首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
OBJECTIVE: Image fusion has been recognized as a useful technique in diagnostic imaging. We have been evaluating the manual image fusion of PET and contrast-enhanced (CE) CT obtained separately. The CT images can be used for attenuation correction as well as for image fusion; however, the quantitative accuracy of CT-corrected PET images has yet to be assessed. The purpose of this study was to compare the radioactivity concentration between conventional (68)Ge-corrected and CECT-corrected PET images. METHODS: Twenty patients underwent a whole-body PET scan, followed by a CT scan with intravenous contrast material, after careful positioning using an individually molded vacuum cushion. Two different attenuation-corrected emission data sets were produced, i.e., (68)Ge-corrected images and CECT-corrected images. Image registration was performed by maximizing mutual information-based cost function, between the CT and the combination of emission and transmission PET volumes. The CT pixel values in Hounsfield units were transformed into linear attenuation coefficients in cm(-1), using a conversion formula for a lookup-table from phantom experiments. Measured activity concentrations from identical regions of interest in representative normal organs and in 25 pathologic foci of uptake were compared. In addition, the quality of the reconstructed images was assessed using the normal mean square error (NMSE). RESULTS: Measured average radioactivity concentrations were 1.38-9.56% higher for CECT-corrected images than for (68)Ge-corrected images. Overall, the NMSE value of CECT-corrected images compared with (68)Ge-corrected images was 0.02+/-0.01. CONCLUSIONS: The difference in quantitative values between (68)Ge-corrected and CECT-corrected PET images was comparable to that of an integrated PET/CT system. Diagnostic CT images with intravenous contrast performed separately before or after a PET scan could be used clinically not only for fusion but also for attenuation correction.  相似文献   

2.
BACKGROUND: In current combined positron emission tomography/computed tomography (PET/CT) systems, high-quality CT images not only increase diagnostic value by providing anatomic delineation of hyper- and hypometabolic tissues, but also shorten the acquisition time for attenuation correction compared with standard PET imaging. However, this technique potentially introduces more radiation burden to patients as a result of the higher radiation exposure from CT. METHODS: In this study, the radiation doses delivered from typical germanium-based and CT-based transmission scans were measured and compared using an anthropomorphic Rando Alderson phantom with insertions of thermoluminescent dosimeters. Image geometric distortion and quantified uptake values in PET images with different manipulating CT acquisition protocols for attenuation correction were also evaluated. RESULTS: It was found that radiation doses during germanium-based transmission scans were almost negligible, while doses from CT-based transmission scans were significantly higher. Using a lower radiation dose, the CT acquisition protocol did not significantly affect attenuation correction and anatomic delineation in PET. CONCLUSIONS: This study revealed the relation between image information and dose. The current PET/CT imaging acquisition protocol was improved by decreasing the radiation risks without sacrificing the diagnostic values.  相似文献   

3.
Germanium-68 based attenuation correction (PET(Ge68)) is performed in positron emission tomography (PET) imaging for quantitative measurements. With the recent introduction of combined in-line PET/CT scanners, CT data can be used for attenuation correction. Since dental implants can cause artefacts in CT images, CT-based attenuation correction (PET(CT)) may induce artefacts in PET images. The purpose of this study was to evaluate the influence of dental metallic artwork on the quality of PET images by comparing non-corrected images and images attenuation corrected by PET(Ge68) and PET(CT). Imaging was performed on a novel in-line PET/CT system using a 40-mAs scan for PET(CT) in 41 consecutive patients with high suspicion of malignant or inflammatory disease. In 17 patients, additional PET(Ge68) images were acquired in the same imaging session. Visual analysis of fluorine-18 fluorodeoxyglucose (FDG) distribution in several regions of the head and neck was scored on a 4-point scale in comparison with normal grey matter of the brain in the corresponding PET images. In addition, artefacts adjacent to dental metallic artwork were evaluated. A significant difference in image quality scoring was found only for the lips and the tip of the nose, which appeared darker on non-corrected than on corrected PET images. In 33 patients, artefacts were seen on CT, and in 28 of these patients, artefacts were also seen on PET imaging. In eight patients without implants, artefacts were seen neither on CT nor on PET images. Direct comparison of PET(Ge68) and PET(CT) images showed a different appearance of artefacts in 3 of 17 patients. Malignant lesions were equally well visible using both transmission correction methods. Dental implants, non-removable bridgework etc. can cause artefacts in attenuation-corrected images using either a conventional 68Ge transmission source or the CT scan obtained with a combined PET/CT camera. We recommend that the non-attenuation-corrected PET images also be evaluated in patients undergoing PET of the head and neck.  相似文献   

