首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
5-hydroxytryptamine2A receptor inverse agonists as antipsychotics   总被引:4,自引:0,他引:4  
We have used a cell-based functional assay to define the pharmacological profiles of a wide range of central nervous system active compounds as agonists, competitive antagonists, and inverse agonists at almost all known monoaminergic G-protein-coupled receptor (GPCR) subtypes. Detailed profiling of 40 antipsychotics confirmed that as expected, most of these agents are potent competitive antagonists of the dopamine D2 receptor. Surprisingly, this analysis also revealed that most are potent and fully efficacious 5-hydroxytryptamine (5-HT)2A receptor inverse agonists. No other molecular property was shared as universally by this class of compounds. Furthermore, comparisons of receptor potencies revealed that antipsychotics with the highest extrapyramidal side effects (EPS) liability are significantly more potent at D2 receptors, the EPS-sparing atypical agents had relatively higher potencies at 5-HT2A receptors, while three were significantly more potent at 5-HT2A receptors. Functional high-throughput screening of a diverse chemical library identified 530 ligands with inverse agonist activity at 5-HT2A receptors, including several series of compounds related to known antipsychotics, as well as a number of novel chemistries. An analog of one of the novel chemical series, AC-90179, was pharmacologically profiled against the remaining monoaminergic GPCRs and found to be a highly selective 5-HT2A receptor inverse agonist. The behavioral pharmacology of AC-90179 is characteristic of an atypical antipsychotic agent.  相似文献   

2.
G protein-coupled receptors (GPCRs) were initially regarded to adopt an inactive and an active conformation and to activate a single type of G protein. Studies with recombinant cell systems have led to a more complex picture. First, GPCRs can activate distinct G protein species. Second, GPCR multistate models have been invoked to explain their complex behaviour in the presence of agonists, antagonists and other binding partners. The occurrence of intermediate receptor conformational states during GPCR activation and antagonist binding is suggested by fluorescence measurements and studies with constitutively active receptor mutants and insurmountable antagonists. Different agonists may trigger distinct effector pathways through a single receptor by dictating its preference for certain G proteins (i.e. 'agonist trafficking'). Structural modification and exogenous and endogenous (e.g. other cellular proteins, lipids) allosteric modulators also affect ligand-GPCR interaction and receptor activation. These new developments in GPCR research could lead to the development of more selective therapeutic drugs.  相似文献   

3.
Plasticity in serotonergic transmission in serotonin or 5-hydroxytryptamine (5-HT) receptor mutants was examined by measuring the regulation of extracellular 5-HT levels in the striatum and ventral hippocampus of 5-HT(1A) and 5-HT(1B) receptor knockout mice using in vivo microdialysis. The efficacy of genetic deletion was verified by showing blunted regulation of extracellular 5-HT with selective 5-HT receptor agonists. 5-HT(1A) receptor knockout mice failed to demonstrate reduction of extracellular 5-HT in response to systemic administration of the 5-HT(1A) receptor agonist R-8-hydroxydipropylaminotetralin (R-8-OH-DPAT) and 5-HT(1B) receptor knockout mice failed to demonstrate reduction of extracellular 5-HT in response to systemic administration of the 5-HT(1B) receptor agonist CP 94,253. Plasticity also developed to deletion of the complementary autoreceptor. 5-HT(1A) receptor knockout mice demonstrated a significantly greater response to CP 94,253 in the striatum, but not the ventral hippocampus, suggesting the development of enhanced sensitivity of striatal 5-HT(1B) receptors. In 5-HT(1B) receptor knockout mice, R-8-OH-DPAT evoked a significantly diminished response in the ventral hippocampus, but not the striatum, suggesting the potential desensitization of 5-HT(1A) receptors in the median raphe nucleus. The pattern of regional compensations between somatodendritic and terminal autoreceptors was confirmed by pharmacological challenges using the selective serotonin reuptake inhibitor fluoxetine combined with either a 5-HT(1A) (WAY 100635) or a 5-HT(1B/1D) (GR 127935) receptor antagonist. The regional pattern of compensation may be determined by the preferential role of 5-HT(1A) or 5-HT(1B) receptors in regulating 5-HT release. Taken together, these results demonstrate the development of regional plasticity between complementary somatodendritic and terminal autoreceptors after the genetic deletion of 5-HT(1A) or 5-HT(1B) receptors.  相似文献   

