首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
1. The exposed level of vitamin A in plasma might be exceeded due to the both inadvertent and clinical utilization. The adverse effects of vitamin A have been frequently reported, however, the mechanism remains unclear. The inhibition of vitamin A on the activity of UDP-glucuronosyltransferases (UGTs) was determined using in vitro incubation system to explain the adverse effects of vitamin A from a new perspective.

2. UGT supersomes catalyzed glucuronidation of 4-methylumbelliferone (4-MU), trifluoperazine (TFP), and cotinine was used as the probe reaction to evaluate the inhibition of vitamin A toward UGT isoforms, and 100?μM of vitamin A significantly inhibited the activity of all the tested UGT isoforms. Vitamin A exerted competitive inhibition on the activity of UGT1A1, 2B4, 2B7, and 2B15, and the inhibition kinetic parameters (Ki) were calculated to be 31.1, 16.8, 2.2, and 11.6?μM for UGT1A1, 2B4, 2B7, and 2B15. In silico docking method was used to try to elucidate the inhibition mechanism of vitamin A toward UGT2B7. The results showed the significant contribution of hydrogen bonds and hydrophobic interaction on the UGT2B7 inhibition by vitamin A.

3. The present study provides a new perspective for the adverse effects of vitamin A through reporting the inhibition of vitamin A on the activity of important phase II drug-metabolizing enzymes UGTs, which benefits our deep understanding of mechanism of vitamin A's adverse effects when high exposure of vitamin A occurs.  相似文献   

2.
1.?Everolimus is an inhibitor of mammalian target of rapamycin (mTOR) and has been clinically utilized to prevent the rejection of organ transplants. This study aims to determine the inhibition of everolimus on the activity of phase-II drug-metabolizing enzymes UDP-glucuronosyltransferases (UGTs).

2.?The results showed that 100 μM of everolimus exerted more than 80% inhibition toward UGT1A1, UGT-1A3 and UGT-2B7. UGT1A3 and UGT2B7 were selected to elucidate the inhibition mechanism, and in silico docking showed that hydrogen bonds and hydrophobic interactions mainly contributed to the strong binding of everolimus toward the activity cavity of UGT1A3 and UGT2B7. Inhibition kinetic-type analysis using Lineweaver–Burk plot showed competitive inhibition toward all these UGT isoforms. The inhibition kinetic parameters (Ki) were calculated to be 2.3, 0.07 and 4.4 μM for the inhibition of everolimus toward UGT1A1, UGT-1A3 and UGT-2B7, respectively.

3.?In vitroin vivo extrapolation (IVIVE) showed that [I]/Ki value was calculated to be 0.004, 0.14 and 0.002 for UGT1A1, UGT-1A3 and UGT-2B7, respectively. Therefore, high DDI potential existed between everolimus and clinical drugs mainly undergoing UGT1A3-catalyzed glucuronidation.  相似文献   

3.
4.
UDP-glucuronosyltransferases (UGTs) catalyze phase II biotransformation reactions in which lipophilic substrates are conjugated with glucuronic acid to increase water solubility and enhance excretion. Currently, little information regarding tissue- or gender-specific expression of mouse UGTs is available. Mice are increasingly popular models in biomedical research, and therefore, thorough characterization of murine drug metabolism is desired. The purpose of the present study was to determine both tissue- and gender-specific UGT gene expression profiles in mice. RNA from 14 tissues was isolated from male and female C57BL/6 mice and UGT expression was determined by the branched DNA signal amplification assay. UGTs highly expressed in mouse liver include Ugt1a1, Ugt1a5, Ugt1a6, Ugt1a9, Ugt2a3, Ugt2b1, Ugt2b5/37/38, Ugt2b34, Ugt2b35, and Ugt2b36. Several isoforms were expressed in the gastrointestinal (GI) tract, including Ugt1a6, Ugt1a7c, Ugt2a3, Ugt2b34, and Ugt2b35. In kidney, Ugt1a2, Ugt1a7c, Ugt2b5/37/38, Ugt2b35, and Ugt3a1/2 were expressed. UGT expression was also observed in other tissues: lung (Ugt1a6), brain (Ugt2b35), testis and ovary (Ugt1a6 and Ugt2b35), and nasal epithelia (Ugt2a1/2). Male-predominant expression was observed for Ugt2b1 in liver, Ugt2b5/37/38 in kidney, and Ugt1a6 in lung. Female-predominant expression was observed for Ugt1a1 and Ugt1a5 in liver, Ugt1a2 in kidney, Ugt2b35 in brain, and Ugt2a1/2 in nasal epithelia. UDP-glucose pyrophosphorylase was highly expressed in liver, kidney, and GI tract, whereas UDP-glucose dehydrogenase was highly expressed in the GI tract. In conclusion, marked differences in tissue- and gender-specific expression patterns of UGTs exist in mice, potentially influencing drug metabolism and pharmacokinetics.  相似文献   