4.
Recent studies have shown increased artifacts in CT attenuation-corrected (CTAC) PET images acquired with oral contrast agents because of misclassification of contrast as bone. We have developed an algorithm, segmented contrast correction (SCC), to properly transform CT numbers in the contrast regions from CT energies (40-140 keV) to PET energy at 511 keV. METHODS: A bilinear transformation, equivalent to that supplied by the PET/CT scanner manufacturer, for the conversion of linear attenuation coefficients of normal tissues from CT to PET energies was optimized for BaSO(4) contrast agent. This transformation was validated by comparison with the linear attenuation coefficients measured for BaSO(4) at concentrations ranging from 0% to 80% at 511 keV for PET transmission images acquired with (68)Ge rod sources. In the CT images, the contrast regions were contoured to exclude bony structures and then segmented on the basis of a minimum threshold CT number (300 Hounsfield units). The CT number in each pixel identified with contrast was transformed into the corresponding effective bone CT number to produce the correct attenuation coefficient when the data were translated by the manufacturer software into PET energy during the process of CT attenuation correction. CT images were then used for attenuation correction of PET emission data. The algorithm was validated with a phantom in which a lesion was simulated within a volume of BaSO(4) contrast and in the presence of a human vertebral bony structure. Regions of interest in the lesion, bone, and contrast on emission PET images reconstructed with and without the SCC algorithm were analyzed. The results were compared with those for images obtained with (68)Ge-based transmission attenuation-corrected PET. RESULTS: The SCC algorithm was able to correct for contrast artifacts in CTAC PET images. In the phantom studies, the use of SCC resulted in an approximate 32% reduction in the apparent activity concentration in the lesion compared with data obtained from PET images without SCC and a <7.6% reduction compared with data obtained from (68)Ge-based attenuation-corrected PET images. In one clinical study, maximum standardized uptake value (SUV(max)) measurements for the lesion, bladder, and bowel were, respectively, 14.52, 13.63, and 13.34 g/mL in CTAC PET images, 59.45, 26.71, and 37.22 g/mL in (68)Ge-based attenuation-corrected PET images, and 11.05, 6.66, and 6.33 g/mL in CTAC PET images with SCC. CONCLUSION: Correction of oral contrast artifacts in PET images obtained by combined PET/CT yielded more accurate quantitation of the lesion and other, normal structures. The algorithm was tested in a clinical case, in which SUV(max) measurements showed discrepancies of 2%, 1.3%, and 5% between (68)Ge-based attenuation-corrected PET images and CTAC PET images with SCC for the lesion, bladder, and bowel, respectively. These values correspond to 6.5%, 62%, and 66% differences between CTAC-based measurements and (68)Ge-based ones.  相似文献   

5.
We investigated the effect of CT truncation in whole-body (WB) PET/CT imaging of large patients, and we evaluated the efficacy of an extended field-of-view (eFOV) correction technique. METHODS: Two uniform phantoms simulating a "torso" and an "arms-up" setup were filled with (18)F-FDG/water. A third, nonuniform "body phantom was prepared with hot and cold lesions. All 3 phantoms were positioned in the center of the PET/CT gantry with >or=10% of their volume extending beyond the maximum CT FOV. An eFOV algorithm was used to estimate complete CT projections from nonlinear extrapolation of the truncated projections. CT-based attenuation correction (CT AC) of the phantom data was performed using CT images reconstructed from truncated and extended projections. For clinical validation, we processed truncated datasets from 10 PET/CT patients with and without eFOV correction. RESULTS: When using truncated CT images for CT AC, PET tracer distribution was suppressed outside the transverse CT FOV in phantom and patient studies. PET activity concentration in the truncated regions was only 10%-32% of the true value but increased to 84%-100% when using the extended CT images for CT AC. At the same time, the contour of phantoms and patients was recovered to the anatomically correct shape from the uncorrected emission images, and the apparent distortion of lesions near the maximum CT FOV was reduced. CONCLUSION: Truncation artifacts in WB PET/CT led to visual and quantitative distortions of the CT and attenuation-corrected PET images in the area of truncation. These artifacts can be corrected to improve the accuracy of PET/CT for diagnosis and therapy response evaluation.  相似文献   

