首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Saunders RS  Samei E 《Medical physics》2003,30(11):3006-3017
A new computer simulation approach is presented that is capable of modeling several varieties of digital radiographic systems by their image quality characteristics. In this approach, the resolution and noise characteristics of ideal supersampled input images are modified according to input modulation transfer functions (MTFs) and noise power spectra (NPS). The modification process is separated into two routines-one for modification of the resolution and another for modification of the noise characteristics of the input image. The resolution modification routine blurs the input image by applying a frequency filter described by the input MTF. The resulting blurred image is then reduced to its final size to account for the sampling process of the digital system. The noise modification routine creates colored noise by filtering the frequency components of a white noise spectrum according to the input noise power. This noise is then applied to the image by a moving region of interest to account for variations in noise due to differences in attenuation. In order to evaluate the efficacy of the modification routines, additional routines were developed to assess the resolution and noise of digital images. The MTFs measured from the output images of the resolution modification routine were within 3% of the input MTF The NPS measured from the output images of the noise modification routine were within 2% of the input NPS. The findings indicate that the developed modification routines provide a good means of simulating the resolution and noise characteristics of digital radiographic systems for optimization or processing purposes.  相似文献   

2.
M L Giger  K Doi 《Medical physics》1984,11(3):287-295
The effect of various digital parameters, such as the sampling aperture, sampling distance, and display aperture, on the modulation transfer function (MTF) of digital radiographic imaging systems was investigated by means of theoretical simulation studies. The MTFs were also determined experimentally to confirm the relationship used in the simulation studies. The results indicate that the overall MTF of a digital system cannot specify the resolution properties in the same way as can the MTFs of analog systems. The MTF of a digital system may include a "false" response due to aliasing, which could lead to an incorrect interpretation of the resolution properties. The magnitude of aliasing that will occur in a digitized signal depends on the sampling parameters chosen and on the frequency content of the radiologic object being imaged. Thus, the type of object to be detected as well as various digital parameters must be considered in the design and evaluation of digital imaging systems.  相似文献   

3.
The modulation transfer function (MTF) describes the spatial resolution properties of imaging systems. In this work, the accuracy of our implementation of the edge method for calculating the presampled MTF was examined. Synthetic edge images with known MTF were used as gold standards for determining the robustness of the edge method. These images simulated realistic data from clinical digital mammography systems, and contained intrinsic system factors that could affect the MTF accuracy, such as noise, scatter, and flat-field nonuniformities. Our algorithm is not influenced by detector dose variations for MTF accuracy up to 1/2 the sampling frequency. We investigated several methods for noise reduction, including truncating the supersampled line spread function (LSF), windowing the LSF, applying a local exponential fit to the LSF, and applying a monotonic constraint to the supersampled edge spread function. Only the monotonic constraint did not introduce a systematic error; the other methods could result in MTF underestimation. Overall, our edge method consistently computed MTFs which were in good agreement with the true MTF. The edge method was then applied to images from a commercial storage-phosphor based digital mammography system. The calculated MTF was affected by the size (sides of 2.5, 5, or 10 cm) and the composition (lead or tungsten) of the edge device. However, the effects on the MTF were observed only with regard to the low frequency drop (LFD). Scatter nonuniformity was dependent on edge size, and could lead to slight underestimation of LFD. Nevertheless, this negative effect could be minimized by using an edge of 5 cm or larger. An edge composed of lead is susceptible to L-fluorescence, which causes overestimation of the LFD. The results of this work are intended to underline the need for clear guidelines if the MTF is to be given a more crucial role in acceptance tests and routine assessment of digital mammography systems: the MTF algorithm and edge object test tool need to be publicly validated.  相似文献   

4.
The detective quantum efficiency (DQE) of an x-ray digital imaging detector was determined independently by the three participants of this study, using the same data set consisting of edge and flat field images. The aim was to assess the possible variation in DQE originating from established, but slightly different, data processing methods used by different groups. For the case evaluated in this study differences in DQE of up to +/-15% compared to the mean were found. The differences could be traced back mainly to differences in the modulation transfer function (MTF) and noise power spectrum (NPS) determination. Of special importance is the inclusion of a possible low-frequency drop in MTF and the proper handling of signal offsets for the determination of the NPS. When accounting for these factors the deviation between the evaluations reduced to approximately +/-5%. It is expected that the recently published standard on DQE determination will further reduce variations in the data evaluation and thus in the results of DQE measurements.  相似文献   

