首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
本实验选用150~260g的雄性Sprague-Dawley大鼠13只,把WGA-HRP/HRP混合水溶液加压注入一侧终纹床核群前外侧区的卵圆核区域,冰冻切片,TMB法呈色后,在中枢看到顺行标记终末最密集的部位是:下丘脑后部外侧区、中央杏仁核、中脑中央灰质、臂旁核、三叉神经中脑核、蓝斑;比较多的部位是视前区、下丘脑室周区、弓状核、丘脑中线核群、内侧纽核、腹侧背盖核、脚桥背盖核、中脑网状结构、中缝背核以及迷走神经复合体;在线形中缝核、中央上核、腹侧背盖区、黑质,以及延髓中介核,也看到少量标记终末。本工作对卵圆核的传出纤维联系,进行了较全面的观察。  相似文献   

2.
The afferent input to the basal forebrain cholinergic neurons from the pontomesencephalic tegmentum was examined by retrograde transport of wheatgerm agglutinin-horseradish peroxidase in combination with immunohistochemistry. Multiple tyrosine hydroxylase-, dopamine-beta-hydroxylase-, serotonin- and choline acetyltransferase-immunoreactive fibres were observed in the vicinity of the choline acetyltransferase-immunoreactive cell bodies within the globus pallidus, substantia innominata and magnocellular preoptic nucleus. Micro-injections of horseradish peroxidase-conjugated wheatgerm agglutinin into this area of cholinergic perikarya led to retrograde labelling of a large population of neurons within the pontomesencephalic tegmentum, which included cells in the ventral tegmental area, substantia nigra, retrorubral field, raphe nuclei, reticular formation, pedunculopontine tegmental nucleus, laterodorsal tegmental nucleus, parabrachial nuclei and locus coeruleus nucleus. Of the total population of retrogradely labelled neurons, a significant (approximately 25%) proportion were tyrosine hydroxylase-immunoreactive and found in the ventral tegmental area (A10), the substantia nigra (A9), the retrorubral field (A8), the raphe nuclei (dorsalis, linearis and interfascicularis) and the locus coeruleus nucleus (A6), Another important contingent (approximately 10%) was represented by serotonin neurons of the dorsal raphe nucleus (B7), the central superior nucleus (B8) and ventral tegmentum (B9). A small proportion (less than 1%) was represented by cholinergic neurons of the pedunculopontine (Ch5) and laterodorsal (Ch6) tegmental nuclei. These results demonstrate that pontomesencephalic monoamine neurons project in large numbers up to the basal forebrain cholinergic neurons and may represent a major component of the ventral tegmental pathway that forms the extra-thalamic relay from the brainstem through the basal forebrain to the cerebral cortex.  相似文献   

3.
本实验应用微量注射和离子透入法经三种不同入路,将HRP输入大鼠脚间核内,追踪脚间核的传入性联系。三种不同进针方向,共同出现标记神经元的核团除了缰内侧核、缰外侧核、中缝背核、中央上核、被盖背核、被盖背外侧核、导水管周围灰质外侧与腹外侧区和蓝斑以外,尚有Broca氏斜角带核和伏隔核。组内侧核和脚间核的联系存在着明显的局部定位关系,即双侧缰内侧核内侧投射至脚间核中部的腹侧和腹外侧;双侧缰内侧核外侧投射至脚间核中部的背侧;同侧缰内侧核投射至脚间核中部的外侧;双侧缰内侧核纤维并不投射至脚间核的吻端和尾端。本研究还发现其它核团对脚间核的投射也存在一定的局部定位关系,如缰外侧核、被盖背核腹内侧和被盖背外侧核均投射到脚间核的尾侧;伏隔核尾端也有投射纤维至脚间核。  相似文献   