6.
In dual-modality PET/CT systems, the CT scan provides the attenuation map for PET attenuation correction. The current clinical practice of obtaining a single helical CT scan provides only a snapshot of the respiratory cycle, whereas PET occurs over multiple respiratory cycles. Misalignment of the attenuation map and emission image because of respiratory motion causes errors in the attenuation correction factors and artifacts in the attenuation-corrected PET image. To rectify this problem, we evaluated the use of cine CT, which acquires multiple low-dose CT images during a respiratory cycle. We evaluated the average and the intensity-maximum image of cine CT for cardiac PET attenuation correction. METHODS: Cine CT data and cardiac PET data were acquired from a cardiac phantom and from multiple patient studies. The conventional helical CT, cine CT, and PET data of an axially translating phantom were evaluated with and without respiratory motion. For the patient studies, we acquired 2 cine CT studies for each PET acquisition in a rest-stress (13)N-ammonia protocol. Three readers visually evaluated the alignment of 74 attenuation image sets versus the corresponding emission image and determined whether the alignment provided acceptable or unacceptable attenuation-corrected PET images. RESULTS: In the phantom study, the attenuation correction from helical CT caused a major artifactual defect in the lateral wall on the PET image. The attenuation correction from the average and from the intensity-maximum cine CT images reduced the defect by 20% and 60%, respectively. In the patient studies, 77% of the cases using the average of the cine CT images had acceptable alignment and 88% of the cases using the intensity maximum of the cine CT images had acceptable alignment. CONCLUSION: Cine CT offers an alternative to helical CT for compensating for respiratory motion in the attenuation correction of cardiac PET studies. Phantom studies suggest that the average and the intensity maximum of the cine CT images can reduce potential respiration-induced misalignment errors in attenuation correction. Patient studies reveal that cine CT provides acceptable alignment in most cases and suggest that the intensity-maximum cine image offers a more robust alternative to the average cine image.  相似文献   

7.
With the introduction of combined positron emission tomography/computed tomography (PET/CT) systems, several questions have to be answered.In this work we addressed two of these questions: (a) to what value can the CT tube current be reduced while still yielding adequate maps for the attenuation correction of PET emission scans and (b) how do quantified uptake values in tumours derived from CT and germanium-68 attenuation correction compare. In 26 tumour patients, multidetector CT scans were acquired with 10, 40, 80 and 120 mA (CT10, CT40, CT80 and CT120) and used for the attenuation correction of a single FDG PET emission scan, yielding four PET scans designated PET(CT10)-PET(CT120). In 60 tumorous lesions, FDG uptake and lesion size were quantified on PET(CT10)-PET(CT120). In another group of 18 patients, one CT scan acquired with 80 mA and a standard transmission scan acquired using 68Ge sources were employed for the attenuation correction of the FDG emission scan (PET(CT80), PET(68Ge)). Uptake values and lesion size in 26 lesions were compared on PET(CT80) and PET(68Ge). In the first group of patients, analysis of variance revealed no significant effect of CT current on tumour FDG uptake or lesion size. In the second group, tumour FDG uptake was slightly higher using CT compared with 68Ge attenuation correction, especially in lesions with high FDG uptake. Lesion size was similar on PET(CT80) and PET(68Ge). In conclusion, low CT currents yield adequate maps for the attenuation correction of PET emission scans. Although the discrepancy between CT- and 68Ge-derived uptake values is probably not relevant in most cases, it should be kept in mind if standardised uptake values derived from CT and 68Ge attenuation correction are compared.  相似文献   