5.
The modulation transfer function (MTF) and the noise power spectrum (NPS) are widely recognized as the most relevant metrics of resolution and noise performance in radiographic imaging. These quantities have commonly been measured using various techniques, the specifics of which can have a bearing on the accuracy of the results. As a part of a study aimed at comparing the relative performance of different techniques, in this paper we report on a comparison of two established MTF measurement techniques: one using a slit test device [Dobbins et al., Med. Phys. 22, 1581-1593 (1995)] and another using a translucent edge test device [Samei et al., Med. Phys. 25, 102-113 (1998)], with one another and with a third technique using an opaque edge test device recommended by a new international standard (IEC 62220-1, 2003). The study further aimed to substantiate the influence of various acquisition and processing parameters on the estimated MTF. The slit test device was made of 2 mm thick Pb slabs with a 12.5 microm opening. The translucent edge test device was made of a laminated and polished Pt(0.9)Ir(0.1). alloy foil of 0.1 mm thickness. The opaque edge test device was made of a 2 mm thick W slab. All test devices were imaged on a representative indirect flat-panel digital radiographic system using three published beam qualities: 70 kV with 0.5 mm Cu filtration, 70 kV with 19 mm Al filtration, and 74 kV with 21 mm Al filtration (IEC-RQA5). The latter technique was also evaluated in conjunction with two external beam-limiting apertures (per IEC 62220-1), and with the tube collimator limiting the beam to the same area achieved with the apertures. The presampled MTFs were deduced from the acquired images by Fourier analysis techniques, and the results analyzed for relative values and the influence of impacting parameters. The findings indicated that the measurement technique has a notable impact on the resulting MTF estimate, with estimates from the overall IEC method 4.0% +/- 0.2% lower than that of Dobbins et al. and 0.7% +/- 0.4% higher than that of Samei et al. averaged over the zero to cutoff frequency range. Over the same frequency range, keeping beam quality and limitation constant, the average MTF estimate obtained with the edge techniques differed by up to 5.2% +/- 0.2% from that of the slit, with the opaque edge providing lower MTF estimates at lower frequencies than those obtained with the translucent edge or slit. The beam quality impacted the average estimated MTF by as much as 3.7% +/- 0.9% while the use of beam limiting devices alone increased the average estimated MTF by as much as 7.0% +/- 0.9%. While the slit method is inherently very sensitive to misalignment, both edge techniques were found to tolerate misalignments by as much as 6 cm. The results suggest the use of the opaque edge test device and the tube internal collimator for beam limitation in order to achieve an MTF result most reflective of the overall performance of the imaging system and least susceptible to misalignment and scattered radiation. Careful attention to influencing factors is warranted to achieve accurate results.  相似文献   

6.
Determination of the presampled MTF in computed tomography   总被引:8,自引:0,他引:8  
Boone JM 《Medical physics》2001,28(3):356-360
A technique for measuring the presampled MTF in CT scanners is described. The technique uses a simple phantom consisting of approximately 0.050 mm aluminum foil sandwiched by flat plastic or tissue-equivalent slabs. The aluminum foil is slightly angled with respect to the reconstruction matrix, and CT images are acquired. The acquired CT image yields an angled slit image that can be used to synthesize the presampled line spread function (LSF). The presampled MTF is calculated from the presampled LSF. The technique is a direct extension of that proposed by Fujita et al. [IEEE Trans. Med. Imaging 11, 34-39 (1992)] for MTF calculation on digital radiography images. While the MTF in clinical CT scanners often reaches negligible amplitude below the Nyquist frequency, the technique is easy to implement, requires inexpensive materials, is robust to aliasing, and is more resilient to noise due to greater data averaging than conventional PSF-integration techniques. Use of the proposed technique is illustrated on a clinical multiple detector array scanner, and MTFs are shown for several common reconstruction kernels. It is likely that the proposed technique would be useful for all tomographic imaging systems, including single photon emission computed tomography, positron emission tomography, magnetic resonance imaging and ultrasound scanners.  相似文献   

