-positive elements in the PB and LDT nuclei after an LP injection, 82% and 92%, respectively, were also ChAT-positive. The numbers of labeled neurons in the contralateral brainstem reticular nuclei reach 30% to 50% of the numbers found in the ipsilateral reticular formation. These findings reveal the existence of a prominent cholinergic projection from the brainstem reticular formation to the visual thalamic nuclei. Such a chemospecific projection is probably involved in phasic and tonic events of activated behavioral states.After this paper was accepted for publication,we read a study by DeLima and Singer (J Comp Neurol 259:92-121, 1987) on cholinergic and monoaminergic afferents to the LG nucleus. The results reported in that study fit in well with our data.  相似文献   

14.
We have employed immunohistochemical and computerized morphometric procedures to study substance P-containing neurons in the tegmentum of adult humans. An estimated 192,500 +/- 40,500 substance P-containing neurons were found in three main cytoarchitectural regions: the mesencephalic reticular formation, the central gray, and the pontine reticular formation. The morphology of the immunoreactive neurons varied according to the region in which they were found. On the basis of size alone two types of substance P-containing neurons, large and small, were readily distinguishable by eye and measurement. Within each of the three main regions it was possible to distinguish distinct subgroups using cell size, morphology and position. Large neurons were concentrated in the caudal midbrain (pedunculopontine tegmental nuclei), in the oral pontine reticular nucleus and in the lateral dorsal tegmental nucleus. In contrast, small neurons were concentrated in the rostral mesencephalic reticular formation (cuniform nuclei). Both small and large neurons were found in the midbrain and pontine raphe nuclei. In addition, small neurons were concentrated in discrete midline regions (the periaqueductal gray, the tegmental nuclei of the pontine central gray, and the interpeduncular nucleus). The findings suggest that the majority of neurons in the brainstem tegmental nuclei previously identified as cholinergic also contain substance P in humans.  相似文献   

15.
The objective of this study was to determine whether the pedunculopontine tegmental nucleus plays a role in the maintenance of nicotine self-administration, and whether the ascending cholinergic projection from this nucleus to midbrain dopamine neurons in the ventral tegmental area might be involved. Studies were done with rats trained to self-administer nicotine intravenously. Self-administration was examined before and after the pedunculopontine tegmental nucleus was lesioned with the ethylcholine mustard aziridinium ion, a selective cholinergic toxin. Lesions were assessed qualitatively and quantitatively in histological sections stained for either nicotinamide adenine dinucleotide phosphate-diaphorase histochemistry to identify cholinergic neurons, or for Nissl. Self-administration was also tested after an acute manipulation in which microinfusions of the nicotinic cholinergic antagonist dihydro-beta-erythroidine were made into the pedunculopontine tegmentum.Infusions of neurotoxin into the pedunculopontine tegmentum reduced nicotine self-administration behaviour when tested weeks later. Toxin treatment reduced the number of cholinergic neurons in the tegmentum, while largely sparing the non-cholinergic population in this area. Lesions were limited to the pedunculopontine area and did not extend to the neighboring laterodorsal tegmental nucleus or to the substantia nigra. Acute manipulation of the pedunculopontine tegmental nucleus with microinfusions of dihydro-beta-erythroidine also produced an attenuation of nicotine self-administration.Collectively these data show that the pedunculopontine tegmental nucleus is part of the neuronal circuitry mediating nicotine self-administration, and that the population of cholinergic neurons is likely a critical element.  相似文献   

16.
Acetylcholine has long been known to play an important role in the cortical activation that accompanies the states of wakefulness and paradoxical sleep (for review, see Refs 17, 21) when this neurotransmitter is released from the cerebral cortex at the highest rates. The major supply of acetylcholine to the cerebral cortex arises from the cholinergic neurons of Meynert's Basal-ganglion or nucleus basalis of the forebrain. Lying in the substantia innominata within the major ascending pathway from the brain stem reticular formation, magnocellular basalis neurons project upon the cerebral cortex as the important ventral, extrathalamic relay of the ascending reticular activating system. Although the cholinergic basalis nucleus neurons have been shown to be important for cortical activation, the precise manner in which they influence cortical activity has not as yet been elucidated, in part because the cholinergic cells of this nucleus have not been identified in electrophysiological studies. Using intracellular recording in guinea-pig brain slices, we were able to record and fill with biocytin nucleus basalis neurons which were subsequently revealed by immunohistochemical staining to be choline acetyltransferase-positive and thus cholinergic. The cholinergic cells displayed rhythmic bursting activity mediated by a low-threshold calcium spike in vitro, which would endow them with a capacity for phasic (in addition to tonic) firing in vivo. By virtue of these different modes, cholinergic basalis neurons may accordingly deter or facilitate the cortical response to sensory input and may furthermore modulate the major frequencies of cortical activity across the different states of the sleep-waking cycle.  相似文献   