4.
The 5-hydroxytryptamine(7) (5-HT(7)) receptor was originally defined by molecular biology techniques. The 5-HT(7) receptor protein and mRNA are found in brain areas, such as the CA3 subfield of the hippocampus, that are involved in various neuropsychiatric disease states. No functional response has previously been attributed to activation of the 5-HT(7) receptor in any of these brain areas. Calcium spike-induced slow afterhyperpolarizations (sAHP) were recorded from CA3 hippocampal pyramidal cells using intracellular recording techniques in a brain slice preparation maintained in vitro. A concentration-dependent inhibition of the sAHP amplitude was obtained when 5-HT was used as the agonist. To identify whether the 5-HT(7) receptor was one of the receptors mediating the inhibition of the sAHP amplitude, 5-HT agonists and antagonists were tested in the presence of WAY-100635 and GR-113808 to block 5-HT(1A) and 5-HT(4) receptor activation, respectively. The rank order potency of the agonists was 5-carboxyamidotryptamine (5-CT) > 5-HT > 5-methoxytryptamine (5-MeOT). Other agonists with high affinity at 5-HT(2), 5-HT(3), 5-HT(1B), 5-HT(1D), or 5-HT(6) receptors did not produce any response when tested at 10 microM. Ritanserin, mesulergine, and SB-269770 were competitive antagonists of the 5-CT inhibition of sAHP amplitude, with affinity (pA(2)) values of 6.8, 7. 9, and 8.8, respectively. Methiothepin was also an effective antagonist but was insurmountable. Other antagonists with affinity for the 5-HT(2), 5-HT(3), or 5-HT(6) receptor had no effect. Based on the rank order potency of the agonists and antagonists, one of the receptors that mediates the decrease in sAHP amplitude in CA3 hippocampal pyramidal cells was concluded to be the 5-HT(7) receptor.  相似文献   

5.
Recently, several novel approaches to the treatment of migraine have been advanced, including selective 5-hydroxytryptamine (or serotonin) 1B/1D (5-HT(1B/1D)) receptor agonists such as sumatriptan and 5-HT(1F) receptor agonists such as LY344864. Many 5-HT(1B/1D) receptor agonists have been identified based on their ability to produce cerebral vascular contraction, whereas LY344864 was identified as an inhibitor of trigeminal nerve-mediated dural extravasation. In our study, several triptan derivatives were compared with LY344864 for their ability to contract the rabbit saphenous vein, a tissue used in the preclinical identification of sumatriptan-related agonists. Sumatriptan, zolmitriptan, rizatriptan, and naratriptan all contracted the rabbit saphenous vein from baseline tone, whereas LY344864 in concentrations up to 10(-4) M did not contract the rabbit saphenous vein. Furthermore, vascular contractions to sumatriptan were markedly augmented in the presence of prostaglandin F(2alpha) (PGF(2alpha)). However, even in the presence of PGF(2alpha) (3 x 10(-7) M), LY344864 did not contract the rabbit saphenous vein in concentrations well in excess of its 5-HT(1F) receptor affinity (pK(i) = 8.2). Only when concentrations exceeded those likely to activate 5-HT(1B) and 5-HT(1D) receptors (>10(-5) M) did modest contractile responses occur in the presence of PGF(2alpha). Use of these serotonergic agonists revealed a significant correlation between the contractile potency in the rabbit saphenous vein and the affinities of these agonists at 5-HT(1B) and 5-HT(1D) receptors, although contractile agonist potencies were not quantitatively similar to 5-HT(1B) or 5-HT(1D) receptor affinities. In contrast, no significant correlation existed between the contractile potencies of these serotonergic agonists in the rabbit saphenous vein and their affinity at 5-HT(1F) receptors. These data support the contention that activation of 5-HT(1F) receptors will not result in vascular contractile effects.  相似文献   