7.
Rossmann proposed that the Wiener spectra of the quantum mottle of radiographs made using screen-film systems were proportional to the squares of the modulation transfer functions (MTFs) of the screen-film systems. On the other hand, Lubberts theoretically pointed out that the shape of the Wiener spectrum of the quantum mottle depended on the sum of the squares of the MTFs for different depths in the screen phosphor layer, rather than the square of the sum of the MTFs for the different depths, i.e. the square of the MTF of the screen-film systems. The purpose of this study is to experimentally investigate the proportionality between the Wiener spectra of the quantum mottle and the squares of the MTFs of screen-film systems using two screen-film systems having different screen thicknesses. For this purpose, we determined correction factors for the square of the MTF of the screen-film system in the Wiener spectrum of the quantum mottle at each spatial frequency when the Wiener spectral values of the screen mottle were separated into those of the quantum mottle and structure mottle. The correction factor is the ratio of the normalized Wiener spectrum of the quantum mottle to the square of the MTF of the screen-film system. As a result, for a thin screen, the correction factors were unity for all spatial frequencies; on the contrary, for a thick screen, the factor increased with spatial frequency. By calculating the theoretical correction factors using the models for the MTF and Wiener spectrum of the quantum mottle of Nishikawa and Yaffe based on Lubberts' theory, we verified that our experimental results agreed with Lubberts' theory. Furthermore, by obtaining the screen thickness dependence of the theoretical correction factors for the two screens, we showed that, for screens thinner than 0.02 mm, Rossmann's theory can be applied to the relationship between the Wiener spectrum of the quantum mottle and the MTF of the screen-film system, whereas for screens thicker than 0.02 mm, Lubberts' theory should be applied.  相似文献   

8.
Non-invasive and in vivo assessment of bone architectural changes at high resolution is of considerable interest in osteoporosis. In this note, the use of an x-ray acquisition system in the evaluation of the architectural quality of trabecular bone by radiographic texture analysis is optimized to achieve good long-term reproducibility. First, radiographic and digitization processes are modelled and defined. Procedures to make radiographs and their digital images are fixed. Then, measurements of the modulation transfer function (MTF) of the entire acquisition chain were completed. These measurements provide an MTF in excess of 30% at a spatial frequency of 2.5 lp/mm. Also, results of a fractal texture analysis made on digital images of calcaneus radiographs show a mean coefficient of variation of 2.07%. These data show that good long-term reproducibility can make the x-ray acquisition system efficient for patient follow-up, or evaluation of treatment regimes for osteoporosis. Finally, it is shown that fractal texture parameters are statistically different in an osteoporotic population and in a control group. Therefore, this system should also be of medical interest.  相似文献   

9.
Samei E 《Medical physics》2003,30(7):1747-1757
Two general types of phosphor screens are currently used in indirect digital radiographic systems: structured phosphor screens and turbid phosphor screens. The purpose of the study was to experimentally compare the image quality characteristics of two flat-panel digital radiography detectors with similar electronics and pixel sizes (0.127 mm), but otherwise equipped with the two types of screens (0.6-mm-thick structured CsI and Lanex Regular). The presampled modulation transfer functions (MTFs) of the detectors were assessed using an edge method. The noise power spectra (NPS) were measured by two-dimensional Fourier analysis of uniformly-exposed radiographs at 50-100 kVp with 19 mm added Al filtration. The detective quantum efficiencies (DQEs) were assessed from the MTF, the NPS, and estimates of the ideal signal-to-noise ratio. The MTF measures of the two detectors were generally similar above a spatial frequency of 2 mm(-1), with approximately 2.5 and approximately 3.8 mm(-1) spatial frequencies corresponding to 0.2 MTF and 0.1 MTF, respectively. Below 2 mm(-1), the MTF for the CsI-based detector was slightly higher by an average of 0.07. At 70 kVp, the measured DQE values in the diagonal (and axial) direction(s) at spatial frequencies of 0.15 mm(-1) and 2.5 mm(-1) were 78% (78%) and 26% (20%) for the CsI-based detector, and 20% (20%) and 7% (6%) for the Lanex-based detector, respectively. The comparative findings experimentally confirm that in indirect flat-panel detectors, structured phosphor screens provide a more favorable tradeoff between resolution and noise compared to turbid-phosphor screens, effectively increasing the detection efficiency of the detector without a negative impact on the detector's spatial resolution response.  相似文献   

