首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
1. The metabolism of the prostacyclin receptor agonist selexipag (NS-304; ACT-293987) and its active metabolite MRE-269 (ACT-333679) has been investigated in liver microsomes and hepatocytes of rats, dogs, and monkeys. MRE-269 formation is the main pathway of selexipag metabolism, irrespective of species. Some interspecies differences were evident for both compounds in terms of both metabolic turnover and metabolic profiles. The metabolism of MRE-269 was slower than that of selexipag in all three species.

2. The metabolism of selexipag was also studied in bile-duct-cannulated rats and dogs after a single oral and intravenous dose of [14C]selexipag. MRE-269 acyl glucuronide was found in both rat and dog bile. Internal acyl migration reactions of MRE-269 glucuronide were identified in an experiment with the synthetic standard MRE-6001.

3. MRE-269 was the major component in the faeces of rats and dogs. In ex vivo study using rat and dog faeces, selexipag hydrolysis to MRE-269 by the intestinal microflora is considered to be a contributory factor in rats and dogs.

4. A taurine conjugate of MRE-269 was identified in rat bile sample. Overall, selexipag was eliminated via multiple routes in animals, including hydrolysis, oxidative metabolism, conjugation, intestinal deconjugation, and gut flora metabolism.  相似文献   


2.
1.?Following oral administration of [14C]TAK-438, the radioactivity was rapidly absorbed in rats and dogs. The apparent absorption of the radioactivity was high in both species.

2.?After oral administration of [14C]TAK-438 to rats, the radioactivity in most tissues reached the maximum at 1-hour post-dose. By 168-hour post-dose, the concentrations of the radioactivity were at very low levels in nearly all the tissues. In addition, TAK-438F was the major component in the stomach, whereas TAK-438F was the minor component in the plasma and other tissues. High accumulation of TAK-438F in the stomach was observed after oral and intravenous administration.

3.?TAK-438F was a minor component in the plasma and excreta in both species. Its oxidative metabolite (M-I) and the glucuronide of a secondary metabolite formed by non-oxidative metabolism of M-I (M-II-G) were the major components in the rat and dog plasma, respectively. The glucuronide of M-I (M-I-G) and M-II-G were the major components in the rat bile and dog urine, respectively, and most components in feces were other unidentified metabolites.

4.?The administered radioactive dose was almost completely recovered. The major route of excretion of the drug-derived radioactivity was via the feces in rats and urine in dogs.  相似文献   

3.
Abstract

1.?Plasma clearance of dolutegravir, an unboosted HIV-1 integrase inhibitor, was low in rat and monkey (0.23 and 2.12?mL/min/kg, respectively) as was the volume of distribution (0.1 and 0.28?L/kg, respectively) with terminal elimination half-life approximately 6?h. Dolutegravir was rapidly absorbed from oral solution with a high bioavailability in rat and monkey (75.6 and 87.0% respectively), but solubility or dissolution rate limited when administered as suspension.

2.?Dolutegravir was highly bound (>99%) to serum proteins in rat and monkey, similar to binding to plasma and serum proteins in human. Radioactivity was associated with the plasma versus cellular components of blood across all species.

3.?Following oral administration to rats, [14C]dolutegravir-related radioactivity was distributed to most tissues, due in part to high permeability; however, because of high plasma protein binding, tissue to blood ratios were low. In mouse, rat and monkey, the absorbed dose was extensively metabolized and secreted into bile, with the majority of the administered radioactivity eliminated in feces within 24?h.

4.?The primary route of metabolism of dolutegravir was through the formation of an ether glucuronide. Additional biotransformation pathways: benzylic oxidation followed by hydrolysis to an N-dealkylated product, glucose conjugation, oxidative defluorination, and glutathione conjugation.  相似文献   

4.
1.?The metabolism of selexipag has been studied in vivo in man and the main excreted metabolites were identified. Also, metabolites circulating in human plasma have been structurally identified and quantified.

2.?The main metabolic pathway of selexipag in man is the formation of the active metabolite ACT-333679. Other metabolic pathways include oxidation and dealkylation reactions. All primary metabolites undergo subsequent hydrolysis of the sulphonamide moiety to their corresponding acids. ACT-333679 undergoes conjugation with glucuronic acid and aromatic hydroxylation to P10, the main metabolite detected in human faeces.