6.
The 5-hydroxytryptamine (5-HT) receptor mediating endothelium-dependent relaxation of pig coronary arteries was characterized using a variety of 5-HT receptor agonists and antagonists. Unrubbed (with endothelium preserved) rings precontracted by prostaglandin F2 alpha in the presence of ketanserin relaxed in an endothelium-dependent manner to 5-HT, 5-carboxamidotryptamine and 5-methoxytryptamine with about equal potency and efficacy. By comparison, bufotenine, 3-(dimethylamino)ethyl-N-methyl-1H-indole-5-methane sulfonamide, (-)-alpha-methyl-5-HT,N,N-dipropyl-5-carboxamidotryptamine and 5-methoxy-3-(1,2,3,6-tetrahydro-4-pyridinyl)-1H indole were half-efficient and other drugs [in particular the 5-HT1A receptor agonist 8-hydroxy-2-(di-n-propylamino)tetralin] were inactive as agonists up to 0.1 mM. The effect of 5-carboxamidotryptamine was antagonized in an apparently competitive manner by 15 drugs. Among the most potent antagonists (mean pKB value) were the nonselective 5-HT receptor antagonists, methiothepin (7.30) and metergoline (6.86), the 5-HT1A/5-HT1D receptor ligand, 1-[2-(4-amino-phenyl)ethyl]-4-(3-trifluoromethylphenyl)-piperazine (7.02), the 5-HT1A/5-HT1B/5-HT1D receptor ligand, 7-trifluoromethyl-4-(4-methyl-1-piperazinyl)-pyrrolo[1,2,-a]quinoxaline 1 (6.73) and yohimbine (6.37). Selective ligands for 5-HT1A receptors were either inactive [8-hydroxy-2-(di-n-propylamino)tetralin hydrobromide] or poorly active (spiperone, 4.44). Beta-adrenoceptor antagonists with affinity for 5-HT1A and 5-HT1B receptors weakly antagonized the effect of 5-carboxamidotryptamine (pKB values less than or equal to 5.32), as did the 5-HT1c/5-HT2 receptor antagonist, mesulergine (5.30) and the yohimbine isomer, corynanthine (4.85). Methysergide was clearly a noncompetitive antagonist.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
Although serotonergic receptor agonists are known to modulate release of central serotonin, less is known about the ability of serotonin to alter neurotransmission in peripheral adrenergic nerves. The present study used field stimulation (40V, 0.7 ms duration, 1-16 Hz) to contract the rabbit saphenous vein, an effect that was abolished in the presence of tetrodotoxin and prazosin (10(-6) M), consistent with stimulation of neuronal norepinephrine release. Furthermore, the field-stimulated contraction was not altered by the 5-hydroxytryptamine (5-HT)(1B/1D) receptor antagonist GR127935 (10(-6) M), but was markedly inhibited by the 5-HT(1A) receptor antagonist WAY 100635 (10(-6) M). GR127935 (10(-8) M) inhibited contraction to sumatriptan, documenting that the concentration used was sufficient to block 5-HT(1B/1D-like) vascular receptors in this tissue. Likewise, WAY 100635 (10(-6) M) inhibited contraction to the 5-HT(1A) receptor agonists (+/-)-8-hydroxydipropylaminotetralin hydrobromide (8-OH-DPAT) and LY238729, without altering contraction to norepinephrine or sumatriptan. Furthermore, both 8-OH-DPAT and LY228729 enhanced the contractile response to field stimulation (1. 0-8.0 Hz) and activated norepinephrine release in the absence of field stimulation. Contractile responses of the rabbit saphenous vein to both 5-HT(1A) receptor agonists were markedly inhibited by prazosin and dextrally shifted by WAY 100635, supporting the idea that the 5-HT(1A) receptor agonists were activating presynaptic 5-HT(1A) receptors to enhance norepinephrine release even in the absence of field stimulation. Thus, in the rabbit saphenous vein, 5-HT(1A) but not 5-HT(1B/1D) receptors enhanced neurotransmitter release from adrenergic nerves. These observations suggested that serotonergic nerves or other cell types in the saphenous vein are activated by field stimulation to release serotonin, which in turn activates presynaptic 5-HT(1A) receptors on adrenergic neurons to effect norepinephrine release. To support this hypothesis, serotonin levels were measured in the saphenous vein and were increased after pargyline pretreatment (30 mg/kg s.c.), decreased after dl-p-chlorophenylalanine methyl ester pretreatment (300 mg/kg s.c.), and unaltered after pretreatment with 6-hydroxydopamine hydrobromide (100 mg/kg s.c.). Thus, we provide strong evidence for the 1) presence of serotonin and its direct synthesis independent of adrenergic nerves and 2) a novel excitatory effect of presynaptic 5-HT(1A) receptor activation on adrenergic nerves in a peripheral blood vessel.  相似文献   