10.
The edge method for measuring the modulation transfer function (MTF) has recently gained popularity due to its simplicity and appropriateness particularly for digital imaging systems. Often edge test devices made of rather thin metal sheets are used, which are semitransparent to x rays and may generate scattered radiation. The effect of this scattered radiation on the determined MTF was investigated both theoretically (assuming an ideal detector) and experimentally using a CsI-based digital detector. It was found that the MTF increases due to the scattered radiation for all spatial frequencies larger than 0 mm(-1). The theoretical model developed in this study predicts that the maximum error compared to the true detector MTF is given by S/A, where A is the attenuated fraction and S is the scattered fraction reaching the detector, relative to the incident radiation. Theoretical and experimental results are in good agreement for radiation qualities corresponding to general radiography (RQA3, RQA5, and RQA7), whereas for chest beam quality (RQA9) the experimentally observed MTF error is larger than predicted by the simple model, possibly because the energy response of the CsI-based detector differs from that of an ideal one. The theoretical MTF error reaches a value of 18% for a 0.25 mm thick lead edge of RQA9. Since the MTF enters squared into the determination of the detective quantum efficiency (DQE), an error of at least 36% in DQE may result when using this edge test device. In conclusion, the use of fully absorbing edge material is advised for MTF determination with the edge method.  相似文献   

11.
Transfer function measurement and analysis for a magnetic resonance imager.   总被引:1,自引:0,他引:1  
The transfer function characteristics of a 1.5T imager have been determined. An edge response function (ERF) was obtained from a water/Plexiglas interface at various pixel widths ranging from 0.312 to 1.0 mm. An SE pulse sequence was used with a 5-mm transaxial slice. The ERF was smoothed, differentiated, and Fourier transformed to obtain MTF curves. The LSF was analyzed for skewness and kurtosis. The area under the MTF amplitude curves and the equivalent bandpass were calculated. All ERFs, LSFs, and MTFs were well behaved. The resulting LSF was Gaussian. All calculated MTFs had cutoff frequencies slightly less than the theoretical Nyquist limit. The MTF calculated from the theoretical Gaussian LSF is slightly superior to that calculated from experimental data and provides an upper limit to the MTF. Spatial resolution in our MR imager is dominated by the pixel size via the Nyquist sampling theorem. System performance is slightly less than theoretically predicted, possibly due to image processing algorithms during the reconstruction process.  相似文献   

12.
The modulation transfer function (MTF) of an idealized imaging system can be determined from the Fourier transform of the system's line-spread function (LSF). Three techniques of experimentally determining the LSF require imaging either a slit, wire, or edge. In this paper, these three techniques are modeled theoretically to determine the noise in the calculated MTFs as a function of spatial frequency resulting from both quantum fluctuations and stochastic detector noise. The techniques are compared using the signal-to-noise ratio (SNR) in the MTF, defined as the ratio of the MTF value to the standard deviation in an ensemble of MTF determinations from independent measurements. It is shown that for a specified photon fluence, the edge method MTF has the highest SNR at low spatial frequencies, while that of the slit method is superior at high frequencies. The wire method SNR is always inferior to that of the slit technique. This suggests that the edge method is preferable for measuring parameters such as the low-frequency drop, and the slit method is preferable for determining high-frequency response. The cross-over frequency at which the slit and edge methods are equal (f(e)) for quantum-noise limited systems is a function of the slit width and the length over which the LSF is measured. For detector-noise limited systems, f(e) is dependent on the slit width only. The SNR in all but the quantum-noise limited slit method can therefore be increased by decreasing the length over which the LSF is measured, smoothing the tails of the LSF, or by fitting the tails to an analytic expression.  相似文献   

