首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Following 10 weeks of endurance training and in age-matched sedentary rats, sarcoplasmic reticulum (SR) Ca2+-uptake, Ca2+-release, and Ca2+-stimulated adenosinetriphosphatase (ATPase) activity were examined in homogenates of the plantaris and soleus muscles from rats subjected to moderate-intensity treadmill running to exhaustion. In order to examine the effects of acute exercise and/or training on SR Ca2+-handling capacity, comparisons between exhausted and non-exercised rats and between trained and untrained rats were performed. Our data confirm that Ca2+-sequestration by the SR from fast-twitch muscles is depressed after training. Immediately after exhaustive running, decreases in SR function occurred in both muscles, but were more pronounced in the soleus. In the plantaris, reductions in SR Ca2+-uptake rate and Ca2+-ATPase activity were observed in untrained rats only, while in the soleus they were adversely affected irrespective of training status. Although the average run time to exhaustion varied markedly between untrained and trained animals (untrained: 253.0 min; trained: 559.4 min), no differences existed with regard to the magnitude of decreases in SR function in the soleus after exercise. The mean rate of decline in SR Ca2+-handling capacity during acute exercise, as estimated from the run time and the extent of the decline, was more than twofold higher in untrained than in trained soleus. From the present study, it is unclear whether there exists a causal relationship between muscular fatigue and SR function because the run time to exhaustion was not significantly correlated with any of parameters indicative of SR Ca2+-handling capacity, but suggested that endurance training may be capable of delaying a progression of the deterioration in SR function that occurs during exercise. Electronic Publication  相似文献   

2.
Time-dependent changes in sarcoplasmic reticulum (SR) Ca2+-handling and Na+-K+-ATPase activity, as assessed in vitro, were investigated in the superficial (GS) and deep regions (GD) of rat gastrocnemius muscles undergoing short-term (up to 30 min) electrical stimulation. There was a rapid and progressive loss of force output during the first 5 min of stimulation. For GS, significant depressions (P < 0.05) in SR Ca2+-uptake rate and Ca2+-ATPase activity were observed during only the first 1 min. No further reductions occurred with stimulation time. SR Ca2+-release rate was significantly (P < 0.05) decreased at 3 min. For GD, significant reductions (P < 0.05) in Ca2+-uptake rate, Ca2+-release rate and Ca2+-ATPase activity were manifested after 3, 5, and 5 min, respectively. A decay in Na+-K+-ATPase activity was found only in 1-min stimulated GD and 30-min stimulated GS. After 30 min, the depressed functions reverted to resting levels in GD but not in GS. The alterations in any variables examined were not parallel with changes in force output. These results suggest that, at least under the conditions used in this study, in vivo disruptions in cation regulation mediated by vigorous contractile activity would be attributable primarily to events other than structural alterations to the respective proteins.  相似文献   

3.
Prolonged exercise decreased the rate of Ca+ release in sarcoplasmic reticulum (SR) vesicles isolated from rat muscle by 20–30% when release was initiated by 5, 10, and 20 M AgNO3. [3H]Ryanodine binding was also depressed by 20% in SR vesicles isolated from the exercised animals. In contrast, the maximum amount of Ca2+ released by Ag+ remained unaffected by exercise. The passive permeability of SR vesicles and the rate of Ca2+ release in the presence of ruthenium red, a known inhibitor of the Ca2+ release mechanism, was not affected by prolonged exercise. These results suggest that exercise depressed Ca2+ release from SR by directly modifying the Ca2+ release channel. Current address: Department of Physics, Portland State University, Portland, OR 97207, USA  相似文献   

