首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Tetanus toxin reduces the release of neurotransmitters in several brain areas. We have studied the effects of this toxin on the intrinsic and synaptic activity of CA1 hippocampal neurons and of neostriatal cells in the rat by utilizing intracellular and extracellular recordings from slice preparations.

Tetanus toxin (10 μg/ml) applied by bath produced an increase of the field potentials evoked by the orthodromic stimulation of the CA1 region coupled with the disappearance of the inhibitory period following the first conditioning stimulus. Orthodromically and antidromically activated postsynaptic hyperpolarizing potentials were also decreased and spontaneous bursting activity was observed following the application of tetanus toxin. At this concentration the toxin did not alter excitability in neostriatal cells and in these neurons even 30–50 μg/ml of the toxin produced only a slight increase of excitability. Higher concentrations (100 μg/ml) of tetanus toxin reduced the excitatory synaptic transmission in the hippocampus as well as in the neostriatum. The toxin (10–100 μg/ml) did not alter membrane potential, input resistance or directly evoked firing in both these structures.

We conclude that, although the toxin's mechanisms of action in the neostriatum are similar to those operating in the hippocampus (i.e. decrease of inhibitory and/or excitatory inputs), the local synaptic circuits produce differential electrophysiological effects in these two structures.  相似文献   


2.
Intrahippocampal tetanus toxin induces a period of chronic recurrent limbic seizures in adult rats, associated with a failure of inhibition in the hippocampus. The rats normally gain remission from their seizures after 6-8 weeks, but show persistent cognitive impairment. In this study we assessed which changes in cellular and network properties could account for the enduring changes in this model, using intracellular and extracellular field recordings in hippocampal slices from rats injected with tetanus toxin or vehicle, 5 months previously.In CA1 pyramidal neurones from toxin-injected rats, the slope of the action potential upstroke was reduced by 32%, the fast afterhyperpolarisation by 32% and the slow afterhyperpolarisation by 54%, suggesting changes in voltage-dependent conductances. The excitatory postsynaptic potential slope was reduced by 60% and the population synaptic potential slope was reduced at all stimulus intensities, suggesting a reduced afferent input in CA1. Paired-pulse stimulation showed an increase of the excitability ratio and an increase of cellular excitability only for the second pulse, suggesting a reduced inhibition. The polysynaptic inhibitory postsynaptic potential was reduced by 34%, whereas neither the inhibitory postsynaptic potential at subthreshold stimulus intensities,nor the pharmacologically isolated monosynaptic inhibitory postsynaptic potential were different in toxin-injected rats, suggesting a reduced synaptic excitation of interneurones. Stratum radiatum stimuli in toxin-injected rats, and not in controls, evoked antidromic activation of CA1 neurones, demonstrating axonal sprouting into areas normally devoid of CA1 pyramidal cell axons.We conclude that this combination of enduring changes in cellular and network properties, both pro-epileptic (increased recurrent excitatory connectivity, reduced recurrent inhibition and reduced afterhyperpolarisations) and anti-epileptic (impaired firing and reduced excitation), reaches a balance that allows remission of seizures, perhaps at the price of persistent cognitive impairment.  相似文献   