5.
目的分析高血压病患者口服吡格列酮导致甲状腺功能变异以及心肌酶谱的变化。方法将我院2002年3月至2006年5月5例口服吡格列酮后导致低三碘甲状腺原氨酸(T3)及心肌酶变化患者的剂量、出现的时间及转归进行分析。观察患者的甲状腺功能、心肌酶谱及心脏超声变化。结果①5例患者出现心肌酶变化均为用药90—120d后,天冬氨酸氨基转移酶峰值为(180±45)U/L.肌酸磷酸激酶峰值为(600±60)U/L,停药后改善心肌代谢治疗后(24±7)d心肌酶恢复正常。②药物性心肌酶学变化患者出现T3、游离甲状腺素减低。结论长期口服吡格列酮可能会导致甲状腺功能变异和心肌酶谱的变化,应注意监测甲状腺功能。  相似文献   

6.
N-Hydroxyamidines (amidoximes) can act as pro-drugs of amidines (e.g. ximelagatran, a novel direct thrombin inhibitor). This known pro-drug principle is based on the N-reduction of an oral bioavailable amidoxime to its active form. Previous study of the metabolism of the model substrate benzamidoxime by pig hepatocytes demonstrated the formation of benzamidoxime-O-glucuronide in addition to the well-established N-reduction. The objective of the present work was to investigate the glucuronidation of benzamidoxime by using cultivated cryopreserved human hepatocytes. Furthermore, the involvement of human UDP-glucuronosyltransferases (UGTs) was examined by incubating benzamidoxime in the presence of eight human hepatic recombinant UGT enzymes. Metabolites were analysed by liquid chromatography/mass spectrometry using electrospray ionization and compared with authentic synthetic compounds. For the first time, the O-glucuronidation of benzamidoxime was demonstrated in cultures of human hepatocytes. UGT1A9 is the most efficient enzyme conjugating benzamidoxime, whereas the conversion activities of UGT1A1 and UGT1A3 were 60-fold lower. Human hepatocytes form two non-mutagenic compounds: benzamidine, as the predominating metabolite, and benzamidoxime-O-glucuronide to a lesser extent. N-oxidation of benzamidine was not detected.  相似文献   