4.
The hypothesis tested in this study was that the extent to which sarcoplasmic reticulum (SR) Ca(2+)-ATPase is oxidized would correlate with a decline in its activity. For this purpose, changes in the SR Ca(2+)-sequestering ability and the contents of carbonyl and sulfhydryl groups during recovery after exercise were examined in the superficial portions of vastus lateralis muscles from rats subjected to 5 min running at an intensity corresponding to maximal oxygen uptake (50 m min(-1), 10% gradient). A single bout of exercise elicited a 22.4% reduction (P < 0.05) in SR Ca(2+)-ATPase activity. The decreased activity progressively reverted to normal levels during recovery after exercise, reaching normal levels after 60 min of recovery. This change was paralleled by a depressed SR Ca(2+)-uptake rate, and the proportional alteration in these two variables resulted in no change in the ratio of Ca(2+)-uptake rate to Ca(2+)-ATPase activity. The contents of SR Ca(2+)-ATPase protein and sulfhydryl groups in microsomes were unchanged after exercise and during recovery periods. In contrast, the content of carbonyl groups in SR Ca(2+)-ATPase behaved in an opposite manner to that of SR Ca(2+)-ATPase activity. An approximately 80% augmentation (P < 0.05) in the carbonyl group content occurred immediately after exercise. The elevated carbonyl content decreased towards normal levels during 60 min of recovery. These results are strongly suggestive that oxidation of SR Ca(2+)-ATPase is responsible, at least in part, for a decay in the SR Ca(2+)-pumping function produced by high-intensity exercise and imply that oxidized proteins may be repaired during recovery from exercise.  相似文献   

5.
Combined blockade of Na+/Ca2+ exchange, Ca2+ uptake by mitochondria and endoplasmic reticulum usually does not prevent recovery of the basal level of intracellular Ca2+ after 1-min action of glutamate (100 M) or K+ (50 mM). However, replacement of Ca2+ with Ba2+, which cannot be transported by Ca2+-ATPase, considerably delayed the decrease in intracellular Ba2+ after its rise caused by glutamate or potassium application in all examined cells, which attest to an important role of Ca2+-ATPase in Ca2+ extrusion after the action of glutamate or K+.  相似文献   

6.
Biochemical correlates of fatigue   总被引:7,自引:0,他引:7  
Summary Muscle fatigue, defined as a decreased force generating capacity, develops gradually during exercise and is distinct from exhaustion, which occurs when the required force or exercise intensity can no longer be maintained. We have reviewed several biochemical and ionic changes reported to occur in exercising muscle, and analysed the possible effects these changes may have on the electrical and contractile properties of the muscle. There is no evidence that substrate depletion can account for the decreased force generating capacity, but this factor may be important for the rate of energy turnover and be a major determinant for endurance. Increased concentration of inorganic phosphate and hydrogen ions will depress the force generating capacity, but since fatigue can develop gradually without accumulation of these ions they can only be important when aerobic ATP production is insufficient to support the contractions. Evidence is presented showing that a disturbed balance of K+ alone might cause depolarisation block at high stimulation frequencies, but extracellular K+ accumulation does not increase gradually during prolonged dynamic or static exercise, and is therefore not closely related to fatigue. The repeated release of Ca2+ from the sarcoplasmic reticulum (SR) during muscular activity is suggested of Ca2+ by the mitochondria, increasing with stimulation frequency and duration and possibly also deteriorating mitochondrial function. We therefore speculate that decreased Ca2+ availability for release from SR might contribute to a gradual decline in force generating capacity during all types of exercise.  相似文献   

7.
The Ca2+-gated Ca2+ release channel of aortic sarcoplasmic reticulum (SR) was partially purified and reconstituted into planar lipid bilayers. Canine and porcine aorta microsomal protein fractions were solubilized in the detergent 3-[(3-cholamidopropyl)dimethylammonio]-1-propane sulphonate (CHAPS) in the presence and absence of 3[H]-ryanodine and centrifuged through linear sucrose gradients. A single 3[H]-ryanodine receptor peak with an apparent sedimentation coefficient of 30 s was obtained. Upon reconstitution into planar lipid bilayers, the unlabelled 30 s protein fraction induced the formation of a Ca2+- and monovalent-ion-conducting channel (110 pS in 100 mM Ca2+, 360 pS in 250 mM K+). The channel was activated by micromolar Ca2+, modulated by millimolar adenosine triphosphate, Mg2+ and the Ca2+-releasing drug caffeine, and inhibited by micromolar ruthenium red. Micro- to millimolar concentrations of the plant alkaloid ryanodine induced a permanently closed state of the channel. Our results suggest that smooth muscle SR contains a Ca2+-gated Ca2+ release pathway, with properties similar to those observed for the skeletal and cardiac ryanodine receptor/Ca2+ release channel complexes.  相似文献   