4.
R P Vertes 《Neuroscience》1988,24(3):907-935
Brainstem afferents to various nuclei of the basal forebrain of the rat were examined using the retrograde transport of wheat germ agglutinin-horseradish peroxidase. These forebrain nuclei included the medial septum-vertical limb of the diagonal band nucleus, the lateral septum, the nucleus of the horizontal limb of the diagonal band, the medial preoptic area and the magnocellular preoptic nucleus/substantia innominata. Medial septal-vertical limb of the diagonal band injections produced dense cell labeling in: raphe obscurus, nucleus incertus, central gray-pars alpha, locus coeruleus, raphe pontis, median raphe, nucleus of Darkschewitsch, a compact cell group within the mesencephalic gray dorsolateral to the nucleus of Darkschewitsch and the supramammillary nucleus. Lateral septal injections produced the heaviest cell labeling in the A1 and A2 areas (of Dahlstrom and Fuxe), the lateral parabrachial nucleus, the Kolliker-Fuse nucleus, the ventral tegmental area and the supramammillary nucleus. There were considerably fewer labeled cells overall with lateral septal as compared with medial septal injections. Brainstem projections to the horizontal limb of the diagonal band were pronounced. The most heavily labeled nuclei were A1, locus coeruleus, laterodorsalis (dorsolateral tegmental nucleus of Castaldi), raphe pontis, median raphe, lateral parabrachial nucleus, ventral tegmental area, nucleus of Darkschewitsch and the supramammillary nucleus. Medial preoptic area injections produced pronounced labeling in: A1 and A2 areas, raphe magnus, locus coeruleus, laterodorsalis, lateral parabrachial nucleus, pedunculopontine nucleus, peripenduncular nucleus and the supramammillary nucleus. The pattern of brainstem labeling obtained with magnocellular preoptic/substantia innominata injections was considerably different from the patterns seen with the other injections. Specifically, relatively few cell groups, essentially confined to the upper brainstem (rostral pons and midbrain), were densely labeled following magnocellular preoptic/substantia innominata injections. These included the medial parabrachial nucleus, the pedunculopontine nucleus, the dorsal raphe nucleus, the ventral tegmental area and the supramammillary nucleus. With the exception of the supramammillary nucleus, each of these cell groups was more heavily labeled with magnocellular preoptic/substantia innominata injections than with others of this series. The above describes the major brainstem projections to each of the forebrain sites.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