17.
The afferent input to the basal forebrain cholinergic neurons from the pontomesencephalic tegmentum was examined by retrograde transport of wheatgerm agglutinin-horseradish peroxidase in combination with immunohistochemistry. Multiple tyrosine hydroxylase-, dopamine-beta-hydroxylase-, serotonin- and choline acetyltransferase-immunoreactive fibres were observed in the vicinity of the choline acetyltransferase-immunoreactive cell bodies within the globus pallidus, substantia innominata and magnocellular preoptic nucleus. Micro-injections of horseradish peroxidase-conjugated wheatgerm agglutinin into this area of cholinergic perikarya led to retrograde labelling of a large population of neurons within the pontomesencephalic tegmentum, which included cells in the ventral tegmental area, substantia nigra, retrorubral field, raphe nuclei, reticular formation, pedunculopontine tegmental nucleus, laterodorsal tegmental nucleus, parabrachial nuclei and locus coeruleus nucleus. Of the total population of retrogradely labelled neurons, a significant (approximately 25%) proportion were tyrosine hydroxylase-immunoreactive and found in the ventral tegmental area (A10), the substantia nigra (A9), the retrorubral field (A8), the raphe nuclei (dorsalis, linearis and interfascicularis) and the locus coeruleus nucleus (A6), Another important contingent (approximately 10%) was represented by serotonin neurons of the dorsal raphe nucleus (B7), the central superior nucleus (B8) and ventral tegmentum (B9). A small proportion (less than 1%) was represented by cholinergic neurons of the pedunculopontine (Ch5) and laterodorsal (Ch6) tegmental nuclei. These results demonstrate that pontomesencephalic monoamine neurons project in large numbers up to the basal forebrain cholinergic neurons and may represent a major component of the ventral tegmental pathway that forms the extra-thalamic relay from the brainstem through the basal forebrain to the cerebral cortex.  相似文献   

18.

Study Objectives:

Dorsal subcoeruleus (SubCD) neurons are thought to promote PGO waves and to be modulated by cholinergic afferents during REM sleep. We examined the differential effect of the cholinergic agonist carbachol (CAR) on excitatory and inhibitory postsynaptic currents (PSCs), and investigated the effects of CAR on SubCD neurons during the developmental decrease in REM sleep.

Design:

Whole-cell patch clamp recordings were conducted on brainstem slices of 7- to 20-day-old rats.

Measurements and Results:

CAR acted directly on 50% of SubCD neurons by inducing an inward current, via both nicotinic and muscarinic M1 receptors. CAR induced a potassium mediated outward current via activation of M2 muscarinic receptors in 43% of SubCD cells. Evoked stimulation established the presence of NMDA, AMPA, GABA, and glycinergic PSCs in the SubCD. CAR was found to decrease the amplitude of evoked EPSCs in 31 of 34 SubCD cells, but decreased the amplitude of evoked IPSCs in only 1 of 13 SubCD cells tested. Spontaneous EPSCs were decreased by CAR in 55% of cells recorded, while spontaneous IPSCs were increased in 27% of SubCD cells. These findings indicate that CAR exerts a predominantly inhibitory role on fast synaptic glutamatergic activity and a predominantly excitatory role on fast synaptic GABAergic/glycinergic activity in the SubCD.

Conclusion:

We hypothesize that during REM sleep, cholinergic “REM-on” neurons that project to the SubCD induce an excitation of inhibitory interneurons and inhibition of excitatory events leading to the production of coordinated activity in SubCD projection neurons. The coordination of these projection neurons may be essential for the production of REM sleep signs such as PGO waves.

Citation:

Heister DS; Hayar A; Garcia-Rill E. Cholinergic modulation of GABAergic and glutamatergic transmission in the dorsal subcoeruleus: mechanisms for REM sleep control. SLEEP 2009;32(9):1135-1147.  相似文献   

19.
Dopaminergic neurons of the substantia nigra pars compacta are excited by nicotine and acetylcholine, and possess both high-affinity nicotine binding sites and intense acetylcholinesterase activity, consistent with a cholinoceptive role. A probable source of cholinergic afferents is the pedunculopontine nucleus, which forms part of a prominent group of cholinergic perikarya located caudal to the substantia nigra in the tegmentum. Although pedunculopontine efferents, many of them cholinergic, project to the substantia nigra pars compacta, it has not been established whether they terminate in this structure. In the first experiment, which combined retrograde tracing with immunohistochemical visualization of cholinergic neurons, cholinergic cells in and around the pedunculopontine nucleus were found to send projections to the substantia nigra. This projection was almost completely ipsilateral. Subsequent experiments employed anaesthetized rats; kainate was microinfused into tegmental sites in order to stimulate local cholinergic perikarya, and concurrently, extracellular recordings were made of single dopaminergic neurons in the substantia nigra. Consistent with our anatomical findings, unilateral microinfusion of kainic acid in or near the pedunculopontine nucleus increased the firing rate of dopaminergic neurons situated remotely in the ipsilateral substantia nigra. The kainate-induced excitation of nigral dopaminergic neurons was dose-related and was prevented by intravenous administration of the centrally-acting nicotinic cholinergic antagonist mecamylamine. These results suggest that cholinergic perikarya in the vicinity of the pedunculopontine tegmental nucleus innervate dopaminergic neurons in the substantia nigra pars compacta via nicotinic receptors.  相似文献   

20.
Electrical stimulation of the reticular nucleus of the rat thalamus results in activation of c-fos immunoreactivity in nerve cells of the ipsilateral retrosplenial cortex. The c-fos immunoreactive neurons are mainly concentrated in lamina IV of the retrosplenial cortex. Conversely, electrical stimulation of the retrosplenial cortex induced c-fos immunoreactivity in the ipsilateral reticular nucleus of the thalamus. The results of the electrical stimulation suggest a direct synaptic connection between the cerebral cortex and the ipsilateral reticular thalamic nucleus. Simultaneous immunohistochemical staining proves that the majority of nerve cells and dendro-dendritic terminals in the reticular thalamic nucleus contain parvalbumine and, at the same time, also GABA. The role of GABA-ergic parvalbumine immunoreactive terminals in the reticular thalamic nucleus seems to be related to integration and processing of impulses and attentional gating, distinguishing between noxious and innocuous inputs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号