首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Diabetes induces the activation of several protein kinase C (PKC) isoforms in the renal glomeruli. We used PKC-beta(-/-) mice to examine the action of PKC-beta isoforms in diabetes-induced oxidative stress and renal injury at 8 and 24 weeks of disease. Diabetes increased PKC activity in renal cortex of wild-type mice and was significantly reduced (<50% of wild-type) in diabetic PKC-beta(-/-) mice. In wild-type mice, diabetes increased the translocation of PKC-alpha and -beta1 to the membrane, whereas only PKC-alpha was elevated in PKC-beta(-/-) mice. Increases in urinary isoprostane and 8-hydroxydeoxyguanosine, parameters of oxidative stress, in diabetic PKC-beta(-/-) mice were significantly reduced compared with diabetic wild-type mice. Diabetes increased NADPH oxidase activity and the expressions of p47(phox), Nox2, and Nox4 mRNA levels in the renal cortex and were unchanged in diabetic PKC-beta(-/-) mice. Increased expression of endothelin-1 (ET-1), vascular endothelial growth factor (VEGF), transforming growth factor (TGF)-beta, connective tissue growth factor (CTGF), and collagens IV and VI found in diabetic wild-type mice was attenuated in diabetic PKC-beta(-/-) mice. Diabetic PKC-beta(-/-) mice were protected from renal hypertrophy, glomerular enlargement, and hyperfiltration observed in diabetic wild-type mice and had less proteinuria. Lack of PKC-beta can protect against diabetes-induced renal dysfunction, fibrosis, and increased expressions of Nox2 and -4, ET-1, VEGF, TGF-beta, CTGF, and oxidant production.  相似文献   

2.
High-density oligonucleotide arrays were used to compare gene expression of rat hearts from control, untreated diabetic, and diabetic groups treated with islet cell transplantation (ICT), protein kinase C (PKC)beta inhibitor ruboxistaurin, or ACE inhibitor captopril. Among the 376 genes that were differentially expressed between untreated diabetic and control hearts included key metabolic enzymes that account for the decreased glucose and increased free fatty acid utilization in the diabetic heart. ICT or insulin replacements reversed these gene changes with normalization of hyperglycemia, dyslipidemia, and cardiac PKC activation in diabetic rats. Surprisingly, both ruboxistaurin and ACE inhibitors improved the metabolic gene profile (confirmed by real-time RT-PCR and protein analysis) and ameliorated PKC activity in diabetic hearts without altering circulating metabolites. Functional assessments using Langendorff preparations and (13)C nuclear magnetic resonance spectroscopy showed a 36% decrease in glucose utilization and an impairment in diastolic function in diabetic rat hearts, which were normalized by all three treatments. In cardiomyocytes, PKC inhibition attenuated fatty acid-induced increases in the metabolic genes PDK4 and UCP3 and also prevented fatty acid-mediated inhibition of basal and insulin-stimulated glucose oxidation. Thus, PKCbeta or ACE inhibitors may ameliorate cardiac metabolism and function in diabetes partly by normalization of fuel metabolic gene expression directly in the myocardium.  相似文献   

3.
We investigated the effect of the angiotensin type 1 (AT-1) receptor antagonist, irbesartan, on matrix metalloproteinase (MMP) activity and cardiac cytokines in an animal model of diabetic cardiomyopathy. Diabetes was induced in 20 C57/bl6 mice by injection of streptozotocin (STZ). These animals were treated with irbesartan or placebo and were compared with nondiabetic controls. Left ventricular (LV) function was measured by pressure-volume loops with parameters for systolic function (end systolic elastance [Ees]) and diastolic function (cardiac stiffness) 8 weeks after STZ treatment. The cardiac protein content of interleukin (IL)1beta and transforming growth factor (TGF)beta1 were measured by enzyme-linked immunosorbent assay. The total cardiac collagen content and collagen type 1 and 3 were measured by histochemistry, and MMP-2 activity was measured by gelatin zymography. LV dysfunction was documented by impaired Ees and diastolic stiffness in STZ mice compared with controls. This was accompanied by increased TGFbeta, IL1beta, and fibrosis and decreased MMP-2 activity. Treatment with irbesartan attenuated LV dysfunction, IL1beta, TGFbeta, and cardiac fibrosis compared with untreated diabetic animals and normalized MMP activity. These findings present evidence that AT-1 receptor antagonists attenuate cardiac failure by decreasing cardiac inflammation and normalizing MMP activity, leading to normalized cardiac fibrosis in STZ-induced diabetic cardiomyopathy.  相似文献   