8.
Purpose Respiratory motion has been reported to be a potential cause of artefacts on PET/CT, and of errors in the quantification of lesion activity due to inaccurate attenuation correction. We examined FDG images corrected for attenuation with CT and a caesium external source in the same patients to study this artefact and to assess its impact on detection of lesions in the upper part of the liver.Methods A total of 122 patients underwent the examination using both attenuation correction techniques, with the Gemini PET/CT scanner. No breathing instructions were given. The images obtained were visually compared, and standardised uptake values (SUVs) in 35 lesions were measured (mean SUV/normal liver SUV) in 14 patients with lesions in the upper part of the liver (less than 5 cm from the upper border).Results CT-corrected images of the liver included an artefactual cold area in 84 patients (69%); this area was located in the posterior upper part of the liver (65 patients, 53%), included the top of the liver (ten patients, 8%) or affected both the top and the posterior part (nine patients, 8%). In lesions (and also in normal liver outside the artefactual area), SUVs obtained with CT correction were higher than those obtained with Cs correction (p<0.05), though this was usually without relevance for lesion detection. However, in patients with lesions situated inside the artefactual area, SUVs were lower with CT correction, and ability to detect two lesions (6%) was affected.Conclusion Failure to detect a liver lesion (especially in the superior and posterior parts) is a rare but possible pitfall when using only CT-corrected FDG images.  相似文献   

9.
BACKGROUND AND AIM: In a combined positron emission tomography (PET) and computed tomography (CT) system, the CT images can be used for attenuation correction as well as for image fusion. However, quantitative and qualitative differences have been reported between CT based attenuation corrected PET and conventional transmission scan corrected PET images. The purpose of this study was to investigate potential differences in PET/CT caused by attenuation differences in bowel due to motion. METHODS: Twelve patients had PET/CT scans performed using 68Ge transmission and CT attenuation correction methods. Three emission imaging datasets were generated including CT corrected PET, Ge corrected PET, and the difference images (CT corrected PET minus Ge corrected PET). PET difference images were used to identify regions of mismatch and to quantify possible discordance between images by using standardized uptake values (SUVs). Using the Ge corrected PET as the standard, differences in emission images were classified as an overestimation (pattern A) or an underestimation (pattern B) in these difference images. RESULTS: One hundred and twenty-three mismatched areas were identified. Among them, overestimated areas in CT corrected image were detected in 36 regions (pattern A), while underestimated areas were evaluated in the remaining 87 regions (pattern B). The mean value of the difference in pattern A (mean +/- standard deviation = 0.84 +/- 0.44) was slightly higher than that in pattern B (0.60 +/- 0.23), and statistically significant. Six of 36 regions in pattern A had an SUV of greater than 2.5 in CT corrected PET but less than 2.5 in Ge corrected PET; two of 87 regions with pattern B demonstrated an SUV greater than 2.5 in Ge corrected PET and less than 2.5 in CT corrected PET. CONCLUSION: Physiological bowel motion may result in attenuation differences and subsequent differences in SUVs. Overestimation of fluorodeoxyglucose uptake should not be misinterpreted as disease.  相似文献   