8.
目的: 构建磷酸受纳蛋白(PLB)反义RNA腺相关病毒载体(rAAV-asPLB),建立糖尿病(DM)大鼠模型。直接心肌注射rAAV-asPLB,观察其对DM大鼠心肌PLB基因转录和蛋白表达的影响,以及对心肌肌浆网Ca2+-ATPase活性的作用。方法: 利用质粒辅助重组腺相关病毒系统试剂盒构建rAAV-asPLB。腹腔注射链脲佐菌素(STZ)诱导DM大鼠模型,将实验动物分为4组:正常组、DM组、盐水组和rAAV-asPLB组。盐水或rAAV-asPLB注射后6周,RT-PCR检测心肌PLB mRNA转录;Western blotting检测PLB蛋白表达水平;检测心肌肌浆网Ca2+-ATPase活性。结果: (1)成功构建rAAV-asPLB,诱导出DM大鼠模型。(2)DM组和盐水组PLB mRNA水平均高于正常组;rAAV-asPLB组PLB mRNA水平较DM组和盐水组明显降低。 (3)DM组和盐水组PLB 蛋白水平均高于正常组;rAAV-asPLB组PLB 蛋白水平较DM组和盐水组明显降低。(4)肌浆网Ca2+-ATPase活性在DM组和盐水组中较正常组明显降低,而rAAV-asPLB组较DM组和盐水组升高。结论: rAAV-asPLB抑制DM大鼠心肌PLB表达,增强Ca2+-ATPase活性。  相似文献   

9.
Ca2+ release from the sarcoplasmic reticulum (SR) of mammalian cardiac myocytes occuring either due to activation by a depolarization or the resulting transmembrane Ca2+ current (I Ca), or spontaneously due to Ca2+ overload has been shown to cause inward current(s) at negative membrane potentials. In this study, the effects of different intracellular Ca2+ chelating compounds on I Ca-evoked or spontaneous Ca2+-release-dependent inward currents were examined in dialysed atrial myocytes from hearts of adult guinea-pigs by means of whole-cell voltage-clamp. As compared to dialysis with solutions containing only a low concentration of a high affinity ethylene glycol-bis(-aminoethylether) N,N,N,N-tetraacetic acid (EGTA) like chelator (50–200 M), inward membrane currents (at –50 mV) due to evoked Ca2+ release, spontaneous Ca2+ release or Ca2+ overload following long-lasting depolarizations to very positive membrane potentials are prolonged if the dialysing fluid contains a high concentration of a low affinity Ca2+ chelating compound such as citrate or free adenosine 5-triphosphate (ATP). Without such a non-saturable Ca2+ chelator in the dialysing fluid, Ca2+-release-dependent inward currents are often oscillatory and show an irregular amplitude. With a low affinity chelator in a non-saturable concentration, discrete inward currents with constant properties can be recorded. We conclude that the variability in Ca2+-release-dependent inward current seen in single cells arises from spatial inhomogeneities of intracellular Ca2+ concentration ([Ca2+]i) due to localized saturation of endogenous and exogenous high affinity Ca2+ buffers (e.g. [2]). This can be avoided experimentally by addition of a non-saturable buffer to the intracellular solution. This condition might be useful, if properties of Ca2+ release from the SR and/ or the resulting membrane current, like for example arrhythmogenic transient inward current, are to be investigated on the single cell level.  相似文献   