3.
Gerber G  Zhong J  Youn D  Randic M 《Neuroscience》2000,100(2):393-406
The effects of group II and group III metabotropic glutamate receptor agonists on synaptic responses evoked by primary afferent stimulation in the dorsal horn, but mostly substantia gelatinosa, neurons were studied in the spinal cord slice preparation using conventional intracellular recording technique. Bath application of a potent metabotropic glutamate receptor 2- and 3-selective agonist (2S,1'R,2'R,3'R)-2-(2',3'-dicarboxycyclopropyl) glycine reversibly suppressed monosynaptic and polysynaptic excitatory postsynaptic potentials evoked by A primary afferent fibers stimulation, the effect likely mediated by mGlu3 receptor subtype. This suppressing effect of (2S,1'R,2'R,3'R)-2-(2',3'-dicarboxycyclopropyl) glycine on primary afferent neurotransmission was dose dependent and reduced by (S)-alpha-ethylglutamate, a group II metabotropic glutamate receptor antagonist. (2S,1'R,2'R,3'R)-2-(2',3'-dicarboxycyclopropyl) glycine suppressed excitatory postsynaptic potentials without inducing detectable changes of postsynaptic membrane potential and neuronal input resistance in dorsal horn neurons. The paired-pulse depression at excitatory synapses between primary afferent fibers and dorsal horn neurons was reduced by (2S,1'R,2'R,3'R)-2-(2', 3'-dicarboxycyclopropyl) glycine application, suggesting a presynaptic site of action. The selective group III metabotropic glutamate receptor agonist (S)-2-amino-4-phosphonobutanoate also depressed A afferent fibers-evoked monosynaptic and polysynaptic excitatory postsynaptic potentials in a dose-dependent and reversible manner. The concentration-dependence of (S)-2-amino-4-phosphonobutanoate-mediated depression was most consistent with activation of mGlu receptor subtypes 4 and 7. However, on the basis of anatomical distribution of mGlu 4 and 7 subtypes, it is also possible that the (S)-2-amino-4-phosphonobatanoate effect is due to interaction with mGlu 7 receptor alone. (RS)-alpha-cyclopropyl-4-phosphonophenylglycine a preferential antagonist at group III metabotropic glutamate receptors, completely reversed the depressant effects of (S)-2-amino-4-phosphonobutanoate on both monosynaptic and polysynaptic responses. (S)-2-amino-4-phosphonobutanoate reduced the paired-pulse depression at excitatory synapses between primary afferent fibers and dorsal horn neurons, but did not alter their postsynaptic membrane potential and input resistance. A clear facilitation of the (S)-2-amino-4-phosphonobutanoate-induced depression of monosynaptic and polysynaptic excitatory postsynaptic potentials in the absence of gamma-aminobutyric acid-subtype A receptor- and glycine-mediated synaptic inhibition was shown. Besides the depressant effect on excitatory synaptic transmission, inhibitory actions of group II and III metabotropic glutamate receptor agonists on the inhibitory postsynaptic potentials evoked by primary afferent stimulation in dorsal horn neurons were observed.These results suggest that group II and group III metabotropic glutamate receptors are expressed at primary afferent synapses in the dorsal horn region, and activation of the receptors suppresses synaptic transmission by an action on the presynaptic site.  相似文献   

4.
The effect of cannabinoids on excitatory transmission in the substantia gelatinosa was investigated using intracellular recording from visually identified neurons in a transverse slice preparation of the juvenile rat spinal cord. In the presence of strychnine and bicuculline, perfusion of the cannabinoid receptor agonist WIN55,212-2 reduced the frequency and the amplitude of spontaneous excitatory postsynaptic currents (sEPSCs). Furthermore, the frequency of miniature EPSCs (mEPSCs) was also decreased by WIN55,212-2, whereas their amplitude was not affected. Similar effects were reproduced using the endogenous cannabinoid ligand anandamide. The effects of both agonists were blocked by the selective CB(1) receptor antagonist SR141716A. Electrical stimulation of high-threshold fibers in the dorsal root evoked a monosynaptic EPSC in lamina II neurons. In the presence of WIN55,212-2, the amplitude of the evoked EPSC (eEPSCs) was reduced, and the paired-pulse ratio was increased. The reduction of the eEPSC following CB(1) receptor activation was unlikely to have a postsynaptic origin because the response to AMPA, in the presence of 1 microM TTX, was unchanged. To investigate the specificity of this synaptic inhibition, we selectively activated the nociceptive C fibers with capsaicin, which induced a strong increase in the frequency of EPSCs. In the presence of WIN55,212-2, the response to capsaicin was diminished. In conclusion, these results strongly suggest a presynaptic location for CB(1) receptors whose activation results in inhibition of glutamate release in the spinal dorsal horn. The strong inhibitory effect of cannabinoids on C fibers may thereby contribute to the modulation of the spinal excitatory transmission, thus producing analgesia at the spinal level.  相似文献   