3.?The formation of the active metabolite ACT-333679 is catalysed by carboxylesterases, while the oxidation and dealkylation reactions are metabolized by CYP2C8 and CYP3A4. CYP2C8 is the only P450 isoform catalysing the aromatic hydroxylation to P10. CYP2C8 together with CYP3A4 are also involved in the formation of several minor ACT-333679 metabolites. UGT1A3 and UGT2B7 catalyse the glucuronidation of ACT-333679.

4.?The potential of selexipag to inhibit or induce cytochrome P450 enzymes or drug transport proteins was studied in vitro. Selexipag is an inhibitor of CYP2C8 and CYP2C9 and induces CYP3A4 and CYP2C9 in vitro. Also, selexipag inhibits the transporters OATP1B1, OATP1B3, OAT1, OAT3, and BCRP. However, due to its low dose and relatively low unbound exposure, selexipag has a low potential for causing drug–drug interactions.  相似文献   

5.
1.?Following oral administration of [14C]-gefitinib to albino and pigmented rats, radioactivity was widely and rapidly distributed, with the highest levels being found in liver, kidney, lung and gastrointestinal tract, but with only low levels penetrating the brain. Levels of radioactivity persisted in melanin-containing tissues (pigmented eye and skin).

2.?Binding to plasma proteins was high (86–94%) across the range of species examined and was 91% in human plasma. Substantial binding occurred to both human serum albumin and α-1 acid glycoprotein.

3.?Following oral and intravenous administration of [14C]-gefitinib, excretion of radioactivity by rat, dog and human occurred predominantly via the bile into faeces, with <7% of the dose being eliminated in urine.

4.?In all three species, gefitinib was cleared primarily by metabolism. In rat, morpholine ring oxidation was the major route of metabolism, leading to the formation of M537194 and M608236 as the main biliary metabolites. Morpholine ring oxidation, together with production of M523595 by O-demethylation of the quinazoline moiety, were the predominant pathways in dog, with oxidative defluorination also occurring to a lesser degree.

5.?Pathways in healthy human volunteers were similar to dog, with O-demethylation and morpholine ring oxidation representing the major routes of metabolism.  相似文献   

6.
1.?The pharmacokinetics of gefitinib and its metabolites in rat and dog were investigated in preclinical studies conducted to support the safety evaluation and clinical development of gefitinib, the first EGFR tyrosine kinase inhibitor approved for the treatment of non-small-cell lung cancer.

2.?Following intravenous dosing (5?mg?kg?1), gefitinib plasma half-life was 3–6?h in rats and dogs, although studies using a more sensitive HPLC-MS assay produced longer estimates of half-life (7–14?h).

3.?In these studies, plasma clearance was high (male rat: 25?ml?min?1?kg?1; female rat: 16?ml?min?1?kg?1; male dog: 16?ml?min?1?kg?1), as was the volume of distribution (8.0–10.4?l?kg?1 in rat; 6.3?l?kg?1 in dog), and exposure in female rats was double that in males.

4.?Following administration of [14C]-gefitinib, concentrations of radioactivity in plasma exceeded gefitinib throughout the profile, indicating the presence of circulating metabolites in both rat and dog.

5.?An HPLC-MS assay was developed to measure concentrations of gefitinib and five potential metabolites in plasma. All five metabolites were detected in the rat, but at levels much lower than gefitinib. In the dog, exposure to gefitinib and M523595 was similar, with much lower concentrations of M537194 and only trace levels of the other metabolites. This profile of metabolites is similar to that observed in man.  相似文献   

7.
In liver microsomes, selexipag (NS-304; ACT-293987) mainly undergoes hydrolytic removal of the sulfonamide moiety by carboxylesterase 1 (CES1) to yield the pharmacologically active metabolite MRE-269 (ACT-333679). However, it is not known how much CES in the liver and intestine contributes to the hydrolysis of selexipag or how selexipag is metabolized in the intestine, including by hydrolysis. To obtain a better understanding of selexipag metabolism in humans, we determined the percentage contribution of CES1 and carboxylesterase 2 (CES2) to the hydrolysis of selexipag and 7 of its analogs with different sulfonamide moieties and evaluated its nonhydrolytic metabolism in human liver microsomes and human intestinal microsomes (HIMS). For selexipag, the percentage contributions of CES1 and CES2 in human liver microsomes were 77.0% and 9.99%, respectively, while the percentage contribution of CES2 in HIMS was 100%. In HIMS, the rate of hydrolysis of selexipag was the lowest among the compounds tested, and no difference between the presence and absence of nicotinamide adenine dinucleotide phosphate was noted. We infer from these results that selexipag is likely to be hydrolyzed by CES2 as well as CES1, and only selexipag itself and the MRE-269 produced by hydrolysis in the intestine would be absorbed after oral administration.  相似文献   