10.
The influence of myoplasmic Mg2+ (0.05–10 mM) on Ca2+ accumulation (net Ca2+ flux) and Ca2+ uptake (pump-driven Ca2+ influx) by the intact sarcoplasmic reticulum (SR) was studied in skinned fibres from the toad iliofibularis muscle (twitch portion), rat extensor digitorum longus (EDL) muscle (fast twitch), rat soleus muscle (slow twitch) and rat cardiac trabeculae. Ca2+ accumulation was optimal between 1 and 3 mM Mg2+ in toad fibres and reached a plateau between 1 and 10 mM Mg2+ in the rat EDL fibres and between 3 and 10 mM Mg2+ in the rat cardiac fibres. In soleus fibres, optimal Ca2+ accumulation occurred at 10 mM Mg2+. The same trend was obtained with all preparations at 0.3 and 1 M Ca2+. Experiments with 2,5-di-(tert-butyl)-1,4-benzohydroquinone, a specific inhibitor of the Ca2+ pump, revealed a marked Ca2+ efflux from the SR of toad iliofibularis fibres in the presence of 0.2 M Ca2+ and 1 mM Mg2+. Further experiments indicated that the SR Ca2+ leak could be blocked by 10 M ruthenium red without affecting the SR Ca2+ pump and this allowed separation between SR Ca2+ uptake and SR Ca2+ accumulation. At 0.3 M Ca2+, Ca2+ uptake was optimal with 1 mM Mg2+ in the toad iliofibularis and rat EDL fibres and between 1 and 10 mM Mg2+ in the rat soleus and trabeculae preparations. At higher [Ca2+] (1 M), Ca2+ uptake was optimal with 1 mM Mg2+ in the iliofibularis fibres and between 1 and 3 mM Mg2+ in the EDL fibres. In the soleus and cardiac preparations Ca2+ uptake was optimal between 1 and 10 mM Mg2+. The results of this study demonstrate that SR Ca2+ accumulation is different from SR Ca2+ uptake and that these two important determinants of muscle function are differently affected by Mg2+ in different muscle fibre types.  相似文献   

11.
The effects of a single bout of prolonged treadmill exercise [mean=81 (13) min] on sarcoplasmic reticulum (SR) Ca2+ release, uptake and ATPase activity were determined in the costal region of rat diaphragm (D) and red gastrocnemius (RG). Glycogen depletion measurements made immediately following exercise suggested that treadmill running substantially recruited the fibers throughout both muscles. SR Ca2+ ATPase activity, measured in isolated SR vesicles, decreased in the RG by 33% but remained unchanged in D in response to the exercise bout. This effect in RG was matched by a 37% decline in Ca2+ uptake and a 28% depression in Ca2+ release when measured in muscle homogenates. Conversely, Ca2+ uptake increased between 157% and 263% in the D in the absence of any change in Ca2+ release. These data show that the attenuation of SR function that has been consistently observed in limb muscle over the last several decades is absent in diaphragm despite the fact that its fibers appear to experience sufficient activity to deplete their glycogen. In fact, the large increase in Ca2+ uptake in D shows that prolonged activity actually potentiates the ability of SR vesicles to sequester Ca2+ in the absence of any increase in energy cost. Thus, it appears necessary to re-evaluate the role of exercise in regulating Ca2+ sequestration by the SR as different muscles may respond in ways that are dictated by their function. Electronic Publication  相似文献   

12.
The proposed model describes myocyte calcium (Ca++) cycling, emphasizing the kinetics of sarcoplasmic reticulum (SR) Ca++ release channels. The suggested SR channel regulating mechanism includes two types of Ca++ binding sites: (1) low affinity sites with high binding rates, regulating the opening of Ca++ channels and (2) high affinity sites with low binding rates, which regulate their closing. The amount of Ca++ released from the SR and the peak value of Ca++ ion concentration [Ca++] in the cytoplasm were found to depend on the rate of the increase of [Ca++], similar to Ca++ induced Ca++ release experiments. The model describes spontaneous release of Ca++ from overloaded SR. The dependence of the control mechanism on the activating and inactivating sites is substantiated by simulations of ryanodine intervention, providing results similar to experimental results. Simulations under conditions of isolated SR vesicles produced Ca++ release results similar to measured data. Consequently, it is suggested that the recovery of Ca++ release channels represents the rate limiting factor in the process of mechanical restitution. © 1998 Biomedical Engineering Society. PAC98: 8722Fy, 8710+e  相似文献   

13.
This study compares changes in contractile properties, Parvalbumin content, and Ca2+-uptake by the sarcoplasmic reticulum (SR) of low-frequency stimulated rat and rabbit tibialis anterior (TA) muscles. Time to peak tension increased 1.8-fold in 35-day stimulated rabbit TA, while no change occurred in rat TA. Isometric twitch tension increased 2-fold in rabbit TA, but was unaltered in rat TA. Parvalbumin (PA) content was more than 90% reduced in rabbit TA, but only 60% in rat TA after 35 days. At this time, PA content of the stimulated rat TA was still higher than that of normal rabbit TA. Taking into account the suggested role of PA as a cytosolic Ca2+ buffer, its decrease could lead to an impaired free Ca2+-decay with a prolonged active state and a higher tension output during a single twitch. This would explain why chronic stimulation led to an increase in isometric twitch tension in rabbit TA, but not in rat TA. The 1.6-fold rise in half-relaxation time of 35-day stimulated rat and rabbit TA most likely resulted from a 50% reduced Ca2+-uptake by the SR, due to a still unknown modification of the Ca2+-transport ATPase.  相似文献   