10.
CT images represent essentially noiseless maps of photon attenuation at a range of 40-140 keV. Current dual-modality PET/CT scanners transform them into attenuation coefficients at 511 keV and use these for PET attenuation correction. The proportional scaling algorithms hereby used account for the different properties of soft tissue and bone but are not prepared to handle material with other attenuation characteristics, such as oral CT contrast agents. As a consequence, CT-based attenuation correction in the presence of an oral contrast agent results in erroneous PET standardized uptake values (SUVs). The present study assessed these errors with phantom measurements and patient data. METHODS: Two oral CT contrast agents were imaged at 3 different concentrations in dual-modality CT and PET transmission studies to investigate their attenuation properties. The SUV error due to the presence of contrast agent in CT-based attenuation correction was estimated in 10 patients with gastrointestinal tumors as follows. The PET data were attenuation corrected on the basis of the original contrast-enhanced CT images, resulting in PET images with distorted SUVs. A second reconstruction used modified CT images wherein the CT numbers representing contrast agent had been replaced by CT values producing approximately the right PET attenuation coefficients. These CT values had been derived from the data of 10 patients imaged without a CT contrast agent. The SUV error, defined as the difference between both sets of SUV images, was evaluated in regions with oral CT contrast agent, in tumor, and in reference tissue. RESULTS: The oral CT contrast agents studied increased the attenuation for 511-keV photons minimally, even at the highest concentrations found in the patients. For a CT value of 500 Hounsfield units, the proportional scaling algorithm therefore overestimated the PET attenuation coefficient by 26.2%. The resulting SUV error in the patient studies was highest in regions containing CT contrast agent (4.4% +/- 2.8%; maximum, 11.3%), whereas 1.2% +/- 1.1% (maximum, 4.1%) was found in tumors, and 0.6% +/- 0.7% was found in the reference. CONCLUSION: The use of oral contrast agents in CT has only a small effect on the SUV, and this small effect does not appear to be medically significant.  相似文献   

11.
PET/CT scanners offer a hardware solution for aligning and viewing functional and anatomic images that is immune to many of the errors in strictly software registration techniques. Moreover, PET attenuation-corrected emission scans benefit from the use of the onboard CT for fast, low-noise attenuation correction. Along with the significant improved localization and reduced acquisition time, PET/CT scanners also introduce new instrumentation challenges ranging from patient movement to quantitative attenuation correction. This article provides an overview of current PET/CT scanner technology, a discussion of challenges faced by these systems, and pending solutions.  相似文献   

12.
PURPOSE: To investigate the effects of intravenous contrast agents on quantitative values obtained with a combined positron emission tomographic (PET) and computed tomographic (CT) scanner by using several phantoms and a dog. MATERIALS AND METHODS: Fluorine 18 fluorodeoxyglucose (FDG) was mixed with different concentrations of contrast agent with the same syringe (phantom 1), and the phantom was scanned. After image reconstruction with various attenuation maps, radioactivity concentrations were compared. Then, FDG solutions with (phantom 2) or surrounded by (phantom 3) various concentrations of contrast agent were scanned repeatedly, and radioactivity concentration was compared. Finally, PET and CT with and without contrast agent were performed in a dog. PET images were reconstructed by using different attenuation maps, and radioactivity concentrations were compared. The radioactivity concentration on germanium 68 (68Ge)-based corrected images was regarded as standard, and percentage bias, defined as difference divided by measured activity of 68Ge-based corrected images, was assessed. The relationship between the concentration of contrast agent and the percentage bias was assessed with the Pearson coefficient r, and the significance of correlations was evaluated with the Fisher z test. RESULTS: All phantom studies demonstrated that presence of a contrast agent resulted in overestimation of emission data. CT numbers showed a strong positive correlation with the percentage bias in phantoms 2 (r = 0.999) and 3 (r = 0.987); the maximum percentage bias at 1,360 HU reached approximately 45%. These effects were independent of FDG concentration. In a canine model, presence of a contrast agent also increased emission activity, but the percentage bias was less than 15% in the liver and smaller in all other organs except the kidney (26%). CONCLUSION: High concentrations of a contrast agent caused considerable overestimation of apparent tracer activity in phantom studies; however, the emission bias was relatively modest in vivo, except in areas with very high contrast agent concentrations.  相似文献   