5.
Summary Injections of HRP in the nucleus raphe magnus and adjoining medial reticular formation in the cat resulted in many labeled neurons in the lateral part of the bed nucleus of the stria terminalis (BNST) but not in the medial part of this nucleus. HRP injections in the nucleus raphe pallidus and in the C2 segment of the spinal cord did not result in labeled neurons in the BNST. Injections of 3H-leucine in the BNST resulted in many labeled fibers in the brain stem. Labeled fiber bundles descended by way of the medial forebrain bundle and the central tegmental field to the lateral tegmental field of pons and medulla. Dense BNST projections could be observed to the substantia nigra pars compacta, the ventral tegmental area, the nucleus of the posterior commissure, the PAG (except its dorsolateral part), the cuneiform nucleus, the nucleus raphe dorsalis, the locus coeruleus, the nucleus subcoeruleus, the medial and lateral parabrachial nuclei, the lateral tegmental field of caudal pons and medulla and the nucleus raphe magnus and adjoining medial reticular formation. Furthermore many labeled fibers were present in the solitary nucleus, and in especially the peripheral parts of the dorsal vagal nucleus. Finally some fibers could be traced in the marginal layer of the rostral part of the caudal spinal trigeminal nucleus. These projections appear to be virtually identical to the ones derived from the medial part of the central nucleus of the amygdala (Hopkins and Holstege 1978). The possibility that the BNST and the medial and central amygdaloid nuclei must be considered as one anatomical entity is discussed.Abbreviations AA anterior amygdaloid nucleus - AC anterior commissure - ACN nucleus of the anterior commissure - ACO cortical amygdaloid nucleus - AL lateral amygdaloid nucleus - AM medial amygdaloid nucleus - APN anterior paraventricular thalamic nucleus - AQ cerebral aqueduct - BC brachium conjunctivum - BIC brachium of the inferior colliculus - BL basolateral amygdaloid nucleus - BNSTL lateral part of the bed nucleus of the stria terminalis - BNSTM medial part of the bed nucleus of the stria terminalis - BP brachium pontis - CA central nucleus of the amygdala - Cd caudate nucleus - CI inferior colliculus - CL claustrum - CN cochlear nucleus - CP posterior commissure - CR corpus restiforme - CSN superior central nucleus - CTF central tegmental field - CU cuneate nucleus - D nucleus of Darkschewitsch - EC external cuneate nucleus - F fornix - G gracile nucleus - GP globus pallidus - HL lateral habenular nucleus - IC interstitial nucleus of Cajal - ICA internal capsule - IO inferior olive - IP interpeduncular nucleus - LC locus coeruleus - LGN lateral geniculate nucleus - LP lateral posterior complex - LRN lateral reticular nucleus - MGN medial geniculate nucleus - MLF medial longitudinal fascicle - NAdg dorsal group of nucleus ambiguus - NPC nucleus of the posterior commissure - nV trigeminal nerve - nVII facial nerve - OC optic chiasm - OR optic radiation - OT optic tract - P pyramidal tract - PAG periaqueductal grey - PC cerebral peduncle - PO posterior complex of the thalamus - POA preoptic area - prV principal trigeminal nucleus - PTA pretectal area - Pu putamen - PUL pulvinar nucleus - R red nucleus - RF reticular formation - RM nucleus raphe magnus - RP nucleus raphe pallidus - RST rubrospinal tract - S solitary nucleus - SC suprachiasmatic nucleus - SCN nucleus subcoeruleus - SI substantia innominata - SM stria medullaris - SN substantia nigra - SO superior olive - SOL solitary nucleus - SON supraoptic nucleus - spV spinal trigeminal nucleus - spVcd spinal trigeminal nucleus pars caudalis - ST stria terminalis - TRF retroflex tract - VC vestibular complex - VTA ventral tegmental area of Tsai - III oculomotor nucleus - Vm motor trigeminal nucleus - VI abducens nucleus - VII facial nucleus - Xd dorsal vagal nucleus - XII hypoglossal nucleus  相似文献   

6.
R P Vertes 《Neuroscience》1984,11(3):669-690
The origins of projections within the medial forebrain bundle from the upper brainstem were examined with the horseradish peroxidase technique. Labeled cells were found in approximately 15 upper brainstem nuclei following injections of a conjugate of horseradish peroxidase and wheat germ agglutinin at various levels of the medial forebrain bundle. Labeled nuclei included (from caudal to rostral): dorsal and ventral parabrachial nuclei; Kolliker-Fuse nucleus; dorsolateral tegmental nucleus; A7 (lateral pontine tegmentum medial to lateral lemniscus); median and dorsal raphe nuclei; distinct group of cells oriented mediolaterally in the dorsal pontine tegmentum below the central gray; B9 (ventral midbrain tegmentum dorsal to medial lemniscus); retrorubral nucleus; nucleus of Darkschewitsch, interfascicular nucleus; rostral and caudal linear nuclei; ventral tegmental area; medial part of substantia nigra, pars compacta; and the supramammillary nucleus. With the exception of the ventral parabrachial nucleus, Kolliker-Fuse, A7, B9 and substantia nigra, pars compacta, each of the nuclei mentioned above sent strong projections along the medial forebrain bundle to the rostral forebrain. Sparse labeling was observed throughout the pontine and midbrain reticular formation. With the exception of the dorsal raphe nucleus, projections to the most anterior regions of the medial forebrain bundle (level of the anterior commissure) essentially only arose from presumed dopamine-containing nuclei-retrorubral nucleus (A8 area), interfascicular nucleus, rostral and caudal linear nuclei, substantia nigra pars compacta, and ventral tegmental area. Evidence was reviewed indicating that major forebrain sites of termination for these dopaminergic nuclei are structures that have been collectively referred to as the 'ventral striatum'. It is concluded from the present findings that several pontine and mesencephalic cell groups are in a position to exert a strong, direct effect on structures in the anterior forebrain and that the medial forebrain bundle is the main communication route between the upper brainstem and the forebrain.  相似文献   