14.
According to the literature the steady-state level of phosphocreatine (PCr) has a linear relationship to the workload during muscle exercise intensities below the lactate threshold, whereas this linearity is impaired during exercise intensities above the lactate threshold. The purpose of this study was to investigate the linearity between PCr kinetics and workload during two bouts of isotonic incremental calf exercise with transitions from moderate- to high-intensity as well as from high- to moderate-intensity work rates. Using a whole-body 1.5 T MR scanner and a self-built exercise bench, we performed serial phosphorus-31 magnetic resonance spectroscopy (31P-MRS) with a time resolution of 30 s in nine healthy male volunteers. Changes in PCr, inorganic phosphate (Pi) and pH were statistically evaluated in comparison to the baseline. The exercise protocol started with a 4.5 W interval of 6 min followed by two bouts of 1.5 W increments. The workload was increased in 2-min intervals up to 9 W during the first bout and up to 7.5 W during the second bout. The second bout was preceded by a 4.5 W interval of 2 min and followed by a 4.5 W interval of 4 min. PCr hydrolysis achieved a steady state during each increment and was highly linear to the work rate (r 2, –0.796; P <0.001). Pi accumulated during each bout, whereas the pH decreased continuously during the first bout and did not exhibit any substantial decrease during the second bout. The metabolite levels and pH were expressed as the median value and the range. Our study confirms that steady-state PCr levels also have a linear relationship to work intensities above the lactate threshold, while pH changes do not have any impact on PCr degradation. The lack of substantial changes in pH during the second exercise bout indicates that prior high-intensity exercise leads to an activation of oxidative phosphorylation.  相似文献   

15.
This study examined the effects of acute high-intensity and moderate-intensity exercise on Ca2+-stimulated adenosine triphosphatase (ATPase) activity and the Ca2+ and ATP dependence of Ca2+-ATPase of the sarcoplasmic reticulum (SR) in the soleus muscle. The rats were run on 10% grade at 50 m min(-1) or 25 m min(-1) until fatigued (avg. time to exhaustion 2.8 and 87.7 min, respectively). The catalytic activities of SR Ca2+-ATPase were significantly depressed immediately after both types of exercise. Kinetic analyses demonstrated that the Ca2+ affinity of Ca2+-ATPase was elevated by both types of exercise adopted in the present investigation whereas the increase in the ATP affinity was brought about by only high-intensity exercise. These results suggest that exhaustive exercise may induce in slow-twitch muscle fibre the environmental changes, which adversely affect SR Ca2+-ATPase activity and can overcome the positive influence arising from the increase in the Ca2+ and/or ATP affinities of SR Ca2+-ATPase.  相似文献   

16.
In heart failure alterations of intracellular Ca2+ handling are thought to be a major reason for impaired contraction and relaxation. Peak Ca2+ transients are reduced, resting Ca2+ levels elevated, and the time course of diastolic Ca2+ decline is markedly prolonged in failing hearts. The proteins of the sarcoplasmic reticulum and the sarcolemmal Na+/Ca2+ exchanger are the most important tools for Ca2+ homeostasis in the cardiomyocyte, and their molecular cloning has allowed prediction of structure/function analysis. The investigation of function and gene expression of these proteins in failing myocardium has been an area of intensive research in recent years in order to provide a more detailed understanding of the pathophysiology of heart failure. Quantitative changes in expression of the sarcoplasmic reticulum Ca2+-ATPase, the ryanodine receptor, and the Na+/Ca2+ exchanger with correlations to functional alterations have been reported both in experimental animal models and in the human failing heart. However, in human heart failure these findings are currently the subject of a lively discussion because observations have apparently been in part contradictory. This review discusses the proteins involved in myocardial Ca2+ handling and describes the current state of research on expressional and functional alterations and their potential implication in the pathomechanism of heart failure.Abbreviations ANF Atrial natriuretic factor - PLN Phospholamban - RyR Ryanodine receptor - SR Sarcoplasmic reticulum - SERCA Sarco(endo)plasmic reticulum Ca2+-ATPase  相似文献   