8.
The ability of selective serotonin (5-HT) receptor agonists to reduce the extracellular concentration of 5-HT was examined in the striatum of awake, unrestrained mice by in vivo microdialysis. Systemic administration of either 8-OH-PIPAT (R-(+)-trans-8-hydroxy-2-[N-n-propyl-N-(3'-iodo-2'-propenyl)] aminotetralin), a novel 5-HT(1A) receptor agonist, or CP 94,253, a selective 5-HT(1B) receptor agonist, resulted in significant dose-related reductions of striatal 5-HT. The effect of 8-OH-PIPAT (1.0 mg/kg) was blocked by pretreatment with WAY 100635 (0.1 mg/kg), a selective 5-HT(1A) receptor antagonist, but it was not blocked by pretreatment with GR 127935 (0.056 mg/kg), a selective 5-HT(1B/1D) receptor antagonist. The effect of CP 94,253 (1.0 mg/kg) was blocked by pretreatment with GR 127935 (0.056 mg/kg) but was not blocked by pretreatment with WAY 100635 (0.1 mg/kg). Neither WAY 100635 nor GR 127935 altered extracellular 5-HT levels at the doses that were able to completely block the effects of either 8-OH-PIPAT or CP 94,253. The present findings suggest that, on systemic administration, both 8-OH-PIPAT and CP 94,253 are potent and selective agonists at the somatodendritic 5-HT(1A) autoreceptor and terminal 5-HT(1B/1D) autoreceptor, respectively, and are each able to cause decreases in extracellular levels of 5-HT in the mouse striatum by activating a distinct set of receptors.  相似文献   

9.
It is well established that repeated administration of both 5-hydroxytryptamine(2) (5-HT(2)) receptor agonists and antagonists decreases the density of 5-HT(2A) and 5-HT(2C) receptors. However, the regulation of these two receptors has not been studied in the same tissue. Therefore, we examined the effects of repeated daily injections of the 5-HT(2) receptor agonists (+/-)-2,5-dimethoxy-4-iodoamphetamine (DOI) and D-lysergic acid diethylamide (LSD) and the antagonists d-2-bromolysergic acid diethylamide hydrogen tartrate (BOL) and alpha-phenyl-2-(2-phenylethyl)-4-piperidinemethanol (MDL 11,939) on rabbit cortical 5-HT(2A) and 5-HT(2C) receptors. Repeated administration of DOI, LSD, or BOL decreased cortical 5-HT(2A) receptor density but had no effect on the density of cortical 5-HT(2C) receptors. Repeated administration of the selective 5-HT(2A) receptor antagonist MDL 11,939 significantly increased 5-HT(2A) receptor density. This unexpected outcome also occurred without any change in cortical 5-HT(2C) receptor density. The down-regulation of 5-HT(2A) receptors produced by chronic administration of BOL was associated with a decrease in DOI-elicited head bobs, whereas 5-HT(2A) receptor up-regulation produced by MDL 11,939 was associated with an increase in DOI-elicited head bobs compared with controls. These studies demonstrate that 5-HT(2A) receptor antagonists can both down- and up-regulate the density of cortical 5-HT(2A) receptors and these changes in receptor density have functional consequences for 5-HT(2A) receptor-mediated behaviors. Furthermore, because DOI, LSD, and BOL have approximately equal affinities for the 5-HT(2A) and 5-HT(2C) receptors, these results suggest that different mechanisms regulate 5-HT(2A) and 5-HT(2C) receptor density, in that chronic occupation of 5-HT(2C) receptors does not modulate their density in rabbit frontal cortex.  相似文献   

10.
Coactivation of purinergic (P 2Y) receptors reduces agonist efficacy at serotonin 1B (5-HT 1B), but not 5-HT 1A receptors. Herein, we report that pretreatment for 5 min with the P 2Y receptor agonist ATP reduced agonist responsiveness at the 5-HT 1A, but not at the 5-HT 1B, receptor. The effect of ATP pretreatment on the 5-HT 1A receptor response rapidly reversed within a 10 min time frame between P 2Y receptor and 5-HT 1A receptor activation. ATP pretreatment effects on 5-HT 1A agonist responsiveness were blocked by the protein kinase inhibitors staurosporine and bisindolylmaleimide, suggesting that the ATP-mediated temporal regulation involves activation of protein kinase C (PKC). Moreover, the temporal effect of ATP was blocked by incubation with 1% ethanol, suggesting that consequences of phospholipase D (PLD) activation play a role. ATP pretreatment blocked the inhibitory effect produced by 5-HT 2C receptor activation on the 5-HT 1A, but not the 5-HT 1B, receptor response, suggesting that the 5-HT 1A receptor itself was the target for PLD/PKC action. Finally, ethanol did not block the reduction in responsiveness of the 5-HT 1A receptor system produced by activation of PKC with phorbol ester treatment, suggesting that PKC activation lies downstream of PLD. Taken together, these data suggest that activation of P 2Y receptors can reduce responsiveness of the 5-HT 1A receptor system via a PLD/PKC-dependent mechanism that is highly dependent upon the temporal pattern of receptor activation. Moreover, this work underscores the importance of time as a variable in receptor signaling cross talk and serves to further illustrate differences between the 5-HT 1A and 5-HT 1B receptor systems.  相似文献   

