首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 45 毫秒
1.
Systemic administration of anticholinergic drugs produces amnesia. To determine whether this effect can be prevented by increasing the magnitude of the learning experience, independent groups of rats were trained in passive avoidance, using a 3.0-mA footshock, and then injected with scopolamine (2, 4, 6, 8 or 12 mg/kg). When retention of the task was evaluated, a dose-dependent amnesic effect was found. When footshock intensity was increased to 6.0 and 9.0 mA, injections of 8 and 12 mg/kg of scopolamine did not produce memory impairments. These findings indicate that acetylcholine plays an important role in consolidation of passive avoidance, but it does not seem to be involved in memory processes when the magnitude of the negative reinforcer is increased.  相似文献   

2.
There is extensive evidence that amnestic treatments are less effective, or ineffective when administered to subjects that have been overtrained or subjected to high foot‐shock intensities in aversively motivated learning. This protective effect has been found with a variety of learning tasks and with treatments that disrupt activity in several regions of the brain, including the hippocampus, amygdala, striatum, and substantia nigra. Such findings have been interpreted as suggesting that the brain regions disrupted are not critical sites for the memory processes induced by these types of training. In most experiments investigating this issue the amnestic treatments were administered after training. Thus, it might be less amnesia was induced because the training accelerated memory consolidation and, thus, the maximum effect of the amnestic treatment occurred after memory of the learning experience was consolidated. This study investigated this issue by inactivating the hippocampus of rats bilaterally with tetrodotoxin (TTX) (10 ng/side) 30 min before one‐trial inhibitory avoidance training using relatively low (1.0 mA), medium (2.0 mA), or high (3.0 mA) foot‐shock intensities. Retention of the task was measured 48 h after training. TTX produced a profound retention deficit, a mild deficit, and no deficit at all in the 1.0, 2.0, and 3.0 mA groups, respectively. These data confirm the protective effect of training with relatively high foot‐shock intensity against experimentally induced amnesia, and suggests that this protection is not due to accelerated consolidation. Rather, the findings suggest that strong training activates brain systems other than those typically involved in mediating memory consolidation. © 2013 Wiley Periodicals, Inc.  相似文献   

3.
The hippocampus is widely recognized as playing an important role in learning and memory. Lesions of the hippocampus can disrupt spatial navigational learning and memory and injection of drugs into the hippocampus can affect both spatial navigational and nonspatial tasks. In the current studies we tested the effects of bilateral of electrolytic lesions and reversible inactivation of the hippocampus on acquisition and retention of T-maze footshock avoidance conditioning. Electrolytic lesions, which destroyed 31+/-0.04% of the hippocampus, significantly impaired acquisition and retention for T-maze footshock avoidance. No differences were found in motivation to avoid shock, open field activity, or foot shock sensitivity between lesion and control groups. Temporary inactivation of the hippocampus with lidocaine administered immediately before training disrupted acquisition and retention for T-maze footshock avoidance. Temporary hippocampal inactivation performed just prior to retention testing and post-training inactivation in mice trained to first avoidance had no effect on retention. However, temporary post-training inactivation in 'undertrained' (enough trials to remember 1 week later if treated with saline, but not allowed to make the avoidance response) mice impaired retention. The current findings indicate that the hippocampus plays an important role in learning and memory processing in the aversive T-maze paradigm.  相似文献   