8.
Abstract

1. We investigated the metabolism and disposition of luseogliflozin, a sodium-glucose cotransporter 2 (SGLT2) inhibitor, in rats and dogs, as well as in vitro metabolism in rats, dogs and humans. In addition, we studied its localization in the rat kidney.

2. [14C]Luseogliflozin was rapidly and well absorbed (>86% of the dose) after oral administration to rats and dogs. The drug-derived radioactivity was mainly excreted via the feces in both species.

3.?The predominant radioactivity component in the excreta was associated with the metabolites, with only a minor fraction of unchanged luseogliflozin. The major metabolites were two glucuronides (M8 and M16) in the rats, and the O-deethylated form (M2) and other oxidative metabolites (M3 and M17) in the dogs.

4. The in vitro metabolism in dog and human hepatocytes was significantly slower than that in the rat hepatocytes. The biotransformation in animal hepatocytes was similar to that observed in vivo. Incubation with human hepatocytes resulted in the formation of metabolites, including M2, M3, M8 and M17, via multiple metabolic pathways.

5. [14C]Luseogliflozin was well-distributed to its target organ, the kidney, and was found to be localized in the renal cortex, which shows SGLT2 expression. This characteristic distribution was inhibited by preinjection of phlorizin, an SGLT inhibitor, suggesting that the renal radioactivity was associated with SGLT2.  相似文献   

9.
The distribution of [1-14C] acrylonitrile (ACN) in rat and monkey has been studied by whole-body autoradiography, after being administered orally and intravenously to rats and orally to monkeys. Uptake of radioactivity was seen in the blood, liver, kidney, lung, adrenal cortex and stomach mucosa.  相似文献   

10.
1.?The absorption, metabolism and excretion of cobimetinib, an allosteric inhibitor of MEK1/2, was characterized in mass balance studies following single oral administration of radiolabeled (14C) cobimetinib to Sprague–Dawley rats (30?mg/kg) and Beagle dogs (5?mg/kg).

2.?The oral dose of cobimetinib was well absorbed (81% and 71% in rats and dogs, respectively). The maximal plasma concentrations for cobimetinib and total radioactivity were reached at 2–3?h post-dose. Drug-derived radioactivity was fully recovered (~90% of the administered dose) with the majority eliminated in feces via biliary excretion (78% of the dose for rats and 65% for dogs). The recoveries were nearly complete after the first 48?h following dosing.

3.?The metabolic profiles indicated extensive metabolism of cobimetinib prior to its elimination. For rats, the predominant metabolic pathway was hydroxylation at the aromatic core. Lower exposures for cobimetinib and total radioactivity were observed in male rats compared with female rats, which was consistent to in vitro higher clearance of cobimetinib for male rats. For dogs, sequential oxidative reactions occurred at the aliphatic portion of the molecule. Though rat metabolism was well-predicted in vitro with liver microsomes, dog metabolism was not.

4.?Rats and dogs were exposed to the two major human circulating Phase II metabolites, which provided relevant metabolite safety assessment. In general, the extensive sequential oxidative metabolism in dogs, and not the aromatic hydroxylation in rats, was more indicative of the metabolism of cobimetinib in humans.  相似文献   

11.
Abstract

1.?The objectives of this study were to evaluate the pharmacokinetics and metabolism of fimasartan in rats.

2.?Unlabeled fimasartan or radiolabeled [14C]fimasartan was dosed by intravenous injection or oral administration to rats. Concentrations of unlabeled fimasartan in the biological samples were determined by a validated LC/MS/MS assay. Total radioactivity was quantified by liquid scintillation counting and the radioactivity associated with the metabolites was analyzed by using the radiochemical detector. Metabolite identification was conducted by product ion scanning using LC/MS/MS.