13.
In combined PET/CT studies, x-ray attenuation information from the CT scan is generally used for PET attenuation correction. Iodine-containing contrast agents may induce artifacts in the CT-generated attenuation map and lead to an erroneous radioactivity distribution on the corrected PET images. This study evaluated 2 methods of thresholding the CT data to correct these contrast agent-related artifacts. METHODS: PET emission and attenuation data (acquired with and without a contrast agent) were simulated using a cardiac torso software phantom and were obtained from patients. Seven patients with known coronary artery disease underwent 2 electrocardiography-gated CT scans of the heart, the first without a contrast agent and the second with intravenous injection of an iodine-containing contrast agent. A 20-min PET scan (single bed position) covering the same axial range as the CT scans was then obtained 1 h after intravenous injection of (18)F-FDG. For both the simulated data and the patient data, the unenhanced and contrast-enhanced attenuation datasets were used for attenuation correction of the PET data. Additionally, 2 threshold methods (one requiring user interaction) aimed at compensating for the effect of the contrast agent were applied to the contrast-enhanced attenuation data before PET attenuation correction. All PET images were compared by quantitative analysis. RESULTS: Regional radioactivity values in the heart were overestimated when the contrast-enhanced data were used for attenuation correction. For patients, the mean decrease in the left ventricular wall was 23%. Use of either of the proposed compensation methods reduced the quantification error to less than 5%. The required time for postprocessing was minimal for the user-independent method. CONCLUSION: The use of contrast-enhanced CT images for attenuation correction in cardiac PET/CT significantly impairs PET quantification of tracer uptake. The proposed CT correction methods markedly reduced these artifacts; additionally, the user-independent method was time-efficient.  相似文献   

14.
CT-based attenuation correction is a widely used option in commercial PET/CT scanners. However, as a result of a nonsimultaneous acquisition and differences in temporal resolution between both modalities, a potential misregistration between the PET and CT, especially in the thorax and the upper abdomen, can be found. We observed a substantial number of apparent perfusion defects in spatial coincidence with the misregistered segments of the heart and assumed these defects were related to an incorrect attenuation correction. The purpose of this work was to assess the clinical impact of emission-transmission misalignment in myocardial perfusion imaging with PET/CT and to investigate potential solutions. METHODS: Twenty-eight coronary artery disease patients underwent PET/CT (13)NH3 rest/stress examinations. The emission-transmission misalignment was corrected by manual registration and the PET studies were reconstructed again using the realigned CT images for attenuation correction. The effects of the registration were evaluated by quantitative analysis of the local tracer uptake on a polar map basis. In addition to manual registration, 2 alternative realignment methods were evaluated: mutual information-based image registration and emission-driven correction based on the outline of the heart in the PET image. RESULTS: Manual realignment resulted in a change in the defect size of >10% of the left ventricle in 6 of 28 studies (21.4%); in 5 of the studies, this resulted in the disappearance of large apparent perfusion defects (15%-46% of the left ventricle), which were fully due to emission-transmission misregistration. Automatic image registration was unable to realign the datasets, whereas the emission-driven correction showed a good agreement with manual registration. CONCLUSION: Misregistration of PET and CT images is common in cardiac PET/CT studies and results in artifacts on the attenuation-corrected PET images, which appear to be corrected by repeating the PET reconstruction after manual realignment of the CT image data. In contrast to manual realignment, an automated emission-driven correction appears to be a promising approach.  相似文献   

15.
In patients with oral head and neck cancer, the presence of metallic dental implants produces streak artifacts in the CT images. These artifacts negate the utility of CT for the spatial localization of PET findings and may propagate through the CT-based attenuation correction into the PET images. In this study, we evaluated the efficacy of an algorithm that reduces metallic artifacts in CT images and the impact of this approach on the quantification of PET images. METHODS: Fifty-one patients with and 9 without dental implants underwent a PET/CT study. CT images through the patient's dental implants were reconstructed using both standard CT reconstruction and an algorithm that reduces metallic artifacts. Attenuation correction factors were calculated from both sets of CT images and applied to the PET data. The CT images were evaluated for any reduction of the artifacts. The PET images were assessed for any quantitative change introduced by metallic artifact reduction. RESULTS: For each reconstruction, 2 regions of interest were defined in areas where the standard CT reconstruction overestimated the Hounsfield units (HU), 2 were defined in underestimated areas, and 1 was defined in a region unaffected by the artifacts. The 5 regions of interest were transferred to the other 3 reconstructions. Mean HU or mean Bq/cm(3) were obtained for all regions. In the CT reconstructions, metallic artifact reduction decreased the overestimated HUs by approximately 60% and increased the underestimated HUs by approximately 90%. There was no change in quantification in the PET images between the 2 algorithms (Spearman coefficient of rank correlation, 0.99). Although the distribution of attenuation (HU) changed considerably in the CT images, the distribution of activity did not change in the PET images. CONCLUSION: Our study demonstrated that the algorithm can enhance the structural and spatial content of CT images in the presence of metallic artifacts. The CT artifacts do not propagate through the CT-based attenuation correction into the PET images, confirming the robustness of CT-based attenuation correction in the presence of metallic artifacts. The study also demonstrated that considerable changes in CT images do not change the PET images.  相似文献   