4.
The hippocampus is essentially involved in learning and memory, and is known to be a target for androgen actions. Androgen receptors are densely expressed in CA1 of rat hippocampus, and mediate the effects of testosterone (T) on learning and memory. T depletion or administration can modulate neural function and cognitive performance. We conducted series of experiments to further investigate the effect of castration or intra hippocampal injection of T on acquisition, consolidation and retrieval of inhibitory avoidance learning and memory. Male adult rats were bilaterally cannulated into CA1 of hippocampus, and then received T (1, 10, 20, 40 and 80mug/0.5mul/side) or vehicle (DMSO), 30min before training, immediately after training and 30min before retrieval in inhibitory avoidance task. Castration was made by gonadectomy of male rats and behavioral tests performed 4 weeks later. Our results showed that gonadectomy of male rats did not influence performance on inhibitory avoidance task, as compared to sham-operated rats. We have also found that pre-training, post-training and pre-retrieval intra CA1 injections of T significantly decreased step-through latencies in inhibitory avoidance learning at doses 1 and 80, 20, and 20 and 40mug/0.5mul/side, respectively. The data suggest that intra CA1 administration of T could impair learning and memory acquisition, consolidation and retrieval, while systemic androgen's depletion have no effect on memory, in inhibitory avoidance task.  相似文献   

5.
Extensive evidence suggests that N-methyl-D-aspartate (NMDA) glutamate receptor channels in the amygdala are involved in fear-motivated learning, and infusion of NMDA receptor antagonists into the amygdala blocks memory of fear-motivated tasks. Recent studies have shown that previous training can prevent the amnestic effects of NMDA receptor antagonists on spatial learning. In the present study, we evaluated whether infusion of the NMDA antagonist D,L-2-amino-5-phosphonopentanoic acid (AP5) into the basolateral nucleus of the amygdala (BLA) impairs reinforcement of inhibitory avoidance learning in rats given previous training. Adult male Wistar rats (220-310 g) were bilaterally implanted under thionembutal anesthesia (30 mg/kg, i.p.) with 9.0-mm guide cannulae aimed 1.0 mm above the BLA. Infusion of AP5 (5.0 microg) 10 min prior to training in a step-down inhibitory avoidance task (0.4 mA footshock) blocked retention measured 24 h after training. When infused 10 min prior to a second training session in animals given previous training (0.2 mA footshock), AP5 blocked the enhancement of retention induced by the second training. Control experiments showed that the effects were not due to alterations in motor activity or footshock sensitivity. The results suggest that NMDA receptors in the basolateral amygdala are involved in both formation of memory for inhibitory avoidance and enhancement of retention in rats given previous training.  相似文献   

6.
The effect of restraint stress combined with water immersion (IMO+C), applied at various intervals before and after the acquisition of a passive avoidance task, was studied in rats. The procedure started with two pre-training trials. On the single training trial the rats received a footshock (0.3 mA, 3s) after they entered the preferred dark compartment. The exposure to IMO+C lasting 1 h terminated 4 or 1 h before application of the footshock or started immediately or 3 h after this aversive stimulus. Retention tests were performed 1 and 2 days after the acquisition trial. In an attempt to relate the behavioural responses to the stressor with plasma levels of two stress hormones we measured ACTH and corticosterone under similar conditions as were used in the behavioural experiments. IMO+C exposure terminating 1 h before the training resulted in very short avoidance latencies during retention testing. A similar impairment of retention test performance was found in animals exposed to the stressor immediately after training. When IMO+C exposure terminated 4 h before training the stressed rats exhibited comparably long avoidance latencies as shown by the controls. IMO+C presented 3 h after acquisition trial also did not influence retention of avoidance learning. The hormones were estimated 1 and 4 h after IMO+C, both in the absence and presence of footshock. Both ACTH and corticosterone were significantly increased 1 h after IMO+C termination, and their plasma levels returned to control values within 4 h. Footshock alone increased plasma corticosterone, however, the hormone levels were significantly lower than those estimated after IMO+C terminating 1 h before blood collection. Footshock substantially increased ACTH levels in rats exposed to IMO+C 1 h before footshock, but not in stressed rats with already high levels of corticosterone. In conclusion, IMO+C represents a strong stress stimulus exerting amnesic effect when applied shortly before or after the acquisition trial. Further, the findings indicate the restraint and cold stressor to interfere with consolidation of passive avoidance response. We suggest that the moderate circulating levels of corticosterone found after footshock may be positively related to the memory consolidation, while the exceedingly high levels have an opposite effect.  相似文献   