4.
OBJECTIVE—Subjects with diabetes experience an increased risk of myocardial infarction and cardiac failure compared with nondiabetic age-matched individuals. The receptor for advanced glycation end products (RAGE) is upregulated in diabetic tissues. In this study, we tested the hypothesis that RAGE affected ischemia/reperfusion (I/R) injury in the diabetic myocardium. In diabetic rat hearts, expression of RAGE and its ligands was enhanced and localized particularly to both endothelial cells and mononuclear phagocytes.RESEARCH DESIGN AND METHODS—To specifically dissect the impact of RAGE, homozygous RAGE-null mice and transgenic (Tg) mice expressing cytoplasmic domain-deleted RAGE (DN RAGE), in which RAGE-dependent signal transduction was deficient in endothelial cells or mononuclear phagocytes, were rendered diabetic with streptozotocin. Isolated perfused hearts were subjected to I/R.RESULTS—Diabetic RAGE-null mice were significantly protected from the adverse impact of I/R injury in the heart, as indicated by decreased release of LDH and lower glycoxidation products carboxymethyl-lysine (CML) and pentosidine, improved functional recovery, and increased ATP. In diabetic Tg mice expressing DN RAGE in endothelial cells or mononuclear phagocytes, markers of ischemic injury and CML were significantly reduced, and levels of ATP were increased in heart tissue compared with littermate diabetic controls. Furthermore, key markers of apoptosis, caspase-3 activity and cytochrome c release, were reduced in the hearts of diabetic RAGE-modified mice compared with wild-type diabetic littermates in I/R.CONCLUSIONS—These findings demonstrate novel and key roles for RAGE in I/R injury in the diabetic heart.Cardiac complications remain a leading cause of morbidity and mortality in subjects with diabetes (13). Although many factors contribute to depressed cardiac function in diabetes, innate disturbances within the diabetic heart contribute importantly to progressive dysfunction, which often leads to irreversible failure and death (3). Alterations in substrate metabolism and increased levels of oxygen free radicals have been observed in diabetic tissues. Inflammatory cytokines may exert direct negative inotropic effects on cardiac myocytes and contribute to aberrant remodeling in the failed heart (48). The pathophysiology of diabetes-associated cardiac complications is complex and involves a host of factors linked to metabolic and immune/inflammatory cell activation.The accumulation of late-stage glycoxidation adducts of proteins, termed advanced glycation end products (AGEs), occurs in diabetic tissues. AGEs modify long-lived molecules in the blood vessel wall and structural tissues of the heart considerably earlier than symptomatic cardiac dysfunction occurs (9). A major way in which AGEs exert their cellular effects is by ligation of the multiligand receptor for AGE (RAGE) (1013).We tested the role of RAGE in rodent models of type 1 diabetes, and we show that pharmacological blockade of ligand-RAGE interaction or genetic modulation of RAGE suppresses ischemia/reperfusion (I/R) injury in the isolated perfused heart, at least in part secondary to critical contributions evoked from RAGE-expressing endothelial cells and mononuclear phagocytes in the diabetic heart.  相似文献   

5.
Diabetes is a cause of cardiac dysfunction, reduced myocardial perfusion, and ultimately heart failure. Nerve growth factor (NGF) exerts protective effects on the cardiovascular system. This study investigated whether NGF gene transfer can prevent diabetic cardiomyopathy in mice. We worked with mice with streptozotocin-induced type 1 diabetes and with nondiabetic control mice. After having established that diabetes reduces cardiac NGF mRNA expression, we tested NGF gene therapies with adeno-associated viral vectors (AAVs) for the capacity to protect the diabetic mouse heart. To this aim, after 2 weeks of diabetes, cardiac expression of human NGF or β-Gal (control) genes was induced by either intramyocardial injection of AAV serotype 2 (AAV2) or systemic delivery of AAV serotype 9 (AAV9). Nondiabetic mice were given AAV2-β-Gal or AAV9-β-Gal. We found that the diabetic mice receiving NGF gene transfer via either AAV2 or AAV9 were spared the progressive deterioration of cardiac function and left ventricular chamber dilatation observed in β-Gal-injected diabetic mice. Moreover, they were additionally protected from myocardial microvascular rarefaction, hypoperfusion, increased deposition of interstitial fibrosis, and increased apoptosis of endothelial cells and cardiomyocytes, which afflicted the β-Gal-injected diabetic control mice. Our data suggest therapeutic potential of NGF for the prevention of cardiomyopathy in diabetic subjects.  相似文献   