17.
The effects of different compounds that inhibit the isolated plasma-membrane Ca2+/Mg2+-ATPase on the cytosolic free Ca2+ concentration ([Ca2+]i) and on the corresponding force development have been examined in smooth muscle of the longitudinal layer of the guinea-pig ileum. F, in the presence of Al3+, induced an increase of the resting force and of the amplitude of the superimposed phasic contractions. The increase of resting force was associated with an increased level of basal [Ca2+]i while the phasic contractions were accompanied by concomitant oscillations in [Ca2+]i. Comparable contractions could be induced by vanadate and the calmodulin antagonist calmidazolium. The oscillations of [Ca2+]i and of force elicited by AlF 4 were not modified by adrenergic or cholinergic blocking agents but were inhibited by verapamil. These phasic contractions were not affected by depleting the intracellular Ca2+ stores with ryanodine. This finding excludes a cytosolic origin of these oscillations. However, hyperpolarization and complete depolarization of the cells inhibited the oscillations. It is concluded that AlF 4 , vanadate and calmidazolium induce cytoplasmic Ca2+ oscillations possibly by acting at the plasma membrane. Indeed all these substances affect by different mechanisms the isolated plasma-membrane Ca2+/Mg2+-ATPase. The generation of membrane-linked Ca2+ oscillations could therefore be related to an inhibition of the plasma-membrane Ca2+ pump resulting in an increase of [Ca2+]i. This change in [Ca2+]i could be responsible for the pronounced changes of the electrical and mechanical activity of this tissue.  相似文献   

18.
The time courses of changes in parvalbumin (PA) content, isometric twitch tension, and half-relaxation time (1/2RT) were studied in rabbit tibialis anterior muscle following chronic 10 Hz nerve stimulation of 1–21 days. Up to 5 days stimulation had no effect on PA content, but it induced a slight (10–15%) increase in the 1/2RT. This change occurred together with the previously observed 50% decrease in Ca2+-uptake by the SR (Leberer et al. 1987). While prolonged stimulation produced no further decrease in the Ca2+-uptake by the SR, PA content declined after 5 days of stimulation. The reduction in PA content was accompanied by a progressive lengthening of the 1/2RT. However, the increase in 1/2RT was particularly pronounced after PA had fallen below 50% of its normal value. A 90% reduction in PA coincided with a 60% increase in the 1/2RT. By this time the staircase phenomenon, normally observed in fast-twitch muscle, was completely abolished. Although the changes in PA content and 1/2RT were not linearly related, these results suggest that PA plays an important role in the relaxation process of mammalian fast-twitch muscle.  相似文献   

19.
20.
Newborn rats were rendered hyperthyroid (daily subcutaneous injections of L-triiodothyronine, 10 g 100 g–1 body weight) or hypothyroid (0.05% 6-n-propyl-2-thiouracil in drinking water to nursing mothers) during the first 3 weeks of postnatal life. Compared with the euthyroid group, hyperthyroidism resulted in: (1) cardiac enlargement with right ventricular preponderance, (2) increased cardiac contractile function, (3) increased Ca2+ uptake by the sarcoplasmic reticulum (SR), (4) decreased sensitivity to the negative inotropic effect of verapamil and (5) greater inhibition of contractile function by ryanodine. Hypothyroidism generally resulted in opposite changes. The data suggest that the development of the heart and its contractile function during early postnatal life depends on the plasma level of thyroid hormones. In particular, the relative contribution of the SR and sarcolemmal Ca2+ transport to the control of cardiac contractility seems to be markedly affected by altered thyroid states. The postnatal maturation of the SR function is accelerated in hyperthyroidism but retarded in hypothyroidism. Consequently, hyperthyroid hearts appear to be less dependent and hypothyroid ones more dependent on trans-sarcolemmal Ca2+ fluxes when compared with age-matched euthyroid animals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号