5.
The effect of tetanus toxin in the goldfish   总被引:2,自引:0,他引:2       下载免费PDF全文
1. The effects of tetanus toxin have been investigated both on central nervous and peripheral neuromuscular systems of goldfish.2. Tetanus toxin kills goldfish when administered in minute doses. The lethal effect is temperature dependent. Unlike mammals, in which tetanus toxin produces spastic paralysis and convulsions, the tetanus-intoxicated goldfish die with an apparently flaccid paralysis.3. Inhibition and excitation were investigated on the Mauthner cells of goldfish which had been paralysed with tetanus toxin for at least 24 hr, and which were subsequently kept alive for up to 3 days by perfusing the gills with oxygenated water. In such fish, antidromically and orthodromically excited Mauthner cells were quite normal, and there was no apparent effect on either the collateral inhibition or the crossed VIIIth nerve inhibition.4. Local injection of sublethal doses of tetanus toxin into the pectoral fin muscles produced local paralysis of the fin. Nerve-muscle preparations were isolated from such goldfish; in tetanus toxin-paralysed fins, the muscle no longer responded to stimulation of its nerve. The nerve compound action potential was still present and the muscle still responded vigorously to direct electrical stimulation.5. It is concluded that the major part of the lethal action of the toxin in the fish must be ascribed to a peripheral effect, the blocking of neuromuscular transmission. The inhibitory neuronal systems acting on the Mauthner cells of the goldfish, in apparent contrast to those acting on mammalian spinal neurones, are highly insensitive to tetanus toxin.  相似文献   

6.
Gajendiran M  Ling GY  Pang Z  Xu ZC 《Neuroscience》2001,105(1):139-152
Spiny neurons in neostriatum are vulnerable to cerebral ischemia. To reveal the mechanisms underlying the postischemic neuronal damage, the spontaneous activities, evoked postsynaptic potentials and membrane properties of spiny neurons in rat neostriatum were compared before and after transient forebrain ischemia using intracellular recording and staining techniques in vivo. In control animals the membrane properties of spiny neurons were about the same between the left and right neostriatum but the inhibitory synaptic transmission was stronger in the left striatum. After severe ischemia, the spontaneous firing and membrane potential fluctuation of spiny neurons dramatically reduced. The cortically evoked initial excitatory postsynaptic potentials were suppressed after ischemia indicated by the increase of stimulus threshold and the rise time of these components. The paired-pulse facilitation test indicated that such suppression might involve presynaptic mechanisms. The inhibitory postsynaptic potentials in spiny neurons were completely abolished after ischemia and never returned to the control levels. A late depolarizing postsynaptic potential that was elicited from approximately 5% of the control neurons by cortical stimulation could be evoked from approximately 30% of the neurons in the left striatum and approximately 50% in the right striatum after ischemia. The late depolarizing postsynaptic potential could not be induced after acute thalamic transection. The intrinsic excitability of spiny neurons was suppressed after ischemia evidenced by the significant increase of spike threshold and rheobase as well as the decrease of repetitive firing rate following ischemia. The membrane input resistance and time constant increased within 6 h following ischemia and the amplitude of fast afterhyperpolarization significantly increased after ischemia. These results indicate the depression of excitatory monosynaptic transmission, inhibitory synaptic transmission and excitability of spiny neurons after transient forebrain ischemia whereas the excitatory polysynaptic transmission in neostriatum was potentiated. The facilitation of excitatory polysynaptic transmission is stronger in the right neostriatum than in the left neostriatum after ischemia. The suppression of inhibitory component and the facilitation of excitatory polysynaptic transmission may contribute to the pathogenesis of neuronal injury in neostriatum after transient cerebral ischemia.  相似文献   