3.?After oral administration of [14C]fimasartan, total radioactivity was found primarily in feces. In bile duct cannulated rats, 58.8?±?14.4% of the radioactive dose was excreted via bile after oral dosing. Major metabolites of fimasartan including the active metabolite, desulfo-fimasartan, were identified, yet none represented more than 7.2% of the exposure of the parent drug. Fimasartan was rapidly and extensively absorbed and had an oral bioavailability of 32.7–49.6% in rats. Fimasartan plasma concentrations showed a multi-exponential decline after oral administration. Double peaks and extended terminal half-life were observed, which was likely caused by enterohepatic recirculation.

4.?These results provide better understanding on the pharmacokinetics of fimasartan and may aid further development of fimasartan analogs.  相似文献   

12.
1. Cabotegravir [(3S,11aR)-N-[(2,4-difluorophenyl)methyl]-6-hydroxy-3-methyl-5,7-dioxo-2,3,5,7,11,11a-hexahydro[1,3]oxazolo[3,2-a]pyrido[1,2-d]pyrazine-8-carboxamide] is an HIV-1 integrase inhibitor under development as a tablet for both oral lead-in therapy and long-acting (LA) injectable for intramuscular dosing.

2. Metabolism, pharmacokinetics and excretion were investigated in healthy human subjects who received either a single oral dose (28.2?mg) of [14C]cabotegravir in a mass balance study, or LA formulations of unlabeled cabotegravir (200–800?mg), intramuscularly or subcutaneously, in a separate study. Metabolism, distribution and excretion of [14C]cabotegravir were also investigated in mice, rats and monkeys.

3. Recovery of radioactivity in humans represented a mean total of 85.3% of the dose, including 26.8% in the urine. The mean apparent terminal phase half-life was similar for both cabotegravir and radioactivity, 39?h compared to 41?h.

4. Following oral, intramuscular and subcutaneous administration, cabotegravir was the major component in plasma and the glucuronic acid conjugate (M1) represented the predominant component in urine. Cabotegravir was present in bile along with its major metabolite (M1).

5. The primary metabolite of [14C]cabotegravir in mouse, rat and monkey was the same as that in human. In vitro phenotyping experiments demonstrated that cabotegravir was metabolized by UDP-glucuronosyltransferase (UGT) 1A1 and UGT1A9.  相似文献   

13.
Studies on absorption, plasma concentrations and excretion with (+/-)isopropyl-2-methoxyethyl-1,4-dihydro-2,6-dimethyl-4-(3-nitrophenyl) -3,5-pyridinedicarboxylate (nimodipine, Bay e 9736, Nimotop) have been conducted in rat, dog and monkey using the carbon-14-labelled substance and a wide range of doses (0.05-10 mg/kg) administered via different routes (intravenous, oral, intraduodenal). Nimodipine was well absorbed in all species. Peak plasma concentrations of radioactivity were determined 28-40 min (male rat), 60 min (female rat), about 3 h (dog) and 7 h (monkey) after administration. Dependent on the observation period (24-216 h) terminal half-lives for the elimination of radioactivity from plasma ranging between 4.6 h (female rat) and 157 h (dog) were observed. Comparing the AUC, the concentration of unchanged [14C]nimodipine in plasma represented only a small (maximally 37% in dogs after i.v. dose) to negligible (about 1%, monkey after oral dosing) part of the total radioactivity. Excretion of radioactivity via feces and urine was rapid in all species after both oral and intravenous dosing. Fecal (biliary) excretion was the major excretory route in rat and dog. The monkeys excreted about 40 to 50% via the urine. Residues in the body never exceeded 1.5% of the dose. [14C]nimodipine and/or its radiolabelled metabolites were secreted in milk of orally dosed lactating rats. Binding of [14C]nimodipine to plasma proteins of rat and dog was about 97%.  相似文献   

14.
1.?The metabolism, excretion and pharmacokinetics of glasdegib (PF-04449913) were investigated following administration of a single oral dose of 100?mg/100 μCi [14C]glasdegib to six healthy male volunteers (NCT02110342).

2.?The peak concentrations of glasdegib (890.3?ng/mL) and total radioactivity (1043 ngEq/mL) occurred in plasma at 0.75?hours post-dose. The AUCinf were 8469?ng.h/mL and 12,230 ngEq.h/mL respectively, for glasdegib and total radioactivity.