16.
Objective  The objective of this study was to investigate the effects of computed tomography (CT) artifacts caused by dental metal prostheses on positron emission tomography (PET) images. Methods  A dental arch cast was fixed in a cylindrical water-bath phantom. A spherical phantom positioned in the vicinity of the dental arch cast was used to simulate a tumor. To simulate the tumor imaging, the ratio of the 18F-fluoro-deoxy-glucose radioactivity concentration of the spherical phantom to that of the water-bath phantom was set at 2.5. A dental bridge composed of a gold–silver–palladium alloy on the right mandibular side was prepared. A spherical phantom was set in the white artifact area on the CT images (site A), in a slightly remote area from the white artifact (site B), and in a black artifact area (site C). A PET/CT scan was performed with and without the metal bridge at each simulated tumor site, and the artifactual influence was evaluated on the axial attenuation-corrected (AC) PET images, in which the simulated tumor produced the strongest accumulation. Measurements were performed using three types of PET/CT scanners (scanners 1 and 2 with CT-based attenuation correction, and 3 with Cesium-137 (137Cs)-based attenuation correction). The influence of the metal bridge was evaluated using the change rate of the SUVmean with and without the metal bridge. Results  At site A, an overestimation was shown (scanner 1: +5.0% and scanner 2: +2.5%), while scanner 3 showed an underestimation of −31.8%. At site B, an overestimation was shown (scanner 1: +2.1% and scanner 2: +2.0%), while scanner 3 showed an underestimation of −2.6%. However, at site C, an underestimation was shown (scanner 1: −25.0%, scanner 2: −32.4%, and scanner 3: −8.4%). Conclusions  When CT is used for attenuation correction in patients with dental metal prostheses, an underestimation of radioactivity of accumulated tracer is anticipated in the dark streak artifact area on the CT images. In this study, the dark streak artifacts of the CT caused by metallic dental prostheses may cause false negative finding of PET/CT in detecting small and/or low uptake tumor in the oral cavity.  相似文献   

17.
Standard application of CT intravenous contrast agents in combined PET/CT may lead to high-density artifacts on CT and attenuation-corrected PET. To avoid associated diagnostic pitfalls, we designed and compared different intravenous contrast injection protocols for routine whole-body PET/CT. METHODS: Whole-body PET/CT included a topogram and a single spiral CT scan (2-row) with or without intravenous contrast, followed by an emission scan. The CT scan was used for attenuation correction of the emission data. Four groups of 10 whole-body PET/CT referrals each were investigated: (A) no intravenous contrast agent, (B) biphasic injection (90 and 50 mL at 3 and 1.5 mL/s, respectively) of intravenous contrast (300 mg/mL iodine) and CT in the craniocaudal direction with a 30-s delay, (C) triple-phase injection (90, 40, and 40 mL at 3, 2, and 1.5 mL/s, respectively) in the craniocaudal direction with a 50-s delay, and (D) dual-phase injection (80 and 60 mL at 3 and 1.5 mL/s, respectively) in the caudocranial direction with a 50-s delay. CT image quality was assessed on a scale from 1 to 3, and CT and attenuation-corrected PET images were reviewed separately for contrast-induced artifacts. RESULTS: Average CT image quality was poorest for protocol A (1.0) but improved to 2.8 when using intravenous contrast agents (protocols B-D). Only protocols B and C resulted in contrast-induced image artifacts that were limited to the thorax. The most homogeneous intravenous contrast enhancement without high-density image artifacts on either CT or PET after CT-based attenuation correction was achieved with protocol D. CONCLUSION: Dual-phase intravenous contrast injection and CT in the caudocranial direction with a 50-s delay yields reproducible high image quality and is now used routinely for combined diagnostic PET/CT at our hospital.  相似文献   