11.
Recent studies indicate that there are multiple subtypes of the 5-hydroxytryptamine 1 (5-HT1) receptor. Previously, we provided evidence consistent with the finding that multiple states of the 5-HT1 receptor are present when the binding of [3H]-5-HT is measured in the absence of guanine nucleotides. When 1 mM GTP was present in the [3H]-5-HT receptor binding assay, the high affinity state was eliminated. As the presence of multiple states of a receptor complicates the interpretation of the inhibition of [3H]-5-HT binding caused by serotonin agonists and antagonists, we examined the ability of a series of these drugs to compete for 15 nM [3H]-5-HT binding in the presence of 1 mM GTP in the rat frontal cortex. Eight agonists and five antagonists showed selectivity for the two subtypes of the 5-HT1 receptor, whereas three agonists and four antagonists showed the same affinity for these two receptors subtypes. Most of the compounds examined exhibited only a modest 10- to 30-fold degree of selectivity. However, 1-(m-trifluoromethylphenyl) piperazine and 5-methoxy-3-(1,2,3,6-tetrahydro-4-pyridinyl)indole were about 65-fold selective and spiperone was over 100-fold selective for one of the receptor subtypes. The subtype specificity of the selective compounds was determined using either spiperone, a selective 5-HT 1A compound, or 1-(m-trifluoromethylphenyl)piperazine, a selective 5-HT 1B compound, to preferentially inhibit one of the receptors.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
Ligand dependency of 5-hydroxytryptamine 2C receptor internalization   总被引:5,自引:0,他引:5  
Agonist-induced internalization of G protein-coupled receptors (GPCRs) is a well characterized phenomenon believed to contribute to receptor desensitization. The 5-hydroxytryptamine (5-HT)2C subtype of serotonin receptor is a GPCR that we have shown to internalize upon agonist incubation. In this study, we have examined the effects of 5-HT2C receptor agonists serotonin, Ro 60-0175 [(S)-2-(6-chloro-5-fluoroindol-1-yl)-1-methylethylamine], and WAY-161503 [(4aR)-8,9-dichloro-2,3,4,4a-tetrahydro-1H-pyrazino[1,2-a]quinoxalin-5(6H)-one]; partial agonists mCPP [1-(m-chlorophenyl)piperazine] and DOI [(+)-1-(2,5-dimethoxy-4-iodophenyl)-2-amino-propane]; inverse agonists SB-206553 [N-3-pyridinyl-3,5-dihydro-5-methylbenzo(1,2-b:4,5-b')dipyrrole-1(2H)carboxamide] and mianserin; and neutral antagonists SB-242084 [6-chloro-5-methyl-1-[[2-[(2-methyl-3-pyridyl)oxy]-5-pyridyl]carbamoyl]-indoline] and 5-methoxygramine on the internalization of a C-terminal green fluorescent protein (GFP)-tagged 5-HT2C receptor (VSV isoform) expressed in transiently transfected human embryonic kidney cells. We detected internalization with an automated, cell-based fluorescence-imaging system (Arrayscan) and monitored function with intracellular Ca2+ measurements (flourometric imaging plate reader). The 5-HT2C-GFP construct exhibited appropriate pharmacology, and we observed that although all three agonists resulted in similar magnitudes of dose-dependent internalization, the partial agonists resulted in approximately 50% less internalization, and the inverse agonists and neutral antagonists failed to induce internalization. These results were confirmed by confocal microscopy. They demonstrate that the 5-HT2C receptor is internalized by incubation with agonists and partial agonists but not with inverse agonists or neutral antagonists.  相似文献   