7.
Summary Afferent pathways to the rostral reticular thalamic nucleus (Rt) in the rat were studied using anterograde and retrograde lectin tracing techniques, with sensitive immunocytochemical methods. The analysis was carried out to further investigate previously described subregions of the reticular thalamic nucleus, which are related to subdivisions of the dorsal thalamus, in the paraventricular and midline nuclei and three segments of the mediodorsal thalamic nucleus. Cortical inputs to the rostral reticular nucleus were found from lamina VI of cingulate, orbital and infralimbic cortex. These projected with a clear topography to lateral, intermediate and medial reticular nucleus respectively. Thalamic inputs were found from lateral and central segments of the mediodorsal nucleus to the lateral and intermediate rostral reticular nucleus respectively and heavy paraventricular thalamic inputs were found to the medial reticular nucleus. In the basal forebrain, afferents were found from the vertical and horizontal limbs of the diagonal band, substantia innominata, ventral pallidum and medial globus pallidus. Brainstem projections were identified from ventrolateral periaqueductal grey and adjacent sites in the mesencephalic reticular formation, laterodorsal tegmental nucleus, pedunculopontine nucleus, medial pretectum and ventral tegmental area. The results suggest a general similarity in the organisation of some brainstem Rt afferents in rat and cat, but also show previously unsuspected inputs. Furthermore, there appear to be at least two functional subdivisions of rostral Rt which is reflected by their connections with cortex and thalamus. The studies also extend recent findings that the ventral striatum, via inputs from the paraventricular thalamic nucleus, is included in the circuitry of the rostral Rt, providing further evidence that basal ganglia may function in concert with Rt. Evidence is also outlined with regard to the possibility that rostral Rt plays a significant role in visuomotor functions.Abbreviations ac anterior commissure - aca anterior commissure, anterior - Acb accumbens nucleus - AI agranular insular cortex - AM anteromedial thalamic nucleus - AV anteroventral thalamic nucleus - BST bed nucleus of stria terminalis - Cg cingulate cortex - CG central gray - CL centrolateral thalamic nucleus - CM central medial thalamic nucleus - CPu caudate putamen - DR dorsal raphe nucleus - DTg dorsal tegmental nucleus - EP entopeduncular nucleus - f fornix - Fr2 Frontal cortex, area 2 - G gelatinosus thalamic nucleus - GP globus pallidus - Hb habenula - HDB horizontal limb of diagonal band - IAM interanterodorsal thalamic nucleus - ic internal capsule - INC interstitial nucleus of Cajal - IF interfascicular nucleus - IL infralimbic cortex - IP interpeduncular nucleus - LC locus coeruleus - LDTg laterodorsal tegmental nucleus - LH lateral hypothalamus - LHb lateral habenular nucleus - ll lateral lemniscus - LO lateral orbital cortex - LPB lateral parabrachial nucleus - MD mediodorsal thalamic nucleus - MDL mediodorsal thalamic nucleus, lateral segment - Me5 mesencephalic trigeminal nucleus - MHb medial habenular nucleus - mlf medial longitudinal fasciculus - MnR median raphe nucleus - MO medial orbital cortex - mt mammillothalamic tract - OPT olivary pretectal nucleus - pc posterior commissure - PC paracentral thalamic nucleus - PF parafascicular thalamic nucleus - PPTg pedunculopontine tegmental nucleus - PrC precommissural nucleus - PT paratenial thalamic nucleus - PV paraventricular thalamic nucleus - PVA paraventricular thalamic nucleus, anterior - R red nucleus - Re reuniens thalamic nucleus - RRF retrorubral field - Rt reticular thalamic nucleus - Scp superior cerebellar peduncle - SI substantia innominata - sm stria medullaris - SNR substantia nigra, reticular - st stria terminalis - TT tenia tecta - VL ventrolateral thalamic nucleus - VO ventral orbital cortex - VP ventral pallidum - VPL ventral posterolateral thalamic nucleus - VTA ventral tegmental area - 3 oculomotor nucleus - 3V 3rd ventricle - 4 trochlear nucleus  相似文献   