18.
PET/CT imaging artifacts   总被引:6,自引:0,他引:6  
The purpose of this paper is to introduce the principles of PET/CT imaging and describe the artifacts associated with it. PET/CT is a new imaging modality that integrates functional (PET) and structural (CT) information into a single scanning session, allowing excellent fusion of the PET and CT images and thus improving lesion localization and interpretation accuracy. Moreover, the CT data can also be used for attenuation correction, ultimately leading to high patient throughput. These combined advantages have rendered PET/CT a preferred imaging modality over dedicated PET. Although PET/CT imaging offers many advantages, this dual-modality imaging also poses some challenges. CT-based attenuation correction can induce artifacts and quantitative errors that can affect the PET emission images. For instance, the use of contrast medium and the presence of metallic implants can be associated with focal radiotracer uptake. Furthermore, the patient's breathing can introduce mismatches between the CT attenuation map and the PET emission data, and the discrepancy between the CT and PET fields of view can lead to truncation artifacts. After reading this article, the technologist should be able to describe the principles of PET/CT imaging, identify at least 3 types of image artifacts, and describe the differences between PET/CT artifacts of different causes: metallic implants, respiratory motion, contrast medium, and truncation.  相似文献   

19.
The purpose of this study was to compare (18)F-FDG PET and PET/CT in a population of patients with colorectal cancer. METHODS: PET and PET/CT images from 45 patients (17 women, 28 men; mean age +/- SD, 60.8 +/- 11.1 y) with known colorectal cancer referred for PET from June to November 2001 were retrospectively reviewed. Images were acquired with a PET/CT scanner, and (68)Ge attenuation correction was applied. PET images and fused (68)Ge attenuation-corrected PET and CT images were independently and separately interpreted by a moderately experienced reader unaware of the clinical information. Certainty of lesion characterization was scored on a 5-point scale (0 = definitely benign, 1 = probably benign, 2 = equivocal, 3 = probably malignant, 4 = definitely malignant). Lesion location was scored on a 3-point scale (0 = uncertain, 1 = probable, 2 = definite). The presence or absence of tumor was subsequently assessed using all available clinical, pathologic, and follow-up information. Analysis was provided for lesions detected by both PET and PET/CT. RESULTS: The frequency of equivocal and probable lesion characterization was reduced by 50% (50 to 25) with PET/CT, in comparison with PET. The frequency of definite lesion characterization was increased by 30% (84 to 109) with PET/CT. The number of definite locations was increased by 25% (92 to 115) with PET/CT. Overall correct staging increased from 78% to 89% with PET/CT on a patient-by-patient analysis. CONCLUSION: PET/CT imaging increases the accuracy and certainty of locating lesions in colorectal cancer. More definitely normal and definitely abnormal lesions (and fewer probable and equivocal lesions) were identified with PET/CT than with PET alone. Staging and restaging accuracy improved from 78% to 89%.  相似文献   

20.
The new combined positron emission (PET)/computed tomographic (CT) scanners have many advantages over PET scanners alone. However, physicians must be aware of the potential artefacts observed in PET/CT scanners. A body PET/CT was performed on an 81-year-old man with colorectal cancer. The CT-based, attenuation-corrected PET image showed a right lower lung lesion. However, there was no lung lesion on the transmission CT image. Nonattenuation-corrected PET, and rod source-based, attenuation-corrected PET images demonstrated focal uptake in the dome of the liver. Dedicated CT with intravenous contrast confirmed that the lesion was in the liver dome and not in the right lower lung. The liver lesion was misplaced to the right lower lung in the CT-based, attenuation-corrected PET image because of a respiratory artefact. To overcome this respiration artefact the authors suggest a routine review of the nonattenuation-corrected PET images, particularly when evaluating liver dome and lower lung lesions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号