13.
5-Hydroxytryptamine (5-HT) stimulates the accumulation of inositol-trisphosphate in WRK1 cells, a cell line originating from a rat mammary tumor. 5-HT acts via a single receptor type for which it has an affinity constant estimated to be 1.27 microM. A series of agonists known to act at 5-HT2 receptors are partial agonists in this system and have a rank order of relative intrinsic efficacies corresponding to that seen in other systems possessing 5-HT2 receptors. There is an essentially linear occupancy-response relationship for 5-HT and other agonists indicating the absence of a strong amplification mechanism between receptor activation and inositol phosphate formation. The selective blockade of the 5-HT response by nanomolar concentrations of 5-HT2 selective antagonists but not by drugs acting at other 5-HT receptor subtypes suggest that the receptor in WRK1 cells is of the 5-HT2 type. Additionally, we demonstrate that in WRK1 membranes 5-HT acts via the 5-HT2 receptor to elicit a GTP dependent increase in the production of inositol-bisphosphate and inositol-trisphosphate. These properties of the WRK1 cell line indicate that it is a useful model with which to study the nature of 5-HT receptor coupling to the putative second messenger(s), the inositol phosphates.  相似文献   

14.
The modulation of transmembrane signaling by G protein-coupled receptors (GPCRs) constitutes the single most important therapeutic target in medicine. Drugs acting on GPCRs have traditionally been classified as agonists, partial agonists, or antagonists based on a two-state model of receptor function embodied in the ternary complex model. Over the past decade, however, many lines of investigation have shown that GPCR signaling exhibits greater diversity and "texture" than previously appreciated. Signal diversity arises from numerous factors, among which are the ability of receptors to adopt multiple "active" states with different effector-coupling profiles; the formation of receptor dimers that exhibit unique pharmacology, signaling, and trafficking; the dissociation of receptor "activation" from desensitization and internalization; and the discovery that non-G protein effectors mediate some aspects of GPCR signaling. At the same time, clustering of GPCRs with their downstream effectors in membrane microdomains and interactions between receptors and a plethora of multidomain scaffolding proteins and accessory/chaperone molecules confer signal preorganization, efficiency, and specificity. In this context, the concept of agonist-selective trafficking of receptor signaling, which recognizes that a bound ligand may select between a menu of active receptor conformations and induce only a subset of the possible response profile, presents the opportunity to develop drugs that change the quality as well as the quantity of efficacy. As a more comprehensive understanding of the complexity of GPCR signaling is developed, the rational design of ligands possessing increased specific efficacy and attenuated side effects may become the standard mode of drug development.  相似文献   

15.
GPCR interacting proteins (GIP)   总被引:10,自引:0,他引:10  
G protein-coupled receptors (GPCR) interact not only with heterotrimeric G proteins but also with accessory proteins called GPCR interacting proteins (GIP). These proteins have important functions. They are implicated in GPCR targeting to specific cellular compartments, in their assembling into large functional complexes called "receptosomes," in their trafficking to and from the plasma membrane, and in the fine-tuning of their signaling properties. There are several types of GIPs. Some are transmembrane proteins such as another GPCR (homodimerization and heterodimerization), ionic channels, ionotropic receptors, and single transmembrane proteins. The latter is implicated in the fine-tuning of receptor pharmacology or signaling. Other GIPs are soluble proteins interacting mainly with the "magic" C-terminal tail. Among them, PDZ domain-containing proteins are the most abundant. They generally, but not always, interact with the extreme C-terminal domain of GPCRs. Some GIPs interact with specific sequences of the C-terminal such as the Homer binding sequence (-PPxxFR-), the dopamine receptor interacting protein (DRIP) binding sequence (-FxxxFxxxF-), etc. Finally, only few GIPs have been found thus far to interact with the third intracellular loop of GPCRs. The future will tell us if this situation is only due to technical reasons.  相似文献   