6.
7.
Diabetic cardiomyopathy is characterized by reduced cardiac contractility due to direct changes in heart muscle function independent of vascular disease. An important contributor to contractile dysfunction in the diabetic state is an impaired sarcoplasmic reticulum (SR) function, leading to disturbed intracellular calcium handling. We investigated whether overexpression of the SR calcium pump (SERCA2a) in transgenic mice could reduce the impact of diabetes on the development of cardiomyopathy. Diabetes was induced by streptozotocin injection (200 mg/kg), and left ventricular (LV) function was analyzed in isolated hearts 3 weeks later. In diabetic hearts systolic LV pressure was decreased by 15% and maximum speed of relaxation (-dP/dt) by 34%. Functional changes were also assessed in isolated papillary muscles. Active force was reduced by 61% and maximum speed of relaxation by 65% in the diabetic state. The contractile impairment was accompanied by a 30% decrease in SERCA2a protein in diabetic mice. We investigated whether increased SERCA2a expression in transgenic SERCA2a-overexpressing mice could compensate for the diabetes-induced decrease in cardiac function. Under normal conditions, SERCA2a overexpressors show improved contractile performance relative to wild-type (WT) mice (-dP/dt: 3,169 vs. 2,559 mmHg/s, respectively). Measurement of LV function in hearts from diabetic SERCA2a mice revealed systolic and diastolic functions that were similar to WT control mice and markedly improved relative to diabetic WT mice (-dP/dt: 2,534 vs. 1,690 mmHg/s in diabetic SERCA2a vs. diabetic WT mice, respectively). Similarly, the contractile behavior of isolated papillary muscles from diabetic SERCA2a mice was not different from that of control mice. SERCA2a protein expression was higher (60%) in diabetic SERCA2a mice than WT diabetic mice. These results indicate that overexpression of SERCA2a can protect diabetic hearts from severe contractile dysfunction, presumably by improving the calcium sequestration of the SR.  相似文献   

8.
The protein kinase C (PKC)-beta isoform has been implicated to play a pivotal role in the development of diabetic kidney disease. We tested this hypothesis by inducing diabetic nephropathy in PKC-beta-deficient (PKC-beta(-/-)) mice. We studied nondiabetic and streptozotocin-induced diabetic PKC-beta(-/-) mice compared with appropriate 129/SV wild-type mice. After 8 weeks of diabetes, the high-glucose-induced renal and glomerular hypertrophy, as well as the increased expression of extracellular matrix proteins such as collagen and fibronectin, was reduced in PKC-beta(-/-) mice. Furthermore, the high-glucose-induced expression of the profibrotic cytokine transforming growth factor (TGF)-beta1 and connective tissue growth factor were significantly diminished in the diabetic PKC-beta(-/-) mice compared with diabetic wild-type mice, suggesting a role of the PKC-beta isoform in the regulation of renal hypertrophy. Notably, increased urinary albumin-to-creatinine ratio persisted in the diabetic PKC-beta(-/-) mice. The loss of the basement membrane proteoglycan perlecan and the podocyte protein nephrin in the diabetic state was not prevented in the PKC-beta(-/-) mice as previously demonstrated in the nonalbuminuric diabetic PKC-alpha(-/-) mice. In summary, the differential effects of PKC-beta deficiency on diabetes-induced renal hypertrophy and albuminuria suggest that PKC-beta contributes to high-glucose-induced TGF-beta1 expression and renal fibrosis, whereas perlecan, as well as nephrin, expression and albuminuria is regulated by other signaling pathways.  相似文献   