7.
Ono K  Shiba K  Nakazawa K  Shimoyama I 《Neuroscience》2006,140(3):1079-1088
To determine the synaptic source of the respiratory-related activity of laryngeal motoneurons, spike-triggered averaging of the membrane potentials of laryngeal motoneurons was conducted using spikes of respiratory neurons located between the Bötzinger complex and the rostral ventral respiratory group as triggers in decerebrate, paralyzed cats. We identified one excitatory and two inhibitory sources for inspiratory laryngeal motoneurons, and two inhibitory sources for expiratory laryngeal motoneurons. In inspiratory laryngeal motoneurons, monosynaptic excitatory postsynaptic potentials were evoked by spikes of inspiratory neurons with augmenting firing patterns, and monosynaptic inhibitory postsynaptic potentials (IPSPs) were evoked by spikes of expiratory neurons with decrementing firing patterns and by spikes of inspiratory neurons with decrementing firing patterns. In expiratory laryngeal motoneurons, monosynaptic IPSPs were evoked by spikes of inspiratory neurons with decrementing firing patterns and by spikes of expiratory neurons with augmenting firing patterns. We conclude that various synaptic inputs from respiratory neurons contribute to shaping the respiratory-related trajectory of membrane potential of laryngeal motoneurons.  相似文献   

8.
1. Synapsin I was injected into a vertebrate presynaptic axon to analyze its action on quantal synaptic transmission. Two microelectrodes were used for simultaneous intracellular recording from pairs of identified neurons in the goldfish brain. The postsynaptic electrode was placed in a cranial relay neuron (CRN) within 100 microns of its synapse with the Mauthner neuron. The presynaptic electrode impaled the Mauthner axon (M-axon) 50-200 microns from the first electrode. 2. Spontaneous miniature excitatory postsynaptic potentials (mEPSPs) and evoked postsynaptic potentials (EPSPs) were recorded at steady states before and after synapsin I was microinjected into the presynaptic M-axon. Responses were digitized and subsequently analyzed by computer for quantal parameters. 3. In 12 experiments, injection of synapsin I resulted in a reduction in transmission. The decrease in EPSP amplitude began approximately 30 s after the injection, reached a plateau within 10 min, and appeared to be reversible and dose dependent. 4. Injection of synapsin I decreased quantal content (m), with no effect on postsynaptic receptor sensitivity or on amount of transmitter per quantum. Further analysis based on the simplest binomial model for quantal release revealed that synapsin I consistently reduced the number of quantal units available for release (n) although the probability of release (p) was either unchanged or slightly increased. Injected synapsin I may thus bind to presynaptic vesicles and prevent transmitter quanta from entering a pool subject to evoked release.  相似文献   

9.
Field potentials of dentate granule cells in response to stimulation of the perforant path have been studied before and after injecting tetanus toxin (200 mouse LD50; or phosphate-buffered saline in controls) into the hilus of the dentate gyrus of rats under urethane anaesthesia. Within 1 h of toxin injection, the population spike, but not the slope of the excitatory postsynaptic potential, had increased markedly in amplitude and double or treble population spikes appeared in response to perforant path stimulation. Both paired pulse inhibition (15-ms interval between conditioning and test stimuli) and commissural inhibition (10-ms interval) were substantially reduced by the toxin. Neither multiple spikes nor the reduction in inhibition were seen in controls. Apparent inhibition of the excitatory postsynaptic potential, seen with paired stimuli to the perforant path, was not affected by the toxin. At later times after the injections, a progressive increase in the size of the spikes was seen in the controls while in the toxin animals there was often a secondary decrease in size. It is concluded that tetanus toxin can block both feed-back and feed-forward inhibitory components acting on dentate granule cells. The results are discussed with respect to the role of inhibitory processes in the control of epileptogenesis.  相似文献   