7.
A variety of manipulations which interfere with the activity of the striatum, including cholinergic blockade and spreading depression, produce amnesia. However, it has been demonstrated that with overtraining, striatal spreading depression and injections of anticholinergic drugs do not produce memory deficits in positively-rewarded tasks. In the present experiment 2% lidocaine was injected into the striatum shortly after training of passive avoidance, using three levels of footshock (0.2, 0.3, and 0.4 mA). Highly significant retention deficits were produced when the lower intensities were studied; in contrast, the animals trained with 0.4 mA showed near-perfect performance. The data show that the enhanced learning experience, which may be equivalent to overtraining, also protects against memory deficits in negatively-rewarded behaviors, and suggest that it induces a transfer of mnemonic functions from the striatum to other neural structures.  相似文献   

8.
The effect on retention of the post-training intraperitoneal administration of ACTH1–24 (0.2 or 2.0 μg/kg), epinephrine HC1 (5.0 or 50.0 μg/kg), human β-endorphin (0.1 or 1.0 μg/kg), naloxone (0.4 mg/kg), and of the combination of naloxine or β-endorphin with ACTH or epinephrine was studied in two different but closely related step-down inhibitory avoidance tasks in rats: task 1 (5 cm high 25 × 25 cm platform; 0.5 mA continuous footshock) and task 2 (7 × 25 cm platform, 0.3 mA discontinuous footshock). In task 1, saline control animals showed good retention in a test session carried out 24 hr later; β-endorphin, ACTH and epinephrine caused amnesia; β-endorphin potentiated the amnesic effect of ACTH and epinephrine; and naloxone caused memory facilitation and reversed the amnesic effect of ACTH and epinephrine. In task 2, control animals showed poor retention; β-endorphin caused amnesia at the dose of 0.1 but not 1.0 μg/kg; the other three drugs caused memory facilitation; naloxone potentiated the facilitatory effect of ACTH and epinephrine; and β-endorphin reversed it and transformed it into a deep amnesia.These findings suggest that an opioid-mediated amnesic mechanism modulates the effect of ACTH and epinephrine on memory consolidation, either by dampening that effect when training parameters tend to make it facilitatory, or by enhancing it when training conditions tend to make it amnesic. On the basis of these and previous data it seems likely that the amnesic effect of ACTH and epinephrine could be mediated by endogenous β-endorphin release.  相似文献   

9.
Previous evidence from our laboratory has shown that histamine receptors located into the ventral hippocampus modulate learning and memory processes. Stimulation of histamine hippocampal sensitive receptors during the acquisition phase of a conditioned avoidance response to an ultrasonic tone was able to increase latency to escape and impair memory in the rat. Histamine application into the same hippocampal region also impaired the evocation of the response. The purpose of the present work was to evaluate if histaminergic neuron circuits have participation on the consolidation processes of the conditioned avoiding response. Male adult rats were implanted into the ventral hippocampus with microinjection cannulae and subjected consecutively to 2 sessions of 8 trials to learn an avoidance response after an ultrasonic tone of 40 kHz was on, as it was previously described. Immediately after the training period was over, or 15 min after, different groups of rats were microinjected with saline, histamine or a combination of histamine H(1)- or H(2)-receptor antagonists. Twenty four hours later, animals were tested in a new session for the retention of the avoiding response. Results showed that histamine treatment interfered with the consolidation of the avoiding response, affecting latency and the memory efficiency. This interference was mediated by histamine H(1)- and H(2)-receptors, since pretreatment with pyrilamine or ranitidine blocked the inhibitory effect of histamine. Results support the concept that histaminergic neurotransmission modulates learning and memory by affecting selectively the three stages of learning.  相似文献   

