首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The efferents and centrifugal afferents of the hamster olfactory bulbs were studied using orthograde and retrograde tracing techniques. Following injections of tritiated amino acids which were restricted to the main olfactory bulb (MOB), autoradiographic grains were observed ipsilaterally over layer IA of the entire anterior olfactory nucleus (AON), the ventral portion of the hippocampal rudiment (HR), the entire prepyriform cortex and olfactory tubercle, the anterior and posterolateral cortical amygdaloid nuclei and the lateral entorhinal cortex. An ipsilateral projection to the nucleus of the lateral olfactory tract (nLOT) was also indicated. No subcortical or contralateral projections were observed. Amino acid injections into the accessory olfactory bulb (AOB) revealed ipsilateral projections to the superficial plexiform layer of the medial and posteromedial cortical amygdaloid nuclei and to the bed nucleus of the accessory olfactory tract (nAOT) and the bed nucleus of the stria terminalis (nST). Following injections of HRP which were restricted to the MOB, contralateral HRP-positive neurons were found predominantly in pars externa and to a lesser extent in the other subdivisions of the AON. Centrifugal projections to the MOB were identified ipsilaterally from the entire AON, the ventral portion of the HR, the anterior portion of the prepyriform cortex, and the nLOT. No labelled neurons were found in the olfactory tubercle, the anterior and posterolateral cortical amygdaloid nuclei or the entorhinal cortex. Centrifugal projections to the MOB were also identified from subcortical structures of the ipsilateral basal forebrain and from midline structures of the midbrain. Labelling occurred in the fusiform neurons of the diagonal band near the medial base of the forebrain at the level of caudal olfactory tubercle. Heavy labelling was seen in a distinct group of large, predominantly multipolar neurons (magnocellular preoptic area) that continued from the level of caudal olfactory tubercle to the level of the nLOT. This band of HRP-positive neurons could be followed more caudally to a position dorsal and medial to the nLOT near the lateral margin of the lateral anterior hypothalamic area. The midbrain projections to the MOB originated in the dorsal and median raphe nuclei. After injections of HRP into the AOB, centrifugal projections were identified from the nAOT and the posteromedial cortical amygdaloid nucleus. In addition, isolated neurons were labelled in the medial cortical amygdaloid nucleus but no labelled neurons were found in the nST. These results support the notion of two anatomically distinct olfactory systems and demonstrate two previously unreported pathways through which the limbic system may modulate sensory processing in the olfactory bulb.  相似文献   

2.
The efferent and centrifugal afferent connections of the main olfactory bulb (MOB) of the mouse were studied by orthograde and retrograde transport of wheat germ agglutinin conjugated to horseradish peroxidase (WGA-HRP). MOB projects ipsilaterally to the anterior olfactory nucleus, taenia tecta, anterior hippocampal continuation, indusium grisium, olfactory tubercle, and the lateral and medial divisions of the entorhinal area. In the region of the anterior one-half to two-thirds of the posterior division of the insular cortex the projection from MOB extends into the insular cortex. The only efferent projection of MOB to the contralateral half of the brain was to the anterior olfactory nucleus. All efferent projections of MOB, thus, are to telencephalic structures. By contrast the centrifugal afferents to MOB originate from every major division of the neuraxis. Neurons projecting to the bulb were found ipsilaterally in all divisions of the anterior olfactory nucleus (AON). In some cases, labeling in the external division of AON was weak or absent. In the contralateral AON, pars externa was the most intensively labeled sub-division. Retrogradely labeled neurons were also present in all other subdivisions of the contralateral AON but were fewer in number and less heavily labeled than in the ipsilateral AON. Ipsilaterally, positive neurons were also present in taenia tecta, and the anterior hippocampal continuation. There was profuse retrograde labeling of neurons in the entire extent of the ipsilateral piriform cortex (PC). There was a rostral to caudal gradient of labeling in PC with more positive neurons in rostral than caudal parts. Labeled neurons were present in the lateral entorhinal cortex LEC and in the transitional cortex between LEC and PC. Very heavy retrograde labeling was present in the nuclei of the horizontal and vertical limbs of the diagonal band (HDB and VDB). More cells were labeled in HDB than in VDB. Neurons were labeled in the ipsilateral nucleus of the lateral olfactory tract (NLOT) and, when the injection spread into the accessory olfactory bulb, labeled neurons were present ventral to NLOT in accessory NLOT. A few lightly labeled neurons were always present in the posterolateral and medial cortical amygdaloid areas. Neurons were labeled in the zona inserta and scattered throughout several hypothalamic nuclei. There was massive retrograde labeling of neurons in the locus coeruleus and neurons were abundantly labeled in the dorsal and medial raphe nuclei and nucleus raphe pontis. In general, the labeling of MOB connections was more extensive than that which has been reported in closely related species.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