9.
10.
Angiotensin-converting enzyme 2 (ACE2) degrades angiotensin II to angiotensin-(1-7) and is expressed in podocytes. Here we overexpressed ACE2 in podocytes in experimental diabetic nephropathy using transgenic methods where a nephrin promoter drove the expression of human ACE2. Glomeruli from these mice had significantly increased mRNA, protein, and activity of ACE2 compared to wild-type mice. Male mice were treated with streptozotocin to induce diabetes. After 16 weeks, there was no significant difference in plasma glucose levels between wild-type and transgenic diabetic mice. Urinary albumin was significantly increased in wild-type diabetic mice at 4 weeks, whereas albuminuria in transgenic diabetic mice did not differ from wild-type nondiabetic mice. However, this effect was transient and by 16 weeks both transgenic and nontransgenic diabetic mice had similar rates of proteinuria. Compared to wild-type diabetic mice, transgenic diabetic mice had an attenuated increase in mesangial area, decreased glomerular area, and a blunted decrease in nephrin expression. Podocyte numbers decreased in wild-type diabetic mice at 16 weeks, but were unaffected in transgenic diabetic mice. At 8 weeks, kidney cortical expression of transforming growth factor-β1 was significantly inhibited in transgenic diabetic mice as compared to wild-type diabetic mice. Thus, the podocyte-specific overexpression of human ACE2 transiently attenuates the development of diabetic nephropathy.  相似文献   

11.
Connective tissue growth factor (CTGF) is a potent inducer of extracellular matrix accumulation. In diabetic nephropathy, CTGF expression is markedly upregulated both in podocytes and mesangial cells, and this may play an important role in its pathogenesis. We established podocyte-specific CTGF-transgenic mice, which were indistinguishable at baseline from their wild-type littermates. Twelve weeks after streptozotocin-induced diabetes, these transgenic mice showed a more severe proteinuria, mesangial expansion, and a decrease in matrix metalloproteinase-2 activity compared to diabetic wild-type mice. Furthermore, diabetic transgenic mice exhibited less podocin expression and a decreased number of diffusely vacuolated podocytes compared to diabetic wild-type mice. Importantly, induction of diabetes in CTGF-transgenic mice resulted in a further elevation of endogenous CTGF mRNA expression and protein in the glomerular mesangium. Our findings suggest that overexpression of CTGF in podocytes is sufficient to exacerbate proteinuria and mesangial expansion through a functional impairment and loss of podocytes.  相似文献   

12.
The effects of cardiac hypertrophy on the structure, function and tolerance to ischemia of rat hearts have been investigated. Multiple injections of low doses of isoproterenol (ISO) resulted in an increase of heart weight/body weight ratio by 60%, and a decrease of myocardial creatine kinase activity by 25%, as compared to normal rats. Compared to age-matched control rats, rats submitted to a swimming program had a higher heart weight by 20%, but similar values of heart weight to body weight ratio. In isolated perfusion, the functional capacities of hearts from ISO-trated rats were severely depressed compared to normal rat hearts whereas exercise-trained rat hearts performed as well or even better than control hearts. The functional recovery of ISO-treated hearts following cardioplegia-induced arrest for 20 min at 37°C was significantly worse than the recovery of normal hearts, but hearts of exercise-trained rats showed a significantly better recovery than control hearts. Exercise training results in improvement of myocardial blood supply resulting in better preservation of the heart during ischemia, compared to normal hearts. Addition of a combination of verapamil and diltiazem to the cardioplegic solution followed by ischemic arrest for 20 min at 37°C resulted for ISO-treated rat hearts in an improved recovery of cardiac output (99%) compared to cardioplegia in the absence of these drugs (72%). In exercise-trained and control rat hearts, calcium antagonists improved the recovery from cardioplegic arrest of cardiac output from 90% to 92% and from 71% to 87%, respectively. Myocardium of ISO-treated rats showed foci of subendocardial infarction and fibrosis, whereas the myocardium of physically stressed animals and of normal rats had no abnormalities. Considering the histological similarities between ISO-treated rat hearts and lesions observed in human hearts with coronary artery disease and cardiac hypertrophy, the present study suggests that the presence of verapamil and diltiazem during cardioplegic arrest favors the functional recovery from cardiac surgery.  相似文献   