13.
Liu X  Shaw CC 《Medical physics》2004,31(1):98-110
Amorphous silicon (a-Si:H) flat-panel (FP) imaging systems have recently become commercially available for both chest and mammographic imaging applications. It has been shown that this new detector technology offers better image quality and various operational advantages over the computed radiography (CR) which to date has been the most widely implemented and used digital radiography technique. However, most image quality measurements reported on flat-panel systems have been performed on prototype systems in laboratories while those for CR systems were typically independently performed and reported on in separate studies. To directly compare the two technologies, we have measured the image properties for a commercial amorphous silicon/cesium iodide [a-Si:H/CsI(Tl)] flat-panel based digital chest system and a commercial CR system under clinical imaging conditions. In this paper, measurements of image quality metrics, including the modulation transfer functions (MTFs), noise power spectra (NPSs), and detective quantum efficiencies (DQEs), for the FP and CR systems are presented and compared. Methods and issues related to these measurements are discussed. The results show that the flat-panel system has slightly lower MTF but significantly higher DQEs than the CR system. The DQEs of the flat-panel system were found to increase with the exposure while those of the CR system decrease slightly with the exposure.  相似文献   

14.
Samei E  Flynn MJ 《Medical physics》2003,30(4):608-622
Current flat-panel detectors either directly convert x-ray energy to electronic charge or use indirect conversion with an intermediate optical process. The purpose of this work was to compare direct and indirect detectors in terms of their modulation transfer function (MTF), noise power spectrum (NPS), and detective quantum efficiency (DQE). Measurements were made on three flat-panel detectors, Hologic Direct-Ray DR-1000 (DRC), GE Revolution XQ/i (XQ/i), and Philips Digital Diagnost (DiDi) using the IEC-defined RQA5 (approximately 74 kVp, 21 mm Al) and RQA9 (approximately 120 kVp, 40 mm Al) radiographic techniques. The presampled MTFs of the systems were measured using an edge method [Samei et al., Med. Phys. 25, 102 (1998)]. The NPS of the systems were determined for a range of exposure levels by two-dimensional (2D) Fourier analysis of uniformly exposed radiographs [Flynn and Samei, Med. Phys. 26, 1612 (1999)]. The DQEs were assessed from the measured MTF, NPS, exposure, and estimated ideal signal-to-noise ratios. For the direct system, the MTF was found to be significantly higher than that for the indirect systems and very close to an ideal function associated with the detector pixel size. The NPS for the direct system was found to be constant in relation to frequency. For the XQ/i and DRC systems, the DQE results reflected expected differences based on the absorption efficiency of the different detector materials. Using RQA5, the measured DQE values in the diagonal (and axial) direction(s) at spatial frequencies of 0.15 mm(-1) and 2.5 mm(-1) were 64% (64%) and 20% (15%) for the XQ/i system, and 38% (38%) and 20% (20%) for the DRC, respectively. The DQE results of the DiDi system were difficult to interpret due to additional preprocessing steps in that system.  相似文献   

15.
The application of stationary restoration techniques to SPECT images assumes that the modulation transfer function (MTF) of the imaging system is shift invariant. It was hypothesized that using intrinsic attenuation correction (i.e., methods which explicitly invert the exponential radon transform) would yield a three-dimensional (3-D) MTF which varies less with position within the transverse slices than the combined conjugate view two-dimensional (2-D) MTF varies with depth. Thus the assumption of shift invariance would become less of an approximation for 3-D post- than for 2-D pre-reconstruction restoration filtering. SPECT acquisitions were obtained from point sources located at various positions in three differently shaped, water-filled phantoms. The data were reconstructed with intrinsic attenuation correction, and 3-D MTFs were calculated. Four different intrinsic attenuation correction methods were compared: (1) exponentially weighted backprojection, (2) a modified exponentially weighted backprojection as described by Tanaka et al. [Phys. Med. Biol. 29, 1489-1500 (1984)], (3) a Fourier domain technique as described by Bellini et al. [IEEE Trans. ASSP 27, 213-218 (1979)], and (4) the circular harmonic transform (CHT) method as described by Hawkins et al. [IEEE Trans. Med. Imag. 7, 135-148 (1988)]. The dependence of the 3-D MTF obtained with these methods, on point source location within an attenuator, and on shape of the attenuator, was studied. These 3-D MTFs were compared to: (1) those MTFs obtained with no attenuation correction, and (2) the depth dependence of the arithmetic mean combined conjugate view 2-D MTFs.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
H Fujita  K Doi  M L Giger 《Medical physics》1985,12(6):713-720
We devised a new, simple technique for measuring the modulation transfer function (MTF) of a digital imaging system by using an image of an angulated slit. With this technique, the "presampling" analog MTF, which includes the geometric unsharpness, the detector unsharpness, and the unsharpness of the sampling aperture, can be measured even beyond the Nyquist frequency. A single-frame image of a slightly angulated slit was employed in order to obtain Fourier transforms of line spread functions at different alignments. The presampling MTF was determined by averaging the two Fourier transforms which we obtained from two extreme alignments (center and shifted) of the slit relative to the sampling coordinate. The presampling MTFs of our digital subtraction angiographic system were determined in two orthogonal directions for three different image-intensifier modes.  相似文献   