3.
The olfactory system of the frog Rana esculenta was studied by using horseradish peroxidase (HRP) tracing of axonal pathways. Injections of HRP were made in the main olfactory bulb (MOB), accessory olfactory bulb (AOB), anterior olfactory nucleus (AON), the amygdala (AMY), and in a zone of the leteral wall of the telencephalic hemisphere immediately posterior to the AOB. Projections from these sites are described and are generally similar to those obtained by degeneration methods. However, HRP reveals more extensive olfactory connections than previously reported. Ipsilateral, contralateral, and bilateral projections are described. The MOB, AOB, and AON have ipsilateral connections to each other. The MOB and AOB have very different projections. The MOB and AON project via the habenular commissure (HC) to the contralateral medial wall of the telencephalon. Ipsilateral MOB fibers also terminate in this cell-free zone where the medial forebrain bundle (MFB) originates. The AOB projects to the lateral cortex of the contralateral telencephalic hemisphere via the HC and also to the ipsilateral AMY and lateral forebrain bundle (LFB) from where some fibers project contralaterally. HRP injections in the AMY retrogradely fill cells in the ipsilateral AOB, two nuclei of the ipsilateral hypothalamus and a nucleus of cells caudal to the ipsilateral nucleus isthmi. Fibers are also labeled that project to the contralateral AMY. Few fibers were observed to decussate in the interpeduncular nucleus or optic chiasma. No olfactory fibers were found to project to the habenular nuclei, and no labeled neurons were found to project to the olfactory bulbs. No morphological asymmetry was observed qualitatively in the distribution of olfactory fibers in the two halves of the brain.  相似文献   

4.
A series of neuroanatomical, biochemical, and histochemical studies have been conducted to determine the sources of cholinergic afferents to the main olfactory bulb (MOB) in the hamster. Following horseradish peroxidase (HRP) injections that are restricted to the MOB, retrograde neuronal labeling is observed bilaterally in the anterior olfactory nucleus, locus coeruleus, and raphe nuclei, and ipsilaterally in the ventral hippocampal rudiment, dorsal peduncular cortex, piriform cortex, nucleus of the lateral olfactory tract, anterior pole of the medial septal area and vertical limb of the diagonal band, nucleus of the horizontal limb of the diagonal band (HDB), and hypothalamus. Spread of HRP into the accessory olfactory bulb results in additional neuronal labeling ipsilaterally in the bed nucleus of the accessory olfactory tract, medial amygdaloid nucleus, and bed nucleus of the stria terminalis, and bilaterally in the posteromedial cortical amygdaloid nucleus. Retrograde tracing studies also have been conducted in cases with lesions in the basal forebrain or hypothalamus to assess the extent to which such lesions interrupt fibers of passage from other sources of centrifugal afferents, and the effects of such lesions on choline acetyltransferase (CAT) activity and catecholamine content in the MOB and on acetylcholinesterase (AChE) activity in the forebrain have been evaluated. Lesions in the basal forebrain reduce or eliminate CAT and AChE activity in the MOB in direct relationship to the extent of damage to the HDB. Norepinephrine (NE) content in the MOB also is reduced by basal forebrain lesions, but in relationship to damage of the medial forebrain bundle (MFB). The hypothalamic lesions have no effect on AChE activity in the forebrain or on CAT activity in the MOB, but they eliminate retrograde labeling in the locus coeruleus and raphe nuclei and reduce the NE content of the MOB to undetectable levels. The dopamine content of the MOB is not reduced by any of the lesions. Anterograde tracing studies have been conducted to compare the rostral projection patterns of the HDB with the distribution of AChE activity. Most of the rostrally directed axons travel in association with the MFB. A small component of axons travels in association with the lateral olfactory tract. Within the MOB, the axons terminate predominantly in the glomerular layer and in the vicinity of the internal plexiform layer. The projection and termination patterns of the HDB correspond well with the distribution of AChE activity. These various results indicate that the HDB is the major source of cholinergic afferents to the MOB.  相似文献   