3.?Mean recovery of [14C]glasdegib-related radioactivity in excreta was 91% of the administered dose (49% in urine and 42% in feces). Glasdegib was the major circulating component accounting for 69% of the total radioactivity in plasma. An N-desmethyl metabolite and an N-glucuronide metabolite of glasdegib represented 8% and 7% of the circulating radioactivity, respectively. Glasdegib was the major excreted component in urine and feces, accounting for 17% and 20% of administered dose in the 0–120?hour pooled samples, respectively. Other metabolites with abundance <3% of the total circulating radioactivity or dose in plasma or excreta were hydroxyl metabolites, a desaturation metabolite, N-oxidation and O-glucuronide metabolites.

4.?Elimination of [14C]glasdegib-derived radioactivity was essentially complete, with similar contribution from urinary and fecal routes. Oxidative metabolism appears to play a significant role in the biotransformation of glasdegib.  相似文献   

15.
Absorption, distribution and excretion of 2,4-diamino-6-(2,5-dichlorophenyl)-s-triazine maleate (MN-1695) were studied in rats, dogs and monkeys after administration of [14C]-MN-1695. MN-1695 was found to be well absorbed from the small intestine after oral administration in all species examined. Plasma level of unchanged MN-1695 reached a maximum at 1 to 4 h after oral administration of [14C]-MN-1695 in rats, dogs and monkeys. The mean elimination half-life of unchanged MN-1695 from plasma was about 3, 4 and 50 h in rats, dogs and monkeys, respectively. Tissue levels of radioactivity after oral administration of [14C]-MN-1695 in rats indicated that [14C]-MN-1695 was distributed throughout the body and the radioactivity in tissues disappeared with a rate similar to that in plasma. A stomach autoradiogram after intravenous administration of [14C]-MN-1695 in the rat revealed the radioactivity localized in the gastric mucosa where MN-1695 was assumed to exert its pharmacological activity. In pregnant rats, [14C]-MN-1695 was distributed to the fetus with levels similar to maternal blood levels. After oral administration of [14C]-MN-1695 in rats, 39 to 46% of the dose was excreted into the urine and 50 to 63% of the dose into the feces, within 96 h. In dogs, about 40% of the dose was excreted into the urine and about 50% of the dose into the feces, within 6 days after oral administration. In monkeys, within 14 days after oral administration, about 60 and 30% of the dose were excreted into the urine and feces, respectively, and the main excretion route was the urine.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
The absorption, disposition and excretion of (+/-) 3-isobutyl-5-methyl 1,4-dihydro-2,6-dimethyl-4-(2-nitrophenyl)-pyridine-3,5-dicarboxylate (nisoldipine, Bay k 5552) have been studied following a single administration of the 14C-labelled compound to rats, dogs, monkey and swine via different routes (intravenous, oral, intraduodenal) in the dose range of 0.05-10 mg.kg-1. [14C]nisoldipine was absorbed rapidly and almost completely. Peak concentrations of radioactivity in plasma were reached 0.9 h (rat), 1.4 h (dog), and 3.6 h (monkey) after oral administration with normalized maximum concentrations being in the same range for all three species (0.49-0.79). The radioactivity was eliminated from plasma with half-lives between 42 h and 54 h within an observation period up to 3 days. The contribution of unchanged [14C]nisoldipine to the concentration of total radioactivity in plasma was low after oral administration (between 0.5% (monkey) and 3.4% (dog) in the peak) indicating an extensive presystemic elimination of this compound. The bioavailability was estimated at 3.4% in rats and 11.7% in dogs. [14C]nisoldipine was highly bound to plasma proteins with free fractions of 0.9-2.9%. The excretion of the radioactivity via urine and feces/bile both after oral and intravenous administration of [14C]nisoldipine occurred rapidly and almost completely within 48 h in all species. Very small residues in the body were recovered at the end of the experiments in rats and dogs (less than 1.6% of the dose). The biliary/fecal route of excretion was preferred in rats, dogs and swine, whereas in monkey 76% of the dose was excreted renally.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
1. The disposition and metabolism of amosulalol hydrochloride, a combined α- and β-adrenoceptor blocking agent, were studied in rats, dogs and monkeys.

2. After oral administration of [14C]amosulalol hydrochloride, the plasma concentration of radioactivity reached a maximum at 05 to 1 h in all species and declined with half-lives of about 2 h in both rats and monkeys, and of about 4 h in dogs. The ratios of unchanged drug to total radioactivity in the rat and dog plasma were 8 and 43% at 05 h after administration, respectively. The radioactivity in the rat tissues was high in the liver, kidney, blood and pancreas after oral administration.