8.
Summary The origins of the dopaminergic innervation of the rat dorsal raphe nucleus (NRD) have been investigated using a combination of fluorescent retrograde tracing and fluorescence histochemistry. Stereotaxic microinjections of True Blue were placed in the central, caudal and lateral portions of the NRD, and after 6–12 days survival the brains were processed for fluorescence histochemical detection of catecholamines. Retrogradely labeled neurons were searched for in the diencephalic A11 and A13 dopaminergic cell groups, substantia nigra, ventral tegmental area (VTA) and the linear, central superior and dorsal raphe nuclei. The various NRD injections consistently resulted in retrograde labeling of a small number of catecholamine-containing, presumed dopaminergic cell bodies, confined mainly to three regions: the VTA, the linear and central superior raphe nuclei and the NRD itself. The present findings indicate that not only dopaminergic neurons in the VTA but also the system of catecholamine-containing cells, extending dorsally and caudally from the VTA within the midline raphe area, project to the NRD. Although often similar in size, shape and distribution to the catecholaminergic neurons the majority of retrogradely labeled cells in these regions were, however, found to be non-catecholaminergic.Abbreviations 3 Principal oculomotor nucleus - 4 Trochlear nucleus - Aq Cerebral aqueduct - cp cerebral peduncle - cst cortico-spinal tract - dscp decussation of the superior cerebellar peduncle - DTg Dorsal tegmental nucleus - fr fasciculus retroflexus - IF Interfascicular nucleus - IP Interpeduncular nucleus - LL nucleus of the lateral lemniscus - ml medial lemniscus - mlf medial longitudinal fasciculus - mNV mesencephalic trigeminal nucleus - NLC Nucleus linearis caudalis - NLR Nucleus linearis rostralis - NRD Dorsal raphe nucleus - PAG Periaqueductal grey - PN Pontine nucleus - PRN Pontine raphe nucleus - R Red nucleus - RCS Nucleus raphe centralis superior - SN Substantia nigra - VTA Ventral tegmental area - VTg Ventral tegmental nucleus  相似文献   

9.
Summary The high tonic discharge rates of globus pallidus neurons in awake monkeys suggest that these neurons may receive some potent excitatory input. Because most current electrophysiological evidence suggests that the major described pallidal afferent systems from the neostriatum are primarily inhibitory, we used retrograde transport of horseradish peroxidase (HRP) to identify possible additional sources of pallidal afferent fibers. The appropriate location was determined before HRP injection by mapping the characteristic high frequency discharge of single pallidal units in awake animals. In animals with injections confined to the internal pallidal segment, retrograde label was seen in neurons of the pedunculopontine nucleus, dorsal raphe nucleus, substantia nigra, caudate, putamen, subthalamic nucleus, parafascicular nucleus, zona incerta, medial and lateral subthalamic tegmentum, parabrachial nuclei, and locus coeruleus. An injection involving the external pallidal segment and the putamen as well resulted in additional labeling of cells in centromedian nucleus, pulvinar, and the ventromedial thalamus.Abbreviations AC anterior commissure - CG central grey - CM centromedian nucleus - CN caudate nucleus - DM dorsomedial nucleus - DR dorsal raphe nucleus - DSCP decussation of superior cerebellar peduncle - GPe globus pallidus, external segment - GPi globus pallidus, internal segment - LC locus coeruleus - LL lateral lemniscus - MG medial geniculate nucleus - ML medial lemniscus - NVI abducens nucleus - OT optic tract - Pbl lateral parabrachial nucleus - Pbm medial parabrachial nucleus - Pf parafascicular nucleus - PPN pedunculopontine nucleus - PuO oral pulvinar nucleus - RN red nucleus - SCP superior cerebellar peduncle - SI substantia innominata - SNc substantia nigra, pars compacta - SNr substantia nigra, pars reticulata - STN subthalamic nucleus - TMT mamillothalamic tract - VA ventral anterior nucleus - VLc ventral lateral nucleus, pars caudalis - VLm ventral lateral nucleus, pars medialis - VLo ventral lateral nucleus, pars oralis - VPI ventral posterior inferior nucleus - VPM ventral posterior medial nucleus - VPLc ventral posterior lateral nucleus, pars caudalis - ZI zona incerta  相似文献   