7.
Uridinediphosphoglucuronosyl transferases (UGTs) are a group of membrane bound proteins which catalyze the transfer of glucuronic acid from UDP-glucuronic acid to a wide variety of xenobiotics and drug molecules enabling them to be eliminated. The major UGT isoforms found in the rat are 1A1, 1A6, 2B1 and 2B12. Conventional methods for the assay of glucuronides (GLs) include TLC, extraction and colorimetry or quantification of the aglycone, liberated after hydrolyzing the GL with beta-glucuronidase. However these techniques cannot distinguish between isomeric GLs or GLs of multiple acceptor site substrates. Therefore the purpose of this study was to develop simple and sensitive HPLC methods for the direct and simultaneous analysis of the GL(s) and their aglycones without the drawbacks of the conventional methods. The three classical substrates we chose were 4-methylumbelliferone (4MU), testosterone (TES) and 8-hydroxyquinoline (8HOQ) representing UGT isoforms 1A6, 2B1 and 2B12 of the rat family, respectively. Here we report the validated HPLC conditions, for the detection and separation of 4-methylumbelliferone glucuronide (4MUG), testosterone glucuronide (TESG) and 8-hydroxyquinoline glucuronide (8HOQG) and their aglycones in incubation media containing male Sprague-Dawley rat liver and intestinal microsomal preparations. The separations were achieved on a Zorbax SB-CN column (150 x 4.6 mm, 5 micron). The analysis time for the separation of TES, 8HOQ and 4MU and their glucuronides were 17, 12 and 30 min, respectively. The methods showed excellent linearity (r2 > 0.99) over the concentration ranges tested (0.25-5.0 nmoles of TESG; 0.125-18.75 nmoles of 8HOQG and 0.125-12.5 nmoles of 4MUG), good precision and accuracy (RSD<2.5%). Inter-day variability studies (n = 3) showed no significant difference between the regression lines obtained on the three days. Recoveries were good ( > 90%) at all three points (low, mid-point, high) of the standard curve. The limits of detection were 0.125, 0.1 and 0.1 nmole for TESG, 8HOQG and 4MUG. respectively. The above methods were used to estimate kinetic parameters such as Vmax and Km for the GLs of the three substrates in both liver and intestinal tissue preparations and the values were comparable with previously reported results. UGT2B1 was found primarily in the liver while UGTs 1A6 and 2B12 were present in comparable amounts in both tissues.  相似文献   

8.
Hepatic sulphate conjugation of triiodothyronine (T3)   总被引:1,自引:0,他引:1  
  相似文献   

9.
目的:探讨血清游离三碘甲状腺原氨酸( FT3)、游离甲状腺素( FT4)、血沉( ESR )、超敏C反应蛋白( hs-CRP)在评价肺结核患者治疗效果中的临床应用价值,为肺结核的临床治疗提供依据。方法选择2012年1月-2013年5月我院收治的肺结核患者230例(分为痰菌阳性140例,阴性90例),分析抗结核治疗前后的FT3、FT4、ESR、hs-CRP变化。结果治疗前菌阳组与菌阴组FT3、FT4、ESR、hs-CRP比较,差异均无统计学意义( P>0.05);治疗后菌阳组中好转患者的FT3、FT4、hs-CRP值高于治疗前水平,差异有统计学意义(P<0.05),未好转患者FT3、FT4、ESR、hs-CRP水平治疗前后无统计学差异(P>0.05),菌阴组治疗前后FT3、FT4、ESR、 hs-CRP值差异均无统计学意义(P>0.05)。结论动态观察血清FT3、FT4、hs-CRP更能反映结核病患者尤其是痰菌阳性患者的治疗效果。  相似文献   

10.
1.?Bisphenol-A is a ubiquitous environmental contaminant that is primarily metabolized by glucuronidation and associated with various human diseases including breast cancer. Here we identified UDP-glucuronosyltransferases (UGTs) and genetic polymorphisms responsible for interindividual variability in bisphenol-A glucuronidation in human liver and breast.

2.?Hepatic UGTs showing the highest bisphenol-A glucuronidation activity included UGT2B15 and UGT1A9. Relative activity factor normalization indicated that UGT2B15 contributes?>80% of activity at bisphenol-A concentrations under 5?μM, while UGT1A9 contributes up to 50% of activity at higher concentrations.

3.?Bisphenol-A glucuronidation by liver microsomes (46 donors) ranged from 0.25 to 4.3 nmoles/min/mg protein. Two-fold higher glucuronidation (p?=?0.018) was observed in UGT1A9 *22/*22 livers compared with *1/*1 and *1/*22 livers. However, no associations were observed for UGT2B15*2 or UGT1A1*28 genotypes.