16.
Our goal was to characterize the 5-hydroxytryptamine (5-HT) receptor(s) mediating contraction in the isolated right renal artery, testing the hypothesis that the 5-HT(2A) receptor would be the primary and likely only 5-HT receptor involved in contraction. Contraction of arteries was investigated in isolated tissue baths, and expression of 5-HT receptors was measured using immunohistochemical and Western analyses. Compared with endothelium-denuded rat aorta, a tissue with an established 5-HT(2A) receptor, endothelium-denuded renal artery contracted to 5-HT with a 10-fold greater potency. Surprisingly, the 5-HT(2B) receptor agonist alpha-methyl-5-(2-thienylmethoxy)-1H-indole-3-ethanamine hydrochloride (BW723C86) caused a concentration-dependent contraction that was antagonized by the 5-HT(2B) receptor antagonist 6-methyl-1,2,3,4-tetrahydro-1-[3,4-dimethoxyphenyl) methyl-9H-pyrido[3,4b]indole] hydrochloride (LY272015) and nonselective 5-HT(2) receptor antagonist 6-methyl-1-(1-methylethyl)-ergoline-8b-carboxylic acid 2-hydroxy-1-methylpropyl ester maleate (LY53857). Correlation of -log EC(50) values with binding affinities (pK(i)) indicated that contraction of the renal artery elicited by 13 different agonists was likely consistent with activation of a 5-HT(2A) (r = 0.928) and 5-HT(2B) (r = 0.843) receptor. 5-HT-induced contraction was shifted by the 5-HT(2A) receptor antagonist ketanserin (3 and 10 nM) and the 5-HT(2B) receptor antagonist LY272015 (10 and 50 nM). Higher than expected concentrations of the 5-HT(2A)/5-HT(2B) receptor antagonist LY53857 were needed to antagonize 5-HT-induced contraction and the 5-HT(2B) receptor antagonist 2-amino-4-(4-fluoronaphth-1-yl)-6-isopropylpyrimidine (RS127445) was virtually inactive. Western and immunohistochemical analyses of the renal artery validated the presence of 5-HT(2A) and 5-HT(2B) receptor protein. These results suggest that the renal artery possesses a complex 5-HT receptor population, including ketanserin- and LY272015-sensitive receptors. This unique pharmacology may reflect differences in 5-HT receptor coupling between tissues or heterogeneity in the subtype(s) of 5-HT receptors expressed in the renal artery.  相似文献   

17.
2,5-Dimethoxy-4-substituted phenylisopropylamines and phenethylamines are 5-hydroxytryptamine (serotonin) (5-HT)(2A/2C) agonists. The former are partial to full agonists, whereas the latter are partial to weak agonists. However, most data come from studies analyzing phospholipase C (PLC)-mediated responses, although additional effectors [e.g., phospholipase A(2) (PLA(2))] are associated with these receptors. We compared two homologous series of phenylisopropylamines and phenethylamines measuring both PLA(2) and PLC responses in Chinese hamster ovary-K1 cells expressing human 5-HT(2A) or 5-HT(2C) receptors. In addition, we assayed both groups of compounds as head shake inducers in rats. At the 5-HT(2C) receptor, most compounds were partial agonists for both pathways. Relative efficacy of some phenylisopropylamines was higher for both responses compared with their phenethylamine counterparts, whereas for others, no differences were found. At the 5-HT(2A) receptor, most compounds behaved as partial agonists, but unlike findings at 5-HT(2C) receptors, all phenylisopropylamines were more efficacious than their phenethylamine counterparts. 2,5-Dimethoxyphenylisopropylamine activated only the PLC pathway at both receptor subtypes, 2,5-dimethoxyphenethylamine was selective for PLC at the 5-HT(2C) receptor, and 2,5-dimethoxy-4-nitrophenethylamine was PLA(2)-specific at the 5-HT(2A) receptor. For both receptors, the rank order of efficacy of compounds differed depending upon which response was measured. The phenylisopropylamines were strong head shake inducers, whereas their phenethylamine congeners were not, in agreement with in vitro results and the involvement of 5-HT(2A) receptors in the head shake response. Our results support the concept of functional selectivity and indicate that subtle changes in ligand structure can result in significant differences in the cellular signaling profile.  相似文献   