10.
Activation of the descending noradrenergic system inhibits nociceptive transmission in the spinal cord. Although both α1- and α2-adrenoceptors in the spinal cord are involved in the modulation of nociceptive transmission, it is not clear how α1-adrenoceptors regulate excitatory and inhibitory synaptic transmission at the spinal level. In this study, inhibitory and excitatory postsynaptic currents (IPSCs and EPSCs, respectively) were recorded from lamina II neurons in rat spinal cord slices. The specific α1-adrenoceptor agonist phenylephrine significantly increased the frequency of GABAergic spontaneous IPSCs in a concentration dependent manner, and this effect was abolished by the α1-adrenoceptor antagonist 2-(2,6-dimethoxyphenoxy)ethylaminomethyl-1,4-benzodioxane (WB4101). Phenylephrine also significantly reduced the amplitude of monosynaptic and polysynaptic EPSCs evoked from primary afferents. The inhibitory effect of phenylephrine on evoked monosynaptic glutamatergic EPSCs was largely blocked by the GABAA receptor antagonist picrotoxin and, to a lesser extent, by the GABAB receptor antagonist CGP55845. Furthermore, blocking T-type Ca2+ channels with amiloride or mibefradil diminished the inhibitory effect produced by phenylephrine or the GABAA receptor agonist muscimol on monosynaptic EPSCs evoked from primary afferents. Collectively, these findings suggest that activation of α1-adrenoceptors in the spinal cord increases synaptic GABA release, which attenuates glutamatergic input from primary afferents mainly through GABAA receptors and T-type Ca2+ channels. This mechanism of presynaptic inhibition in the spinal cord may be involved in the regulation of nociception by the descending noradrenergic system.  相似文献   

11.
Grabauskas G  Chapman H  Wheal HV 《Neuroscience》2006,139(4):1301-1313
Biochemical and in situ hybridization studies demonstrated that the levels of protein kinase C variants were significantly increased in the hippocampus of the experimental models of epilepsy in rats. In addition it has been demonstrated that protein kinase C plays an important role in modulating synaptic transmission in the hippocampus. We examined the effects of activating of protein kinase C on the excitability of CA1 pyramidal neurons and synaptic transmission, using whole-cell current-clamp and extracellular field potential recording techniques. Indolactam V (1 microM) a novel protein kinase C activator, increased the excitability of CA1 neurons acting at both pre- and post-synaptic sites. Indolactam V, acting postsynaptically, significantly reduced the threshold for initiation of action potential from -42+/-3.8 mV to -51+/-3.1 mV and selectively inhibited the slow afterhyperpolarizing potential. Indolactam V also altered the neuronal firing properties in response to prolonged depolarizing pulse by eliminating the spike frequency accommodation. Our data indicate that indolactam V potentiated both amplitudes of Shaffer-collateral stimulation evoked excitatory postsynaptic currents and disynaptically evoked inhibitory evoked postsynaptic currents. However, the potentiation of inhibitory evoked postsynaptic currents amplitudes was not observed after blockade of NMDA and AMPA/kainate currents suggesting it was due to excitatory activity driving inhibitory neurons. The results indicate that the potentiation of pharmacologically isolated excitatory postsynaptic currents (215% of control) and amplitudes of population spikes (290% of control) was due to action of indolactam V presynaptically since the agonist reduced the paired-pulse ratio and the potentiating effect was not blocked by dialyzing the postsynaptic neuron through the recording electrode with a specific protein kinase C inactivator calphostin C. These findings suggest that protein kinase C increases the amplitude of epileptiform activity by causing potentiation of excitatory synaptic transmission, increasing the excitability of postsynaptic neurons and reducing negative feed back provided by slow afterhyperpolarizing potential.  相似文献   