4.?Bisphenol-A glucuronidation by breast microsomes (15 donors) ranged from <0.2 to 56 fmoles/min/mg protein. Breast mRNA expression of UGTs capable of glucuronidating bisphenol-A was highest for UGT1A1, followed by UGT2B4, UGT1A9, UGT1A10, UGT2B7 and UGT2B15. Bisphenol-A glucuronidation was over 10-fold lower in breast tissues with the UGT1A1*28 allele compared with tissues without this allele (p?=?0.006).

5.?UGT2B15 and UGT1A9 contribute to glucuronidation variability in liver, while UGT1A1 is important in breast.  相似文献   

11.
  1. Metabolic disposition of drugs and other xenobiotics includes glucuronidation reactions that are catalyzed by the uridine diphosphate glucuronosyltransferases (UGTs). The most common glucuronidation reactions are O- and N-glucuronidation and in this review, we discuss both, while the emphasis is on N-glucuronidation.

  2. Interspecies difference in glucuronidation is another central issue in this review due to its importance in drug development. Accordingly, the available data on glucuronidation in different animals comes mainly from the species that are used in preclinical studies to assess the safety of drugs under development.

  3. Both O- and N-glucuronidation reactions are chemically diverse. Different O-glucuronidation reactions are described and discussed, and many drugs that undergo such reactions are indicated. The compounds that undergo N-glucuronidation include primary aromatic amines, hydroxylamines, amides, tertiary aliphatic amines, and aromatic N-heterocycles.

  4. The interspecies variability in N-glucuronidation is particularly high, above all when it comes to aliphatic tertiary amines and aromatic N-heterocycles.

  5. The N-glucuronidation rates in humans are typically much higher than in animals, largely due to the activity of two enzymes, the extensively studied UGT1A4, and the more recently identified as a main player in N-glucuronidation, UGT2B10. We discuss both enzymes and review the findings that revealed the role of UGT2B10 in N-glucuronidation.

  相似文献   

12.

BACKGROUND AND PURPOSE

Fenretinide (4-HPR) is a retinoic acid analogue, currently used in clinical trials in oncology. Metabolism of 4-HPR is of particular interest due to production of the active metabolite 4′-oxo 4-HPR and the clinical challenge of obtaining consistent 4-HPR plasma concentrations in patients. Here, we assessed the enzymes involved in various 4-HPR metabolic pathways.

EXPERIMENTAL APPROACH

Enzymes involved in 4-HPR metabolism were characterized using human liver microsomes (HLM), supersomes over-expressing individual human cytochrome P450s (CYPs), uridine 5′-diphospho-glucoronosyl transferases (UGTs) and CYP2C8 variants expressed in Escherichia coli. Samples were analysed by high-performance liquid chromatography and liquid chromatography/mass spectrometry assays and kinetic parameters for metabolite formation determined. Incubations were also carried out with inhibitors of CYPs and methylation enzymes.

KEY RESULTS

HLM were found to predominantly produce 4′-oxo 4-HPR, with an additional polar metabolite, 4′-hydroxy 4-HPR (4′-OH 4-HPR), produced by individual CYPs. CYPs 2C8, 3A4 and 3A5 were found to metabolize 4-HPR, with metabolite formation prevented by inhibitors of CYP3A4 and CYP2C8. Differences in metabolism to 4′-OH 4-HPR were observed with 2C8 variants, CYP2C8*4 exhibited a significantly lower Vmax value compared with *1. Conversely, a significantly higher Vmax value for CYP2C8*4 versus *1 was observed in terms of 4′-oxo formation. In terms of 4-HPR glucuronidation, UGTs 1A1, 1A3 and 1A6 produced the 4-HPR glucuronide metabolite.