10.
Many cell adhesion molecules express the HNK-1 carbohydrate involved in formation and functioning of synapses. To assess its role in learning, we injected the monoclonal HNK-1 antibody or nonimmune IgG into the hippocampus of C57BL/6J mice 1 h after training in a step-down avoidance task. In animals treated with the HNK-1 antibody, latencies of step down in a recall session 48 h after injection did not change compared to training values and were significantly shorter versus IgG-treated controls, which acquired the task normally. Similar differences between the two treatments were also observed after a stronger training protocol in a step-down avoidance paradigm. The HNK-1 antibody was effective only when injected 1 h, but not 48 h after training, thus affecting memory consolidation but not memory recall itself. The HNK-1 antibody impaired memory also in tenascin-R knock-out mice, indicating that extracellular matrix molecule tenascin-R, one of the carriers of the HNK-1epitope in the hippocampus, does not mediate the function of the HNK-1 carbohydrate in this task. Our observations show that the HNK-1 carbohydrate is critically involved in memory consolidation in hippocampus-dependent learning in mammals.  相似文献   

11.
Neuropeptide Y (NPY) is a 36 amino acid peptide which was shown to enhance memory retention, recall and prevent amnesia induced by either scopolamine or anisomycin. In this study, we examined the effects of NPY administration into 6 areas of the mouse brain on memory retention for footshock avoidance training in a T-maze. NPY was injected into the rostral and caudal hippocampus, amygdala, caudate, septum and thalamus shortly after training. NPY improved retention when injected into the rostral portion of the hippocampus and septum, impaired retention in the caudal portion of the hippocampus and amygdala and had no effect in the thalamus and caudate. NPY was ineffective at either improving or impairing retention when injected 24 h after training, thus demonstrating that the effects of NPY on retention were time-dependent and not due to proactive effects on retention test performance per se. In addition, NPY had no effect on retention when injected into overlying cortical areas. NPY antibody impaired retention when administered into the rostral hippocampus and septum; it improved retention in the caudal hippocampus and amygdala. Thus NPY antibody had the opposite effect to that of NPY on memory retention suggesting that NPY has a physiological role as a modulator of memory processing within specific anatomical areas of the central nervous system.  相似文献   

12.
Long-term potentiation and long-term depression (LTD) are forms of synaptic plasticity in the central nervous system. We now report that a group of chymotrypsin-like serine proteases, especially members of the S8A subfamily, induce LTD of evoked potentials in rat hippocampal slices. The proteolytic activity of these enzymes is required for the induction of LTD, as serine protease inhibitors prevent the effect. The depression is partly mediated by the suppression of transmitter release from glutamatergic terminals but also involves an elevation of action potential threshold with no change of post-synaptic membrane potential or input resistance. We have also isolated a novel and more potent related enzyme, cadeprin, from Aspergillus. The LTD produced by all of these proteases is not dependent on receptors for several transmitter systems, including N-methyl-d-aspartate or adenosine receptors, but is prevented by blocking group I metabotropic glutamate receptors. The activity of cadeprin, subtilisin and other S8A serine proteases may shed light on the mechanisms of LTD and a related endogenous molecule could have a physiological or pathological role as a modulator of synaptic plasticity in the mammalian hippocampus.  相似文献   

13.
It is well known that an emotionally arousing experience usually results in a robust and persistent memory trace. The present study explored the potential mechanisms involved in the influence of stress on the consolidation of a contextual fear memory in animals subjected to a weak fear training protocol, and whether pretreatment with intra-basolateral amygdala or systemic administration of midazolam (MDZ) prevents the potential stress-induced influence on fear memory formation. A previous restraint session facilitated fear retention, this effect was not due to a sensitized effect of restraint on the footshock experience. MDZ, both systemically or intra-basolateral amygdala infusion prior to the restraint, attenuated the stress-induced promoting influence on fear memory formation. In addition, stress exposure activated the ERK1/2 pathway in basolateral amygdala (BLA) after the weak training procedure but not after the immediate footshock protocol. Similar to our behavioral findings, MDZ attenuated stress-induced elevation of phospho-ERK2 (p-ERK2) in BLA following the acquisition session. Given that the activation of ERK1/2 pathway is essential for associative learning, we propose that stress-induced facilitation of p-ERK2 in BLA is an important mechanism for the promoting influence of stress on the consolidation of contextual fear memory.  相似文献   