13.
Endothelin (ET) induces hypertrophy of cardiomyocytes and increases synthesis of collagen in vitro. Interestingly, these features are hallmarks of the cardiac remodeling taking place in heart failure. The aim of the present study was to examine cardiac ET peptide and preproET-1 mRNA synthesis in human heart failure. Cardiac tissue was obtained from 11 patients with end-stage heart failure undergoing orthothopic heart transplantation (NYHA III-IV). Cardiac tissue from nine organ donors served as controls. The specimens were examined by immunohistochemistry and mRNA slot blot analyses. Significantly stronger ET-1-like immunoreactivity (ET-1-ir) was seen in the left atrial myocardium of failing hearts compared to the left atrial myocardium of donor hearts. Within each heart, the epicardium showed the strongest ET-1-ir. Left ventricular preproET-1 mRNA expression in the entire group of patients did not differ significantly from that of donor hearts. However, hypertrophic obstructive cardiomyopathy may be associated with a twofold increase in left ventricular preproET-1 mRNA. We report an increase in cardiac ET peptide in human heart failure.  相似文献   

14.
Cardiac transplantation is an effective treatment for multiple types of heart failure refractive to therapy. Although immunosuppressive therapeutics have increased survival rates within the first year posttransplant, chronic rejection (CR) remains a significant barrier to long‐term graft survival. Indicators of CR include patchy interstitial fibrosis, vascular occlusion and progressive loss of graft function. Multiple factors have been implicated in the onset and progression of CR, including TGFβ, IL‐6 and connective tissue growth factor (CTGF). While associated with CR, the role of CTGF in CR and the factors necessary for CTGF induction in vivo are not understood. To this end, we utilized forced expression and neutralizing antibody approaches. Transduction of allografts with CTGF significantly increased fibrotic tissue development, though not to levels observed with TGFβ transduction. Further, intragraft CTGF expression was inhibited by IL‐6 neutralization whereas TGFβ expression remained unchanged, indicating that IL‐6 effects may potentiate TGFβ‐mediated induction of CTGF. Finally, neutralizing CTGF significantly reduced graft fibrosis without reducing TGFβ and IL‐6 expression levels. These findings indicate that CTGF functions as a downstream mediator of fibrosis in CR, and that CTGF neutralization may ameliorate fibrosis and hypertrophy associated with CR.  相似文献   

15.
Endothelin (ET) induces hypertrophy of cardiomyocytes and increases synthesis of collagen in vitro. Interestingly, these features are hallmarks of the cardiac remodeling taking place in heart failure. The aim of the present study was to examine cardiac ET peptide and preproET-1 mRNA synthesis in human heart failure. Cardiac tissue was obtained from 11 patients with end-stage heart failure undergoing orthothopic heart transplantation (NYHA III-IV). Cardiac tissue from nine organ donors served as controls. The specimens were examined by immunohistochemistry and mRNA slot blot analyses. Significantly stronger ET-1-like immunoreactivity (ET-1-ir) was seen in the left atrial myocardium of failing hearts compared to the left atrial myocardium of donor hearts. Within each heart, the epicardium showed the strongest ET-1-ir. Left ventricular preproET-1 mRNA expression in the entire group of patients did not differ significantly from that of donor hearts. However, hypertrophic obstructive cardiomyopathy may be associated with a twofold increase in left ventricular preproET-1 mRNA. We report an increase in cardiac ET peptide in human heart failure.  相似文献   

16.
BACKGROUND: Viral interleukin (vIL)-10, encoded in the Epstein-Barr virus genome, shares many of the anti-inflammatory properties of cellular IL-10 but is supposed to lack IL-10's immunostimulatory properties. Thus, vIL-10 is expected to offer superior immunosuppression. METHODS: We established transgenic mice (vIL-10 Tg) that express vIL-10 systemically and transplanted their hearts as vascularized allografts into unmodified major histocompatibility complex (MHC) full-mismatch or MHC class II-disparate mice. RESULTS: The vIL-10 Tg mice revealed high-level expression of vIL-10 in major organs including the heart. However, the heart grafts from the vIL-10 Tg mice failed to exhibit prolonged survival in combination with either the MHC full-mismatch or the class II-disparate mice. In the MHC class II-disparate mice, the vIL-10 Tg heart grafts showed severe CD8 T-cell infiltration and increased interferon (IFN)-gamma mRNA expression compared with non-Tg grafts. CONCLUSION: High level expression of vIL-10 in grafts can exacerbate immunological rejection in an allogenic transplantation model.  相似文献   

17.

Background

An increasing number of studies have demonstrated the critical role of microRNAs in the pathogenesis of cardiac hypertrophy and dysfunction. This study evaluated whether miR-214 plays a pivotal role in the development of cardiac hypertrophy and heart failure.