CONCLUSIONS AND IMPLICATIONS

The enzymes involved in 4-HPR metabolism have been characterized. The CYP2C8 isoform was found to have a significant effect on oxidative metabolism and may be of clinical relevance.  相似文献   

13.
The current study is an attempt to elucidate the link between glutathione (GSH) as a major endogenous antioxidant and the thyroid hormone levels. Rats were treated with a single intraperitoneal (IP) dose of either ZnCl2 (5 mg/kg) or allyl alcohol (AIAI) (1.5 mmol/kg), which acts as a GSH-depleting agent. ZnCl2 and AIAI were administered either alone (Zn- and AlAl-treated groups) or in combination (AIAI + Zn-treated group). Blood and liver samples were collected 5 hours post treatment in all groups. Zinc was used because of its potential intracellular regulatory effect as a calcium antagonist. The data indicate a decrease in the serum levels of triiodothyronine (T3) and thyroxin (T4), the T3/T4 ratio, and serum and liver total protein in AlAl-treated rats. Increases in the serum levels of aminotransferases, hepatic calcium, and lipid peroxidation products were observed. The decrease in T3 and the T3/T4 ratio indicates a reduced capacity of the microsomes to convert T4 into T3. Rats treated with AlAl + Zn had replenished hepatic GSH and showed a marked decrease in the serum levels of aminotransferases and in the liver calcium contents and lipid peroxidation products compared to AlAl-treated rats. In contrast, zinc treatment failed to normalize the serum levels of total protein, T3 and T4, and the T3/T4 ratio in the same rats. Rat treated with ZnCI2 alone tended to have a lower serum protein level that was accompanied with a significant decrease in both serum T3 and the T3/T4 ratio. The effect of zinc in increasing capillary permeability with the probable leakage of some serum proteins including the thyroid-binding proteins could possibly be the reason behind this finding. Possible covalent binding of AIAI metabolites to some cellular proteins may explain the persistence of reduced liver protein levels in zinc-protected rats.  相似文献   

14.
The stereo- and regioselective glucuronidation of 10 Delta(4)-3-keto monohydroxylated androgens and pregnanes was investigated to identify UDP-glucuronosyltransferase (UGT) enzyme-selective substrates. Kinetic studies were performed using human liver microsomes (HLMs) and a panel of 12 recombinant human UGTs as the enzyme sources. Five of the steroids, which were hydroxylated in the 6beta-, 7alpha-, 11beta- or 17alpha-positions, were not glucuronidated by HLMs. Of the remaining compounds, comparative kinetic and inhibition studies indicated that 6alpha- and 21-hydroxyprogesterone (OHP) were glucuronidated selectively by human liver microsomal UGT2B7. 6alpha-OHP glucuronidation by HLMs and UGT2B7 followed Michaelis-Menten kinetics, whereas 21-OHP glucuronidation by these enzyme sources exhibited positive cooperativity. UGT2B7 was also identified as the enzyme responsible for the high-affinity component of human liver microsomal 11alpha-OHP glucuronidation. In contrast, UGT2B15 and UGT2B17 were the major forms involved in human liver microsomal testosterone 17beta-glucuronidation and the high-affinity component of 16alpha-OHP glucuronidation. Activity of UGT1A subfamily enzymes toward the hepatically glucuronidated substrates was generally low, although UGT1A4 and UGT1A9 contribute to the low-affinity components of microsomal 16alpha- and 11alpha-OHP glucuronidation, respectively. Interestingly, UGT1A10, which is expressed only in the gastrointestinal tract, exhibited activity toward most of the glucuronidated substrates. The results indicate that 6alpha- and 21-OHP may be used as selective "probes" for human liver microsomal UGT2B7 activity and, taken together, provide insights into the regio- and stereoselectivity of hydroxysteroid glucuronidation by human UGTs.  相似文献   