17.
Several studies have addressed the implications of filmless radiologic imaging on telemedicine, diagnostic ability, and electronic teaching files. However, many publishers still require authors to submit hard-copy images for publication of articles and textbooks. This study compares the quality digital images directly exported from picture archive and communications systems (PACS) to images digitized from radiographic film. The authors evaluated the quality of publication-grade glossy photographs produced from digital radiographic images using 3 different methods: (1) film images digitized using a desktop scanner and then printed, (2) digital images obtained directly from PACS then printed, and (3) digital images obtained from PACS and processed to improve sharpness prior to printing. Twenty images were printed using each of the 3 different methods and rated for quality by 7 radiologists. The results were analyzed for statistically significant differences among the image sets. Subjective evaluations of the filmless images found them to be of equal or better quality than the digitized images. Direct electronic transfer of PACS images reduces the number of steps involved in creating publication-quality images as well as providing the means to produce high-quality radiographic images in a digital environment.  相似文献   

18.
Several studies have addressed the implications of filmless radiologic imaging on telemedicine, diagnostic ability, and electronic teaching files. However, many publishers still require authors to submit hard-copy images for publication of articles and textbooks. This study compares the quality digital images directly exported from picture archive and communications systems (PACS) to images digitized from radiographic film. The authors evaluated the quality of publication-grade glossy photographs produced from digital radiographic images using 3 different methods: (1) film images digitized using a desktop scanner and then printed, (2) digital images obtained directly from PACS then printed, and (3) digital images obtained from PACS and processed to improve sharpness prior to printing. Twenty images were printed using each of the 3 different methods and rated for quality by 7 radiologists. The results were analyzed for statistically significant differences among the image sets. Subjective evaluations of the filmless images found them to be of equal or better quality than the digitized images. Direct electronic transfer of PACS images reduces the number of steps involved in creating publication-quality images as well as providing the means to produce high-quality radiographic images in a digital environment.  相似文献   

19.
Intraocular scattering can become an important source of optical degradation in the aging eye. To evaluate its relative contribution to the ocular modulation transfer function (MTF), a compact, dual experimental system comprising a laser ray tracing (LRT) wavefront sensor and a double-pass setup is used. An aberrometric MTF is estimated from aberration measurements, whereas a second MTF is derived from the double-pass point-spread function. While the former only accounts for the effect of aberrations (up to seventh order), the double-pass MTF includes the combined effect of both scattering and aberrations. A 532-nm laser light source is used to minimize choroidal scattering. Measurements are done on 19 normal, healthy eyes from three groups of subjects of different ages. The two MTFs are obtained for a 6-mm pupil diameter and partial refractive compensation. Intraocular scattering is modeled as a random wavefront aberration characterized by its variance and correlation length. These parameters are fitted from the differences between both MTFs. Our results show that double-pass and LRT techniques provide similar MTFs for most normal eyes, although small amounts of scattering, or high-order aberrations, could be measured in some eyes. A gradual increase in intraocular scattering with age is also observed.  相似文献   

20.
Computer-generated images were used to assess image processing software employed in the radiographic evaluation of penetration in total hip replacement. The images were corrupted using Laplacian noise and smoothed to simulate different modulation transfer functions in a range associated with hospital digital radiographic systems. With no corruption, the penetration depth measurements were both precise and accurate. However, as the noise increased so did the inaccuracy and imprecision to levels that may make changes in the penetration observed clinically difficult to discern between follow-up assessments. Simulated rotation of the wire marker produced significant bias in the measured penetration depth. The use of these simulated radiographs allows the evaluation of the software used to process the digital images alone rather than the whole measurement system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号