12.
Summary In anaesthetized cats the activities of Renshaw cells (RCs) and Ia-inhibitory interneurones (IaINs) were recorded during the accumulation of tetanus toxin in the spinal cord following injection into the gastrocnemius muscle.The early response of the RCs increased during the period of development of local tetanus. With some cells there was a subsequent decrease in the early response in later periods of the observation time (16–44 hrs after intramuscular injection).The effects on the spontaneous activity of the RCs were in good correspondence to those on the early response.The hyperactivity of the RCs is proposed to be mediated mainly via disinhibited cholinergic gamma-motoneurones using muscarinic postsynaptic receptors.The pause which follows the early response and the recurrent inhibition of IaINs was not reduced during the development of local tetanus. These results indicate that the central action of tetanus toxin in local tetanus does not consist of a general loss of postsynaptic inhibition.It is suggested that tetanus toxin acts mainly on synaptic elements of the alpha- and gamma-motoneurones or on presynaptic nerve terminals in their vicinity. In later periods a disturbing influence on the cholinergic transmission at Renshaw cells seems to occur.Dedicated to Professor Kurt Kramer, on the occasion of his 70th birthday  相似文献   

13.
The effects of a high molecular weight toxin from Physalia physalis (P3) were investigated on glutamate evoked potentials in snail (Zachrysia guanesis) neurons and in crayfish (Cambarus clarkii) neuromuscular junction. The glutamate evoked potentials of snail neurons were reversibly blocked by P3 in a dose-dependent manner (2-200 microM). A reversible blocking action was also found for P3 on excitatory junctional potentials and on glutamate potentials of crayfish at a concentration range of 6 nM-60 microM. Experiments carried out with independent stimulation of the excitatory and inhibitory nerves showed that the effect of P3 (60 nM-10 microM) was exerted predominantly on excitatory junctional potentials. However, at higher doses (greater than 10 microM) a slight reduction of the inhibitory potentials was also observed. These results suggest that P3 reversibly blocks glutamate receptors. Thus, it could be a promising tool for further studies on glutamatergic transmission.  相似文献   

14.
1. The reticulospinal neurons in the lamprey posterior rhombencephalic reticular nucleus (PRRN) and their projections to different types of spinal neurons have been investigated by the use of simultaneous paired intracellular recordings from one pre- and one postsynaptic cell. PRRN is of particular importance for the initiation of locomotion. 2. Intracellular stimulation of single PRRN neurons produced monosynaptic excitatory postsynaptic potentials (EPSPs) in simultaneously recorded motoneurons and spinal premotor interneurons of both the excitatory and inhibitory type. Individual PRRN neurons produced EPSPs in several different types of target cells, as revealed by signal averaging. Each single PRRN neuron had extensive monosynaptic connections to approximately 73% of the motoneuronal population. Conversely, several PRRN neurons converge on individual spinal neurons. The average amplitude of the EPSPs was 0.43 +/- 0.40 (SD) mV. The EPSPs varied in time course (time to peak = 7.5 +/- 2.8 ms; duration at one-half peak amplitude = 21.9 +/- 18.1 ms). 3. The EPSPs produced by reticulospinal cells were composed of either exclusively chemical, exclusively electrical, or mixed chemical and electrical components. The electrical EPSPs remained when the ordinary physiological solution was substituted for one without Ca2+ but with Mn2+. The chemical component of the EPSPs was always depressed when a broad-spectrum excitatory amino acid (EAA) antagonist, such as kynurenic acid, was applied, suggesting that the chemical component was because of EAA transmission. The chemical EPSP could have two components, one late, suppressed by N-methyl-D-aspartate (NMDA) antagonists, and one early because of activation of kainate/quisqualate receptors. 4. Three-dimensional reconstructions of Lucifer yellow-filled PRRN neurons were performed with a confocal laser scanning microscope. PRRN neurons producing monosynaptic excitatory amino acid EPSPs were found to have a fusiform cell body located near the surface of the fourth ventricle and an extensive fanlike dendritic tree extending to the ventral and lateral margin of the brain stem within the basal plate. The axons descend in the lateral funiculi of the spinal cord. 5. PRRN neurons utilizing EAA transmission are active during fictive locomotion. They presumably initiate and reinforce ongoing spinal locomotor activity by monosynaptically increasing the general excitability of the spinal premotor interneurons of the spinal locomotor networks by means of their extensive divergent and convergent monosynaptic connections.  相似文献   