10.
The medial prefrontal cortex receives converging projections from the mediodorsal thalamic nucleus, dopaminergic cells from the ventral tegmental area dn noradrenergic cells from the locus coeruleus. Stimulation of the ventral tegmental area inhibits the spontaneous activity of prefrontal cortical neurons and blocks the excitatory response evoked by stimulation of the mediodorsal thalamic nucleus (10 Hz). The aim of the present study was to compare the influence of dopaminergic and noradrenergic afferents on the spontaneous and evoked activity of medial prefrontal cortical neurons. In ketamine-anaesthetized rats, repetitive stimulation (20 Hz, 10 s) of the locus coeruleus produced a long-lasting post-stimulus inhibition (mean duration: 45 s) of the spontaneous activity of 56% of the tested cells. This effect was decreased markedly following selective destruction of the ascending noradrenergic pathways (local 6-hydroxy-dopamine injection) or depletion of cortical catecholamines by alpha-methyl-para-tyrosine pretreatment, suggesting that these inhibitory responses are mediated by noradrenergic neurons. The excitatory response to mediodorsal thalamus nucleus stimulation (10 Hz) could still be evoked during the post-stimulus inhibitory period induced by locus coeruleus stimulation (20 Hz, 10 s) resulting in the enhancement of signal-to-noise ratio. On the other hand, a population of prefrontal cortex neurons (26%) was found to be reproducibly activated by noxious tail pinch. This evoked response was still present during the post-stimulus inhibitory period induced by locus coeruleus stimulation but was completely suppressed during stimulation of the ventral tegmental area (10 Hz). In conclusion, these results indicate that the dopaminergic and noradrenergic systems exert a completely distinct control of information transfer in the medial prefrontal cortex.  相似文献   

11.
本文应用乙酰胆碱酯酶(AchE)药理组化技术,亦称AchE再生技术,探讨AchE阳性神经元在树鼩中枢神经系内的分布及形态特征。按反应强弱程度不同,可见纠强、中、弱三种染色神经元,结果表明强、中染色神经元主要分布纹状体、基底前脑、下丘脑、黑质、红核、腹侧被盖区、蓝斑、脑桥被盖核、脑干网状结构、脑神经运动核及脊髓前角等区域内。  相似文献   

12.
用WGA-HRP法研究了25只大鼠前额叶皮质的脑干传入投射。在前扣带回背部、前边缘区及岛叶无颗粒皮质背部注射WGA-HRP后,脑干中的逆行标记细胞大致可分为三类。第一类为单胺类神经元集中的核团,其中蓝斑、腹侧被盖区、黑质致密部、中缝背核、中央上核及尾侧线形核等广泛投射到前额叶皮质各部,而外侧网状核、连合核、中缝大核、A_4、A_5、臂旁核、黑质网状部及颅侧线形核投射到前额叶皮质各部的数量不同。外侧网状核、连合核、中缝大核、A_4、A_5到前额叶皮质的投射文献上尚未见报道。第二类为与眼肌运动有关的核团,如E-W核、导水管周灰质、中脑网状结构及脑桥吻侧网状核。第三类为与感觉有关的核团,如臂旁核、三叉神经感觉主核及连合核。  相似文献   