3. Following oral dosage, the urinary excretion of radioactivity was 26-34% of the dose in rats, 45% in dogs and 46% in monkeys in 48 h. The biliary excretion after oral dosage amounted to 66% and 41% in rats and dogs, respectively.

4. Six metabolites were isolated and identified from the urine of rats and dogs. They were derived from one or two of the following pathways: I, hydroxylation of the 2-methyl group of the methylbenzenesulphonamide ring; II, demethylation of the o-methoxy group of the methoxyphenoxy ring; III, hydroxylation at the 4 or 5 position of the methoxy-phenoxy ring; IV, oxidative cleavage of the C—N bond yielding o-methoxyphenoxy acetic acid. Moreover, some metabolites were metabolized to glucuronide or sulphate.  相似文献   

18.
In unanesthetized rats examined 4–140 hr after the ip administration of 1.8 mg/kg of [9-14C]2-acetylaminofluorene ([14C]2-AAF), detectable amounts of radioactivity were found in the plasma and in the ventral and dorsolateral lobes of the prostate. Radioactivity was also found in the prostatic fluid collected from anesthetized rats between 25 and 29 hr after doses of 2 mg/kg. When three unanesthetized dogs with surgically prepared fistulas allowing the collection of prostatic fluid were given intraperitoneal doses of 0.16–0.25 mg/kg of [14C]2-AAF and followed for 6 hr (two dogs) or 166 hr (one dog), there was a relatively rapid rise in the amount of radioactivity in plasma followed by a slow decline and an appearance of radioactivity in the prostatic fluid. Radioactivity was also present in the prostate glands of each of two dogs examined 6 hr after treatment. Thus 2-AAF and/or metabolites were found to enter both the prostate gland and the prostatic secretion of both the rat and dog.  相似文献   

19.
1. After administration of [phthalidyl-14]talampicillin (Talpen® to rat. dog and man, radioactivity was excreted mainly in the urine (90%, 86% and 98% in rat, dog and man respectively).

2. After administration of [ampicillin-14C]talampicillin, radioactivity was excreted in the urine of rats and dogs to a lesser extent (35% in both species) and only a small proportion of the dose was excreted in the bile (6% in rats, less than 0·1% in dogs).

3. The pattern of radiometaboletes was very similar in extracts of the urines of rat, dog and man dosed orally with [phthalidyl-14C]talampicillin. The major metabolite was 2-hydroxymethylbenzoic acid.

4. Unchanged talampicillin was present in the hepatic portal vein blood of dog and thus reached the liver, whereas in rat, no parent compound could be detected in portal vein blood. This result may help to explain differences in toxicity of the compound in rat and dog.

5. Studies in vitro showed that the intestinal wall is an important site of hydrolysis of talampicillin in rat and dog.  相似文献   

20.
1.?The pharmacokinetics, metabolism and excretion of L-NIL-TA, an inducible nitric oxide synthase inhibitor, were investigated in dog.

2.?The dose of [14C]L-NIL-TA was rapidly absorbed and distributed after oral and intravenous administration (5?mg?kg?1), with Cmax of radioactivity of 6.45–7.07?μg equivalents?g?1 occurring at 0.33–0.39-h after dosing. After oral and intravenous administration, radioactivity levels in plasma then declined with a half-life of 63.1 and 80.6-h, respectively.

3.?Seven days after oral and intravenous administrations, 46.4 and 51.5% of the radioactive dose were recovered in urine, 4.59 and 2.75% were recovered in faeces, and 22.4 and 22.4% were recovered in expired air, respectively. The large percentages of radioactive dose recovered in urine and expired air indicate that [14C]L-NIL-TA was well absorbed in dogs and the radioactive dose was cleared mainly through renal elimination. The mean total recovery of radioactivity over 7 days was approximately 80%.

4.?Biotransformation of L-NIL-TA occurred primarily by hydrolysis of the 5-aminotetrazole group to form the active drug L-N6-(1-iminoethyl)lysine (NIL or M3), which was further oxidized to the 2-keto acid (M5), the 2-hydroxyl acid (M1), an unidentified metabolite (M2) and carbon dioxide. The major excreted products in urine were M1 and M2, representing 22.2 and 21.2% of the dose, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号