15.
Advances in tetanus research   总被引:1,自引:0,他引:1  
Summary Due to the use of advanced biochemical and neurophysiological techniques, our knowledge of the pathogenesis of tetanus has considerably improved during the past years.Radio-labelled tetanus toxin has been traced within different nerves up to the anterior horn of the spinal cord where its localization down to the cellular level has been achieved. The distribution of labelled toxin depends on time and is influenced by antitoxin. The longer the duration of poisoning, the smaller the effect of antitoxin on the spinal enrichment of toxin and on the onset of toxic symptoms. The neural ascent of toxin into a spinal cord segment is enhanced by stimulation of the segmental nerves. Not only the motor nerves, but also sensory and vegetative nerves are able to serve as guide-rails for the toxin. The generalized tetanus has been understood as a special kind of local tetanus.For a long time, disinhibition of the alpha motor system was considered to be the characteristic action of tetanus toxin, but recent evidence is in favour of an additional disinhibition of the gamma motor system (perhaps even preceding the alpha disinhibition) and also of the sympathetic spinal reflexes. This finding should have therapeutic implications. The detection of inhibitory effects of tetanus toxin on peripheral cholinergic synapses points again to the close similarity between tetanus toxin and botulinum A toxin.The trends of future research will presumably lead to the elementary processes at the molecular and cellular level which are the basis of the clinical picture of tetanus.  相似文献   

16.
In this study, tetanus toxin was microinjected into the ventral horn of the spinal cord of rats, producing local tetanus. The toxin was localized by immunocytochemical methods. Reaction product was visualized within synaptic terminals, particularly those on the soma and dendrites of motor neurons. The distribution of staining terminals was similar to that of labeled synapses, visualized by autoradiography, after microinjection of either [125I]tetanus toxin or [3H]glycine, the latter a major inhibitor transmitter in the spinal cord.  相似文献   

17.
Activation of spinal muscarinic acetylcholine receptors (mAChRs) produces analgesia and inhibits dorsal horn neurons through potentiation of GABAergic/glycinergic tone and inhibition of glutamatergic input. To investigate the mAChR subtypes involved in the inhibitory effect of mAChR agonists on glutamate release, evoked excitatory postsynaptic currents (eEPSCs) were recorded in lamina II neurons using whole cell recordings in rat spinal cord slices. The nonselective mAChR agonist oxotremorine-M concentration-dependently inhibited the monosynaptic and polysynaptic EPSCs elicited by dorsal root stimulation. Interestingly, oxotromorine-M caused a greater inhibition of polysynaptic EPSCs (64.7%) than that of monosynaptic EPSCs (27.9%). In rats pretreated with intrathecal pertussis toxin, oxotremorine-M failed to decrease monosynaptic EPSCs but still partially inhibited the polysynaptic EPSCs in some neurons. This remaining effect was blocked by a relatively selective M(3) antagonist 4-DAMP. Himbacine, an M(2)/M(4) antagonist, or AFDX-116, a selective M(2) antagonist, completely blocked the inhibitory effect of oxotremorine-M on monosynaptic EPSCs. However, the specific M(4) antagonist MT-3 did not alter the effect of oxotremorine-M on monosynaptic EPSCs. Himbacine also partially attenuated the effect of oxotremorine-M on polysynaptic EPSCs in some cells and this effect was abolished by 4-DAMP. Furthermore, oxotremorine-M significantly decreased spontaneous EPSCs in seven of 22 (31.8%) neurons, an effect that was blocked by 4-DAMP. This study provides new information that the M(2) mAChRs play a critical role in the control of glutamatergic input from primary afferents to dorsal horn neurons. The M(3) and M(2)/M(4) subtypes on a subpopulation of interneurons are important for regulation of glutamate release from interneurons in the spinal dorsal horn.  相似文献   