13.
The distribution of somatostatinlike immunoreactive (SLI) perikarya, axons, and terminals was mapped in subcortical areas of the brain of the little brown bat, Myotis lucifugus, using light microscopic immunocytochemistry. A preponderance of immunoreactivity was localized in reticular, limbic, and hypothalamic areas including: (1) in the forebrain: the bed nucleus of the stria terminalis; lateral preoptic, dorsal, anterior, lateral and posterior hypothalamic areas; amygdaloid, periventricular, arcuate, supraoptic, suprachiasmatic, ventromedial, dorsomedial, paraventricular, lateral and medial mammillary, and lateral septal nuclei; the nucleus of the diagonal band of Broca and nucleus accilmbens septi; (2) in the midbrain: the periaqueductal gray, interpeduncular, dorsal and ventral tegmental, pretectal, and Edinger-Westphal nuclei; and (3) in the hindbrain: the superior central and parabrachial nuclei, nucleus incertus, locus coeruJeus, and nucleus reticularis gigantocellularis. Other areas containing SLI included the striatum (caudate nucleus and putamen), zona incerta, infundibulum, supramammiilary and premammillary nuclei, medial and dorsal lateral geniculate nuclei, entopeduncular nucleus, lateral habenular nucleus, central medial thalamic nucleus, central tegmental field, linear and dorsal raphe nuclei, nucleus of Darkschewitsch, superior and inferior colliculi, nucleus ruber, substantia nigra, mesencephalic nucleus of V, inferior olivary nucleus, inferior central nucleus, nucleus prepositus, and deep cerebellar nuclei. While these results were similar in some respects to those previously reported in rodents, they also provided interesting contrasts.  相似文献   

14.
Simonyan K  Jürgens U 《Neuroscience》2005,130(1):119-131
In three rhesus monkeys (Macaca mulatta), the inferior motor cortex was explored by electrical stimulation for sites yielding vocal fold adduction. The retrograde tracer wheat germ-agglutinin-conjugated horseradish peroxidase was injected into the effective sites. Within the forebrain, retrogradely labeled cells were found in the claustrum, basal nucleus of Meynert, substantia innominata, extended amygdala, lateral and posterior hypothalamic area, field H of Forel, and a number of thalamic nuclei with the strongest labeling in the nuclei ventralis lateralis, ventralis posteromedialis, including its parvocellular part, medialis dorsalis and centrum medianum, and weaker labeling in the nuclei ventralis anterior, ventralis posterolateralis, intermediodorsalis, paracentralis, parafascicularis and pulvinaris anterior. In the midbrain, labeling was found in the deep mesencephalic nucleus, ventral tegmental area, and substantia nigra. In the lower brainstem, labeled cells were found in the pontine reticular formation, median and dorsal raphe nuclei, medial parabrachial nucleus, and locus coeruleus. The findings are discussed in terms of the possible role of these structures in voluntary vocal control.  相似文献   

15.
The distribution of neurons in diencephalon and brainstem which project upon the hippocampal formation has been analyzed in adult rats by the injection of horseradish peroxidase into different parts of the hippocampus and dentate gyrus and the related retrohippocampal structures, including the subicular complex and the entorhinal cortex. Any large injection of horseradish peroxidase inlo the hippocampal region results in the retrograde labeling of some neurons in each of the following structures: in the thalamus—the nucleus reuniens, the parataenial and paraventricular nuclei, the anterodorsal and antermedial nuclei, and the laterodorsal and lateral posterior nuclei; in the hypothalamus, septum and preoptic region—the medial septal nucleus and the diagonal band of Broca, the substantia innominata, the lateral preoptic area, the magnocellular preoptic nucleus, and the anterior amygdaloid area, the dorsomedial hypothalamic nucleus, the lateral and posterior hypothalamic areas, the ventral premammillary nucleus, the supramammillary region, and parts of the tuberomammillary and lateral and medial mammillary nuclei: in the brainstem: the ventral tegmental area, the substantia nigra, the interpeduncular and interfascicular nuclei, the dorsal and median nuclei of the raphe, the dorsal and laterodorsal tegmental nuclei, the locus coeruleus, the central gray, and certain of the tegmental reticular fields.It is clear that these afferents to the hippocampal formation do not comprise a single, homogeneous system, and that their terminations within the hippocampal region are not restricted to a particular topographic level (i.e. septal, intermediate or temporal).  相似文献   

16.
Using the method based on HRP retrograde axonal transport organization of projections of substantia nigra, tegmental ventral field and amygdala on pallidum was studied. Neuronal fibres from all dopaminergic portions of substantia nigra and tegmental ventral field were found to project on both structures of dog dorsal pallidum (globus pallidus and entopeduncular nucleus). Ventral pallidum receives projectional axons only from neurons of basal nucleus of amygdala and tegmental ventral field.  相似文献   