18.
The purpose of our study was to test the hypothesis that 5-hydroxytryptamine (5-HT)(1A) receptor agonists counteract morphine-induced respiratory depression. Studies were conducted in anesthetized rats, and respiratory activity was monitored with diaphragm electromyography. Morphine was administered i.v. in doses that produce apnea. Once apnea was established, i.v. administration of the 5-HT(1A) receptor agonist drug 8-hydroxy-2-(di-n-propylamino)tetralin (8-OH-DPAT) at 10 or 100 microgram/kg restored normal breathing in each animal (n = 24). This antagonistic effect of 8-OH-DPAT on morphine-induced respiratory depression was observed in both spontaneously breathing and artificially ventilated animals. Results obtained with 8-OH-DPAT were mimicked by buspirone (50 microgram/kg i.v.), another 5-HT(1A) receptor agonist drug. Pretreatment with 4-(2'-methoxyphenyl)-1-[2'[N-(2'-pyridinyl]-p-iodo-benzamido]ethyl]pi perazine, an antagonist of 5-HT(1A) receptors, prevented 8-OH-DPAT from counteracting morphine-induced apnea. These results indicate that activation of central nervous system 5-HT(1A) receptors is an effective way of reversing morphine-induced respiratory depression. Most important, this is the third model of disturbed respiratory function in which drugs that stimulate 5-HT(1A) receptors have been shown to restore breathing to near-normal levels.  相似文献   

19.
Serotonin-1F receptor (5-HT1F) agonists may relieve acute migraine without vasoconstriction. We conducted a review of preclinical and clinical data that assessed the potential link between migraine and 5-HT1F activation. (i) A high correlation exists between the potency of various 5-HT1 receptor agonists in the guinea pig dural plasma protein extravasation assay and their 5-HT1F receptor binding affinity. (ii) 5-HT1F receptors are on the trigeminal system, and may participate in blocking migraine pain transmission through the trigeminal ganglion and nucleus caudalis. (iii) 5-HT1F receptors are located on glutamate-containing neurones and their activation might inhibit glutamate release; glutamate excess may play a role in migraine. (iv) Selective 5-HT1F receptor agonists (LY334370; LY344864) are effective in preclinical migraine models and are non-vasoconstrictive. (v) LY334370 is effective in acute migraine, and does not cause any symptoms/signs of coronary vasoconstriction. Preclinical experiments and clinical observations argue for a role of selective 5-HT1F agonists in migraine.  相似文献   

20.
Several novel antipsychotics, such as aripiprazole, bifeprunox, SSR181507 [(3-exo)-8-benzoyl-N-(((2S)7-chloro-2,3-dihydro-1,4-benzodioxin-1-yl)methyl)-8-azabicyclo(3.2.1)octane-3-methanamine], and SLV313 [1-(2,3-dihydro-benzo[1,4]dioxin-5-yl)-4-[5-(4-fluorophenyl)-pyridin-3-ylmethyl]-piperazine], activate serotonin 5-hydroxytryptamine (5-HT)1A receptors. Such activity is associated with enhanced treatment of negative symptoms and cognitive deficits, which may be mediated by modulation of cerebral dopamine and serotonin levels. We employed microdialysis coupled to high pressure liquid chromatography with electrochemical detection to examine 5-HT1A receptor activation in the modulation of extracellular dopamine in medial prefrontal cortex and serotonin in hippocampus of freely moving rats. The above compounds were compared with drugs that have less interaction with 5-HT1A receptors (clozapine, nemonapride, ziprasidone, olanzapine, risperidone, and haloperidol). Hippocampal 5-HT was decreased by bifeprunox, SSR181507, SLV313, sarizotan, and nemonapride, effects similar to those seen with the 5-HT1A agonist, (+)-8-hydroxy-2-(di-n-propylamino)tetralin [(+)8-OH-DPAT], consistent with activation of 5-HT1A autoreceptors. These decreases were reversed by the selective 5-HT1A antagonist, WAY100635 [N-[2-[4-(2-methoxyphenyl)-1-piperazinyl]ethyl]-N-(2-pyridinyl)cyclohexanecarboxamide]. In contrast, haloperidol, risperidone, clozapine, olanzapine, ziprasidone, and aripiprazole did not significantly modify hippocampal serotonin levels. In medial prefrontal cortex, dopamine levels were increased by SSR181507, SLV313, sarizotan, and (+)8-OH-DPAT. These effects were reversed by WAY100635, indicating mediation by 5-HT1A receptors. In contrast, the increases in dopamine levels induced by clozapine, risperidone, olanzapine, and ziprasidone were not blocked by WAY100635, consistent with predominant influence of other mechanisms in the actions of these drugs. Haloperidol, nemonapride, and the D2 partial agonists, aripiprazole and bifeprunox, did not significantly alter dopamine release. Taken together, these data demonstrate the diverse contribution of 5-HT1A receptor activation to the profile of antipsychotics and suggest that novel drugs selectively targeting D2 and 5-HT1A receptors may present distinctive therapeutic properties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号