15.
It has been postulated that inducers of UDP-glucuronosyltransferase (UGT) decrease circulating thyroid hormone concentrations by increasing their biliary excretion. The inducers pregnenolone-16 alpha-carbonitrile (PCN), 3-methylcholanthrene (3MC), and Aroclor 1254 (PCB) are each effective at reducing serum thyroxine concentrations. However, only PCN treatment produces a marked increase in serum levels of thyroid-stimulating hormone (TSH), whereas 3MC and PCB cause little to no increase in TSH. Excessive TSH elevation is considered the primary stimulus for thyroid tumor development in rats, yet the mechanism by which enzyme induction leads to TSH elevation is not fully understood. Whereas PCN, 3MC, and PCB all increase microsomal UGT activity toward T(4), only PCN causes an increase in T(3)-UGT activity in vitro. The purpose of this study was to determine whether PCN, which increases serum TSH, causes an increase in the glucuronidation and biliary excretion of T(3) in vivo. Male rats were fed control diet or diet containing PCN (1000 ppm), 3MC (250 ppm), or PCB (100 ppm) for 7 days. Animals were then given [(125)I]-T(3), i.v., and bile was collected for 2 h. Radiolabeled metabolites in bile were analyzed by reverse-phase HPLC with gamma-detection. The biliary excretion of total radioactivity was increased up to 75% by PCN, but not by 3MC or PCB. Of the T(3) excreted into bile, approximately 75% was recovered as T(3)-glucuronide, with remaining amounts represented as T(3)-sulfate, T(2)-sulfate, T(3), and T(2). Biliary excretion of T(3)-glucuronide was increased up to 66% by PCN, while neither 3MC nor PCB altered T(3)-glucuronide excretion. These findings indicate that PCN increases the glucuronidation and biliary excretion of T(3) in vivo, and suggest that enhanced elimination of T(3) may be the mechanism responsible for the increases in serum TSH caused by PCN.  相似文献   

16.
The pathological mutation Y486D was previously shown to reduce the activities of the UDP-glucuronosyltransferases (UGTs) 1A1 and 1A6 by about 88% and 99%, respectively. Surprisingly, the corresponding mutation in UGT1A9 (Y483D) doubled the Vmax of scopoletin glucuronidation, whereas the entacapone glucuronidation rate was decreased by about 50%. Due to the primary structure identity of the C-terminal half of all the human UGTs of the 1A subfamily, the sharp differences between them in the effect of a mutation deep inside the C-terminal half suggested that there are isoform-specific interactions between the variable N- and the conserved C-terminal halves. In dimeric enzymes, like the UGTs, such interactions might either occur within the same polypeptide, or between opposite monomers. The latter implies functional monomer-monomer interactions, and this was investigated using hetero-dimeric UGTs. Insect cells were co-infected with mixtures containing different combinations of recombinant baculoviruses encoding either UGT1A4 or 1A9Sol. The UGT1A4 was selected because it glucuronidates neither entacapone nor scopoletin at significant rates. The active enzyme in these hetero-dimers was 1A9Sol, a truncation mutant of UGT1A9 that exhibited a very low ratio of entacapone to scopoletin glucuronidation rates. Interestingly, the ratio of entacapone to scopoletin glucuronidation rates in the co-infected cells was dependent on, and markedly increased with, the probability that 1A9Sol forms hetero-dimers with UGT1A4. In addition, the apparent Km for entacapone in the hetero-dimers was much lower than in 1A9Sol, and resembled the corresponding value in full-length UGT1A9. The results, thus, revealed important monomer-monomer interactions within the UGTs.  相似文献   

17.
Microsomal enzyme inducers that increase UDP-glucuronosyltransferase (UDP-GT) activity are suspected to affect the thyroid gland by increasing the glucuronidation of T(4), which reduces serum thyroxine (T(4)). In response to reduced serum T(4), serum thyroid-stimulating hormone (TSH) increases. However, not all microsomal enzyme inducers that reduce serum T(4) produce an increase in serum TSH. We have shown that serum TSH is increased the most in rats treated with the microsomal enzyme inducers phenobarbital (PB) or pregnenolone-16alpha-carbonitrile (PCN), whereas TSH is affected less in rats treated with 3-methylcholanthrene (3MC) and Aroclor 1254 (PCB). It is unclear why serum TSH is differentially affected by various microsomal enzyme inducers. We propose that the glucuronidation of T(3) might be the reason serum TSH is increased by some microsomal enzyme inducers but not by others. Male Sprague-Dawley rats were fed either a basal diet or a diet containing PB (at 300, 600, 1200, or 2400 ppm), PCN (at 200, 400, 800, or 1600 ppm), 3MC (at 50, 100, 200, or 400 ppm), or PCB (at 25, 50, 100, or 200 ppm) for 7 days; and T(4) and T(3) UDP-GT activities were then determined. T(4) UDP-GT activity was increased in rats treated with PB (120%), PCN (250 to 400%), 3MC (400 to 600%), or PCB (300 to 430%). In contrast, T(3) UDP-GT activity was increased in rats treated with PB (90%) or PCN (120 to 200%), whereas 3MC and PCB treatments did not have an appreciable effect. In conclusion, differential effects on T(3) glucuronosyltransferase activity were found in rats treated with microsomal enzyme inducers.  相似文献   