17.
18.
三角隔核和伞隔核的纤维联系——HRP及CB-HRP法研究   总被引:1,自引:0,他引:1  
用HRP法及CB—HRP法研究了15只大鼠三角隔核及伞隔核的传入和传出纤维联系。结果表明:三角隔核主要接受海马、斜角带核、中缝正中核及被盖腹侧区的传入投射,也接受来自乳头体上核和蓝斑的纤维;伞隔核主要接受海马后部的传入纤维,也接受来自斜角带核、乳头体上核及被盖腹侧区的投射。三角隔核和伞隔核的传出纤维主要经髓纹终于内侧缰核,也有纤维经斜角带止于斜角带核。  相似文献   

19.
The distribution of both monoamine oxidase subtypes, monoamine oxidase-A and -B, is demonstrated in brainstems from 16 humans by use of a histochemical technique. The results presented here, focus primarily upon the aminergic areas of the substantia nigra, the locus coeruleus and the raphe nuclei. While dopaminergic neurons of the substantia nigra revealed no staining for monoamine oxidase, noradrenergic neurons of the locus coeruleus stained positively with the monoamine oxidase-A substrate serotonin, and serotonergic neurons of the raphe nuclei were stained by the monoamine oxidase-B substrate beta-phenylethylamine. In addition, data are presented showing that glial cells stain predominantly for monoamine oxidase-B.  相似文献   

20.
Mechanothermal nociceptors in the scaly skin of the chicken leg   总被引:4,自引:0,他引:4  
Corticotropin-releasing hormone (CRH) interacts with noradrenergic, dopaminergic and cholinergic systems of the brain, and these interactions are thought to be of relevance for the stress response, anxiety-related behavior, and cognitive function. CRH mediates its central effects through two high-affinity membrane receptors, CRH receptor subtypes 1 and 2. It is however unclear at present whether cholinergic or catecholaminergic cells express these receptors themselves or whether the effects of CRH are indirectly mediated through interaction with other neurotransmitter systems. Therefore, this study investigated whether choline acetyltransferase immunoreactive neurons of the murine basal forebrain and brainstem nuclei, and tyrosine hydroxylase immunoreactive neurons located within the locus coeruleus, ventral tegmental area and substantia nigra co-express CRH receptor 1, employing a double-immunocytochemical procedure. Using an antibody against the C-terminus of the CRH type 1 receptor (CRH-R1), CRH-R1-like immunoreactivity was found in all cholinergic basal forebrain nuclei except the nucleus basalis magnocellularis. In particular, the diagonal band of Broca (vertical and horizontal limbs) showed a high degree of co-localization of CRH-R1 immunoreactivity and choline acetyltransferase immunoreactivity (both limbs >90%). A less intense immunoreactivity but still high rate of co-localization was detected in the cholinergic neurons of the medial septum (80%), while lowest co-localization was observed in choline acetyltransferase immunoreactive neurons of the substantia innominata (58%). An intermediate degree of co-localization (75%) was seen in the brainstem pedunculopontine tegmental nucleus, while the other major brainstem cholinergic nucleus, the laterodorsal tegmental nucleus, showed an even higher degree of choline acetyltransferase immunoreactivity-positive cells also immunoreactive for CRH-R1 (92%). All catecholaminergic structures studied displayed a pattern of CRH-R1 immunoreactivity strongly overlapping the pattern of tyrosine hydroxylase immunoreactivity. The intensity of the CRH-R1 signal was relatively low within the ventral tegmental area and the substantia nigra pars compacta, while the CRH-R1 signal was very intense and detected in almost all of the neurons of the locus coeruleus.These results clearly demonstrate that the cholinergic and catecholaminergic systems provide direct anatomical substrates for CRH action through the CRH-R1. These findings are of particular relevance for understanding the action of recently developed CRH-R1 antagonistic drugs which may offer a new therapeutic approach to treat stress-related disorders such as anxiety and depression and their concomitant alterations in arousal and cognitive functions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号