Methods

In human tissues, miR-214 overexpression was determined to promote cardiac hypertrophy. We predicted miR-214 direct target by bioinformatics database and verifed it using luciferase dual reporting system. We silenced miR-214 using a specific antagomir in a pressure-overload mouse model of heart failure.

Results

Analysis of transgenic mice with cardiomyocyte-specific overexpression of miR-214 indicated that their hearts were 21% heavier than wild-type hearts and expressed several biochemical and functional markers consistent with dilated cardiomyopathy. These findings include enlarged left ventricular internal diameters, wall thinning, reduced ejection fraction, fractional shortening, and an increased fetal gene expression. The enhancer of zeste homolog 2 (EZH2) was confirmed as a direct target of miR-214 in cardiomyocytes. In vivo silencing of miR-214 using a specific antagomir rescued cardiac EZH2 expression and prevented cardiac hypertrophy and dysfunction.

Conclusions

Taken together, these results suggest that miR-214 may induce pathologic cardiac hypertrophy in part by reducing EZH2 messenger RNA levels. MiR-214 may therefore be a potential therapeutic target for treating certain cardiac disease states.  相似文献   

18.
19.

Introduction

Myocardial fibrosis contributes to hemodynamic and cardiac functional alterations commonly observed posttransplantation. Cardiac mast cells (MC) have been linked to fibrosis in posttransplantation hearts. Eotaxin, which has been shown to be involved in fibrogenesis, has been demonstrated to be increased in production in cardiac macrophages. The aim of our study was to correlate myocardial fibrosis during heart transplant rejection in the rat with eotaxin/chemokine [c-c motif] ligand 11 (CCL11) expression, and with various subtypes of infiltrating cardiac MC, namely connective-type MC (CTMC) and mucosa-type MC (MMC).

Methods

We used tissues from 2 previous studies of ongoing acute rejection in allogeneic Brown-Norway to Lewis rat and an isogeneic Brown-Norway to Brown-Norway heterotopic heart transplantation models under cyclosporin/prednisolone immunosuppression. Collagen fibrils were stained with Masson's trichrome with myocardial fibrosis expressed as percent fibrotic area per total section area. Eotaxin/CCL11 previously measured in heart tissue using enzyme-linked immunosorbent assay (ELISA) was correlated with the extent of myocardial fibrosis. We compared values from native hearts (n = 4) as well as transplants on days 5, 16, and 28 (n = 4 in each group).

Results

The area of myocardial fibrosis was significantly increased in the allogeneic compared with the isogeneic group at day 16 (38% vs 21%) and at day 28 (49% vs 22%) after transplantation. Myocardial fibrosis correlated significantly with eotaxin/CCL11 concentrations and the density of MMC, but not with CTMC in heart tissue.

Conclusions

Eotaxin-triggered MC infiltration of the heart may contribute to myocardial fibrosis after transplantation. Targeting eotaxin/CCL11 with monoclonal antibodies, such as bertilimumab, could reduce MC infiltration, possibly resulting in decreased myocardial fibrosis and improved contractile function after heart transplantation.  相似文献   

20.
Glucose and palmitate metabolism and contractile function were measured with ex vivo perfused working hearts from control (db/+) and diabetic (db/db) female mice at 6, 10-12, and 16-18 weeks of age. Palmitate oxidation was increased by 2.2-fold in 6-week-old db/db hearts and remained elevated in 10- to 12- and 16- to 18-week-old hearts. Carbohydrate oxidation was normal at 6 weeks but was reduced to 27 and 23% of control at 10-12 and 16-18 weeks, respectively. At 6 weeks, db/db hearts exhibited a slight reduction in mechanical function, whereas marked signs of dysfunction were evident at 10-12 and 16-18 weeks. Mechanical function after ischemia-reperfusion was examined in hearts from male mice; at 6 weeks, db/db hearts showed normal recovery, whereas at 12 weeks it was markedly reduced. Fatty acid oxidation was the predominant substrate used after reperfusion. Thus, diabetic db/db hearts exhibit signs of a progressive cardiomyopathy; increased fatty acid oxidation preceded reductions in carbohydrate oxidation. Postischemic recovery of function was reduced in db/db hearts, in parallel with age-dependent changes in normoxic contractile performance. Finally, peroxisome proliferator-activated receptor-alpha treatment (3 weeks) did not affect sensitivity to ischemia-reperfusion, even though carbohydrate oxidation was increased and palmitate oxidation was decreased.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号