5.
Pheromonal stimuli elicit rapid behavioral and reproductive endocrine changes in the ewe. The neural pathways responsible for these effects in sheep are unknown, in part, because the olfactory bulb projections have not been examined in this species. Using the anterograde and retrograde neuronal tracer, wheat germ agglutinin-conjugated horseradish peroxidase (WGA-HRP), we describe the afferent and efferent olfactory bulb connections of the Suffolk ewe. Injections of WGA-HRP limited to the main olfactory bulb resulted in retrograde labeling of cells in numerous telencephalic, diencephalic, and metencephalic regions. Terminal labeling was limited to layer Ia of ipsilateral cortical structures extending rostrally from the anterior olfactory nucleus (AON), piriform cortex, anterior-, and posterolateral-cortical amygdaloid nuclei to lateral entorhinal cortex caudally. Injections involving the accessory olfactory bulb and AON produced additional labeling of cells within the bed nucleus of the stria terminalis (BNST), medial nucleus of the amygdala, and a few cells in the posteromedial cortical nucleus of the amygdala. Terminal labeling included a small dorsomedial quadrant of BNST and also extended to the far lateral portions of the supraoptic nucleus. A clearly defined accessory olfactory tract and nucleus was not evident, perhaps due to limitations in the sensitivity of the method. With this possible exception, the afferent and efferent olfactory connections in the sheep appear similar to those reported for other species.  相似文献   

6.
The central projections of the main olfactory bulb and the accessory olfactory bulb of the adult leopard frog (Rana pipiens) were reexamined, by using a horseradish peroxidase anterograde tracing method that fills axons with a continuous deposit of reaction product. The fine morphology preserved by this method allowed the terminal fields of the projection tracts to be delineated reliably, and for the first time. Herrick's amygdala has been newly subdivided into cortical and medial nuclei on the basis of cytoarchitecture, dendritic morphology, and the differential projections of the main and accessory olfactory tracts. The main olfactory bulb projects through the medial and lateral olfactory tracts to the postolfactory eminence, the rostral end of the medial cortex, the rostral end of the medial septal nucleus, the cortical amygdaloid nucleus, the nucleus of the hemispheric sulcus, and both the dorsal and ventral divisions of the lateral cortex, including its retrobulbar fringe. The lateral olfactory tract overlaps the dorsal edge of the striatal plate along the ventral border of the lateral cortex, but it is not certain whether any striatal cells are postsynaptic to the tract fibers. The lateral cortex is the largest of these territories, and receives the terminals of the main olfactory projection throughout its extent. It extends from the olfactory bulb to the posterior pole, and from the striatum to the summit of the hemisphere, where it borders the dorsal cortex. The medial and lateral olfactory tracts combine in the region of the amygdala to form a part of the stria medullaris thalami. These fibers cross in the habenular commissure and terminate in the contralateral cortical amygdaloid nucleus and periamygdaloid part of the lateral cortex. Cells projecting to the main olfactory bulb are found in the diagonal band and adjacent cell groups, but there is no evidence of an interbulbar projection arising from either the olfactory bulb proper or a putative anterior olfactory nucleus. The accessory olfactory bulb projects through the accessory olfactory tract to the medial and cortical amygdaloid nuclei. A fascicle of the tract crosses in the anterior commissure to terminate in the contralateral amygdala. While the main and accessory olfactory projections may converge in the cortical amygdaloid nucleus, the medial amygdaloid nucleus is connected exclusively with the accessory olfactory bulb.  相似文献   