14.
As a synaptosomal protein, SNAP-25 plays a role in a number of neuronal functions including axonal growth, dendrite formation, fusion of synaptic vesicles with membrane and the expression of long-term potentiation (LTP) in the hippocampus. Using a learning/memory behavior screening, we identified SNAP-25 as one of the differentially expressed genes in the hippocampus upon behavioral training. The inhibition of SNAP-25 with intracerebroventricular antisense oligonucleotide caused a deficit in long- but not short-term memory for step-down inhibitory avoidance. Intra-CA1 infusion of the SNAP-25 antisense oligonucleotide impaired long-term contextual fear memory and spatial memory and interfered with the LTP of synaptic transmission in the CA1 region. The inhibitory effect on LTP was not mediated by a pre-synaptic mechanism because paired pulse facilitation of synaptic transmission was not affected after administration of the antisense oligonucleotide. Together, the results suggest that SNAP-25 in the CA1 region is involved in memory consolidation.  相似文献   

15.
Modulation of memory processing by neuropeptide Y   总被引:9,自引:0,他引:9  
Neuropeptide Y (NPY) is a 36 amino acid peptide which occurs in high concentrations in the amygdala and the hippocampus. The studies reported here demonstrate that administration of porcine NPY into the third ventricle of the brain enhanced memory retention for T-maze footshock avoidance and step-down passive avoidance training in mice. Human NPY at 5 micrograms enhanced retention but the inactive free acid form for NPY did not. NPY at 5 micrograms administered subcutaneously did not enhance retention. Post-training administration of NPY produced a dose-dependent, inverted U-shaped dose-response curve for retention of both passive and active avoidance conditioning. NPY enhanced retention in a time-dependent manner. NPY was also found to alleviate the amnesia caused by anisomycin, a protein synthesis inhibitor, and scopolamine, an anticholinergic. Pre-test administration of NPY improved recall but did not affect acquisition. These data support the concept that NPY is a modulator of memory processes.  相似文献   

16.
The hippocampal formation plays an essential role in associative learning like passive avoidance (PA) learning. It has been shown; orexin-containing terminals and orexin receptors densely are distributed in the hippocampal formation. We have previously demonstrated that antagonization of orexin 1 receptor (OX1R) in CA1 region of hippocampus and dentate gyrus (DG) impaired spatial memory processing. Although, there are few studies concerning function of orexinergic system on memory processing in PA task, but there is no study about physiological function of OX1R on this process. To address this, the OX1R antagonist, SB-334867-A, was injected into DG or CA1 regions of hippocampus and evaluated the influence of OX1R antagonization on acquisition, consolidation and retrieval in PA task. Our results show that, SB-334867-A administration into CA1 region impaired memory retrieval but not PA acquisition and consolidation. However, SB-334867-A administration into DG region impaired acquisition and consolidation but not PA memory retrieval. Therefore, it seems that endogenous orexins play an important role in learning and memory in the rat through OX1Rs.  相似文献   

17.
Cortistatin (CST) is a recently described neuropeptide with high structural homology with somatostatin. Its mRNA is restricted to gamma amino butyric acid (GABA)-containing cells in the cerebral cortex and hippocampus. CST modulates the electrophysiology of the hippocampus and cerebral cortex of rats; hence, it may be modulating mnemonic processes. In this study, we have evaluated the effect of CST and somatostatin (SS) on short- and long-term memory (STM and LTM, respectively), as well as on the extinction of the behavior by using the footshock passive avoidance behavioral test. In addition, we tested the ability of both neuropeptides to affect the generation of cAMP in hippocampal neurons in culture. Results showed that the administration of either CST or SS into the hippocampal CA1 deteriorates memory consolidation in a dose-response fashion and facilitates the extinction of the learned behavior. CST was more potent than SS. Likewise, CST increases cAMP while SS decreases it. These results strongly support a modulatory role for CST in memory processes.  相似文献   