18.
Although conventional wisdom suggests that the effectiveness of phenytoin as an anticonvulsant is due to blockade of Na+-channels this is unlikely to be it's sole mechanism of action. In the present paper we examined the effects of phenytoin on evoked and spontaneous transmission at excitatory (glutamate) and inhibitory (GABA) synapses, in the rat entorhinal cortex in vitro. Evoked excitatory postsynaptic potentials at glutamate synapses exhibited frequency-dependent enhancement, and phenytoin reduced this enhancement without altering responses evoked at low frequency. In whole-cell patch-clamp recordings the frequency of excitatory postsynaptic currents resulting from the spontaneous release of glutamate was reduced by phenytoin, with no change in amplitude, rise time or decay time. Similar effects were seen on miniature excitatory postsynaptic currents, recorded in the presence of tetrodotoxin. Evoked inhibitory postsynaptic potentials at GABA synapses displayed a frequency-dependent decrease in amplitude. Phenytoin caused a reduction in this decrement without affecting the responses evoked at low frequency. The frequency of spontaneous GABA-mediated inhibitory postsynaptic currents, recorded in whole-cell patch mode, was increased by phenytoin, and this was accompanied by the appearance of much larger amplitude events. The effect of phenytoin on the frequency of inhibitory postsynaptic currents persisted in the presence of tetrodotoxin, but the change in amplitude distribution largely disappeared. These results demonstrate for the first time that phenytoin can cause a simultaneous reduction in synaptic excitation and an increase in inhibition in cortical networks. The shift in balance in favour of inhibition could be a major factor in the anticonvulsant action of phenytoin.  相似文献   

19.
《Neuroscience》1999,91(1):7-20
The properties of postsynaptic potentials evoked by stimulation of cortical, retinal and GABAergic thalamic afferents were examined in vitro in thalamocortical neurons of the guinea-pig dorsal lateral geniculate nucleus. Brief trains of stimulation (2–10 stimuli) delivered to corticothalamic fibers led to a frequency-dependent increase in excitatory postsynaptic potential amplitude associated with an increase in activation of both N-methyl-d-aspartate and non-N-methyl-d-aspartate glutamate receptors. In addition, repetitive stimulation of corticothalamic fibers also gave rise to a slow excitatory postsynaptic potential that was blocked by local application of the glutamate metabotropic receptor antagonist α-methyl-4-carboxyphenylglycine. In contrast, repetitive stimulation of optic tract fibers resulted in monosynaptic excitatory postsynaptic potentials that did not potentiate and were not followed by the generation of a slow excitatory postsynaptic potential.Repetitive activation of the optic radiation also evoked both GABAA and GABAB receptor-mediated inhibitory postsynaptic potentials. These inhibitory postsynaptic potentials exhibited frequency-dependent depression during repetitive activation. The presence of frequency-dependent facilitation of corticothalamic excitatory postsynaptic potentials and frequency-dependent decrement of inhibitory postsynaptic potentials, as well as the ability of corticothalamic fibers to activate glutamate metabotropic receptors, suggests that sustained activation of corticothalamic afferents in vivo may result in postsynaptic responses in thalamocortical cells that are initially dominated by GABAergic inhibitory postsynaptic potentials followed by prominent monosynaptic excitatory postsynaptic potentials as well as a slow depolarization of the membrane potential.Therefore, the corticothalamic system may inhibit or enhance the excitability and responsiveness of thalamocortical neurons, based both on the spatial and temporal features of thalamocortical interactions.  相似文献   

20.
Experiments on albino mice showed that preliminary injection of tetanus toxoid increases the resistance of animals to tetanus toxin, as manifested by an increase in LD50. The effect is enhanced by increasing the dose of toxoid or by giving it in fractional doses. The use of protagon and unpurified mitochondrial fraction, isolated from the brain, as receptor of tetanus toxin in the nerve tissue revealed competition for substrate between the tetanus toxoid and toxin. The results of these experiments confirm the writers' earlier hypothesis that the tetanus toxin molecule contains different functional groups responsible for binding the toxin with the receptor in brain tissue, for the pathogenic action of the toxin, and for the binding of the toxin with antitoxin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号