7.
The afferent connections of the main and accessory olfactory bulbs in the rat were examined by injecting horseradish peroxidase (HRP) into one or the other of these structures either by microelectrophoresis or by hydraulic pressure. Alternate sections were stained with newly developed HRP-procedures using either benzidine dihydrochloride (de Olmos and Heimer, '77) or tetramethyl-benzidine. Eighteen to twenty-four hours after unilateral HRP injections confined to the main olfactory bulb, a large number of HRP-labeled perikaria appeared in the following telencephalic structures on the ipsilateral side: All portions of the anterior olfactory nucleus (AON) except its external part, the lateral transitional field (LT) between AON and the paleocortex, the whole extent of the primary olfactory cortex (POC); the medial forebrain bundle area deep to the olfactory tubercle, the nucleus of the horizontal limb of the diagonal band (NHDB) and the nucleus of the lateral olfactory tract (NLOT). A moderate to small number of labeled cells, furthermore, were seen in the dorsal (DT) and medial (MT) transition fields, the ventral praecommissural hippocampus (tt2), the ventral superficial part of the nucleus of the vertical limb of the diagonal band (NVDB), the sublenticular part of the substantia innominata (SI), the anterior amygdaloid area, the posterolateral cortical amygdaloid nucleus (C2) and the transition region (28 L') between the olfactory cortex and the lateral entorhinal area proper. On the contralateral side a large number of labeled cells were found in all parts of the AON, with especially heavy labeling in its external part. A moderate number of labeled cells could also be detected in the lateral transition field (LT) and the NLOT. In the diencephalon and the brain stem a moderate number of HRP-labeled perikaria were observed in the dorsal, perifornical, and lateral hypothalamus, as well as in locus coeruleus and the dorsal and medial raphae nuclei. Following large HRP injections in the main olfactory bulb a moderate to small number of labeled cells were seen also in the posterior and premammillary hypothalamus and in field CA1 of the retrocommissural hippocampus on the ipsilateral side, as well as in POC on the contralateral side. It is possible, however, that the uptake of label took place in an undetected pool of HRP in the very rostal part of AON rather than in the olfactory bulb. HRP injections in the accessory olfactory bulb resulted in labeled neurons in the posterior ventro-lateral part of the bed nucleus of the stria terminalis, the nucleus of the accessory olfactory tract, the rostrodorsal portions of the medial amygdaloid nucleus, and the whole extent of the posteromedial cortical amygdaloid nucleus (C3) on the ipsilateral side. A few lightly labeled cells were seen also in the contralateral C3.  相似文献   

8.
The efferent connections of the main and accessory olfactory bulbs in the female albino rabbit have been studied using the autoradiographic method for tracing axonal pathways. Following unilateral injections of 3H-proline or 3H-leucine into the main olfactory bulb, radioactively labeled material transported intraaxonally by axoplasmic flow in an anterograde direction from soma to axon terminal is present ipsilaterally in the superficial half of the plexiform layer (IA) of: the entire circumference of the olfactory peduncle, the tenia tecta, the full mediolateral extent of the olfactory tubercle, the entire length of the prepyriform cortex, a transition area between the prepyriform cortex and the horizontal limb of the nucleus of the diagonal band, the nucleus of the lateral olfactory tract, the anterior cortical and posterolateral cortical amygdaloid nuclei (periamygdaloid areas 1, rostral half of 2, 5 of Rose, '31), and the ventrolateral entorhinal cortex (entorhinal areas 1, 2, 4, 5, 7 of Rose, '31). No subcortical or contralateral projection of main bulb efferents was found. After a unilateral injection of 3H-leucine into the accessory olfactory bulb, transported material could be followed caudally along the dorsal surface of the ipsilateral lateral olfactory tract. This heavily labeled projection is distinct from the unlabeled lateral olfactory tract and has been termed the accessory olfactory tract. Beginning at the level of the caudal third of the olfactory tubercle and extending caudally to the nucleus of the lateral olfactory tract is a group of small neurons intimately associated with the accessory olfactory tract. This cell group is referred to as the bed nucleus of the accessory olfactory tract. Projection sites of the accessory bulb include the bed nucleus of the accessory olfactory tract and layer IA of the medial nucleus and the posteromedial cortical nucleus of the amygdala (periamygdaloid areas 3, 4, PAM, caudal half of 2, 6 of Rose, '31). An additional accessory bulb efferent projection was found to enter the stria terminalis at the level of the medial amygdaloid nucleus and could be traced to a posterior segment of the bed nucleus of the stria terminalis. The autoradiographic findings indicate that the accessory olfactory bulb connects with portions of the amygdala that do not receive afferent input from the main olfactory bulb and provide evidence for the existence of two distinct and separate olfactory systems.  相似文献   