18.
Selective inhibition of the mouse brain Mn-SOD by methylmercury   总被引:3,自引:0,他引:3  
Changes in mRNA levels, protein contents and enzyme activities for brain Cu,Zn- and Mn-SOD by methylmercury chloride (MMC) administration, were examined, over a period of 12 days in ICR male mice. After subcutaneous administration of MMC (10 mg/kg) to mice, brain mercury content reached a maximum at 2 days and remained at that level for at least 5 days. MMC exposure resulted in a time-dependent decrease in the Mn-SOD activity: the enzyme activity at 5 days after exposure to MMC was about 60% of control level whereas this exposure was without effect on the Cu,Zn-SOD activity, indicating differential sensitivity of SOD isozymes to the metal. However, levels of mRNA and protein synthesis for Mn-SOD were unaffected by MMC administration. The direct effect of MMC on the both SOD activities were further examined with purified enzyme preparations. After each SOD isozyme (10 U) was incubated with 0.2 mM MMC for 24 h at pH 7.8, the enzyme activities for Cu,Zn- and Mn-SOD were 90% and 37% of control, respectively. Incubations at a ratio of SOD to MMC (1 : 600) for 24 h resulted in a substantial decrease in the enzyme activity of the Mn form; this isozyme-selective inactivation was noted at alkaline pH. A combination of isoelectric focusing-agarose gel electrophoresis (IEF-AGE) and synchrotron radiation X-ray fluorescence (SR-XRF) analysis revealed that Mn-SOD rather than Cu,Zn-SOD underwent modification. Furthermore, a decrease in native form of Mn-SOD protein after MMC exposure was confirmed by gel filtration chromatography. These results indicate that Mn-SOD, but not Cu,Zn-SOD, is susceptible to modification by MMC and the resulting alteration in structure appears to cause a loss of enzyme activities.  相似文献   

19.
20.
Parabens (alkyl esters of 4-hydroxybenzoic acid) are widely used as preservatives in drugs, cosmetic products, and foodstuffs. Safety concerns have recently increased due to the potential health risks associated to exposure to large amounts of these substances. Biotransformation of parabens mainly includes hydrolysis of the ester bond and glucuronidation reactions. The hydrolysis and glucuronidation of a series of six parabens differing by the nature of the alkyl group were investigated in human liver microsomes and plasma, and the major human UDP-glucuronosyltransferase (UGT) isoforms involved in the reaction were identified. Methyl- and ethylparaben were stable in human plasma, with 95% of the initial concentration remaining after 24 h. On the other hand, propyl-, butyl- and benzylparaben concentrations decreased by 50% under similar conditions. In contrast, rapid hydrolysis was measured with human liver microsomes depending on the alkyl chain length, with t(1/2) varying from 22 min for methylparaben to 87 min for butylparaben. All parabens were actively glucuronidated by liver microsomes, in comparison to 4-hydroxybenzoic acid. They were mainly substrates of human recombinant UGT1A1, UGT1A8, UGT1A9, UGT2B7, UGT2B15 and UGT2B17. In conclusion, the parabens were readily metabolized in human liver through esterase hydrolysis and glucuronidation by several UGT isoforms. These results suggest that these parabens do not accumulate in human tissue.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号