18.
Rats given 680 mg/kh diethyldithiocarbamate, approximately one half hour before training in an inhibitory avoidance task, had impaired retention performance when tested one week after training. Intracerebroventricular or subcutaneous injections of norepinephrine administered shortly after training attenuated the disruptive effects of DDC on retention performance. The effect depended upon the footshock intensity used during training. NE(0.01 microgram) administered centrally attenuated the DDC induced retention deficit when animals were trained with a high (2 mA) but not a low footshock (0.5 mA). The effect of peripherally administered NE also varied with intensity of footshock. The lowest dose of subcutaneously administered NE (5 microgram/kg) was effective in attenuating DDC induced retention deficits only when animals were trained with higher footshock. Higher doses of NE (50 microgram/kg, 500 microgram/kg) were more effective when animals were trained with lower footshock.  相似文献   

19.
Molecular accounts of memory consolidation suggest that new learning generates persistent synaptic modifications through activation of an extensive set of neuronal receptors and intracellular signal transduction pathways, accompanied by RNA and protein synthesis. This traditional cellular consolidation theory has been challenged by evidence that reactivation of a previously consolidated memory might render this memory again susceptible to disruption by amnesic treatments, a process generally referred to as reconsolidation. Current evidence indicates that reconsolidation can be disrupted by administration of a variety of pharmacological agents after memory reactivation. Previous studies have indicated that the gastrin-releasing preferring type of bombesin receptor (GRPR) and the N-methyl-D-aspartate glutamate receptor (NMDAR) in the rat hippocampus are involved in consolidation of inhibitory avoidance (IA), a fear-related memory task. We show here that blockade of hippocampal GRPRs or NMDARs after memory reactivation temporarily disrupts memory retention. Post-retrieval intra-hippocampal infusion of the GRPR antagonist RC-3095 or the NMDAR antagonist aminophosphonopentanoic acid (AP5) produced an impairment of IA performance tested 2 days after training in rats. However, this impairment was transient and recovered to levels of control rats in a subsequent test 3 days after training. The drug effects were only present after memory reactivation and not in its absence. These findings provide evidence that GRPR or NMDAR inactivation after retrieval can impair fear memory.  相似文献   

20.
During memory consolidation neuroplastic events in the mediotemporal corticohippocampal pathway are accompanied by transient increases in the frequency of neurons expressing polysialylated neural cell adhesion molecule (NCAM PSA), a posttranslational modification associated with morphofunctional change. As a bidirectional pathway between the hippocampus and the septal nuclei also influences memory processing, we have determined the distribution of NCAM PSA within this system before and after learning in the adult Wistar rat. The most intense NCAM PSA immunoreactivity was observed in the medial and triangular septal nuclei, regions that regulate hippocampal theta rhythm during memory consolidation. Within the fimbria, NCAM PSA was expressed only in a subpopulation of fibres, most likely cholinergic projections from the medial septum to the hippocampus. Grey level analysis or direct cell counting revealed no learning-specific change in NCAM PSA expression in these septal subregions after avoidance conditioning or spatial training. A population of discrete polysialylated neurons in the subtriangular septal zone, however, exhibited a transient twofold frequency increase at 12 hr after training in either task. Immunohistochemical analysis revealed these cells to be gamma-aminobutyric acid (GABAergic) interneurons co-expressing vasoactive intestinal peptide. The unique location of these interneurons is proposed to provide a natural plexus by which bidirectional communication between the septum and hippocampus may be modified during memory consolidation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号