9.
This paper is an account of the afferent and efferent projections of the nucleus sphericus (NS), which is the major secondary vomeronasal structure in the brain of the snake Thamnophis sirtalis. There are four major efferent pathways from the NS: 1) a bilateral projection that courses, surrounding the accessory olfactory tract, and innervates several amygdaloid nuclei (nucleus of the accessory olfactory tract, dorsolateral amygdala, external amygdala, and ventral anterior amygdala), the rostral parts of the dorsal and lateral cortices, and the accessory olfactory bulb; 2) a bilateral projection that courses through the medial forebrain bundle and innervates the olfactostriatum (rostral and ventral striatum); 3) a commissural projection that courses through the anterior commissure and innervates mainly the contralateral NS; and 4) a meager bilateral projection to the lateral hypothalamus. On the other hand, important afferent projections to the NS arise solely in the accessory olfactory bulb, the nucleus of the accessory olfactory tract, and the contralateral NS. This pattern of connections has three important implications: first, the lateral cortex probably integrates olfactory and vomeronasal information. Second, because the NS projection to the hypothalamus is meager and does not reach the ventromedial hypothalamic nucleus, vomeronasal information from the NS is not relayed directly to that nucleus, as previously reported. Finally, a structure located in the rostral and ventral telencephalon, the olfactostriatum, stands as the major tertiary vomeronasal center in the snake brain. These three conclusions change to an important extent our previous picture of how vomeronasal information is processed in the brain of reptiles. J. Comp. Neurol. 385:627–640, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

10.
The cells of origin and terminal fields of the amygdalo-hypothalamic projections in the lizard Podarcis hispanica were determined by using the anterograde and retrograde transport of the tracers, biotinylated dextran amine and horseradish peroxidase. The resulting labeling indicated that there was a small projection to the preoptic hypothalamus, that arose from the vomeronasal amygdaloid nuclei (nucleus sphericus and nucleus of the accessory olfactory tract), and an important projection to the rest of the hypothalamus, that was formed by three components: medial, lateral, and ventral. The medial projection originated mainly in the dorsal amygdaloid division (posterior dorsal ventricular ridge and lateral amygdala) and also in the centromedial amygdaloid division (medial amygdala and bed nucleus of the stria terminalis). It coursed through the stria terminalis and reached mainly the retrochiasmatic area and the ventromedial hypothalamic nucleus. The lateral projection originated in the cortical amygdaloid division (ventral anterior and ventral posterior amygdala). It coursed via the lateral amygdalofugal tract and terminated in the lateral hypothalamic area and the lateral tuberomammillary area. The ventral projection originated in the centromedial amygdaloid division (in the striato-amygdaloid transition area), coursed through the ventral peduncle of the lateral forebrain bundle, and reached the lateral posterior hypothalamic nucleus, continuing caudally to the hindbrain. Such a pattern of the amygdalo-hypothalamic projections has not been described before, and its functional implications in the transfer of multisensory information to the hypothalamus are discussed. The possible homologies with the amygdalo-hypothalamic projections in mammals and other vertebrates are also considered. J. Comp. Neurol. 384:537–555, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

11.
In the main olfactory system, odours are registered at the main olfactory epithelium and are then processed at the main olfactory bulb (MOB) and, subsequently, by the anterior olfactory nucleus (AON), the piriform cortex (PC) and the cortical amygdala. Previously, we reported populations of vasopressin neurones in different areas of the rat olfactory system, including the MOB, accessory olfactory bulb (AOB) and the AON and showed that these are involved in the coding of social odour information. Utilising immunohistochemistry and a transgenic rat in which an enhanced green fluorescent protein reporter gene is expressed in vasopressin neurones (eGFP‐vasopressin), we now show a population of vasopressin neurones in the PC. The vasopressin neurones are predominantly located in the layer II of the PC and the majority co‐express the excitatory transmitter glutamate. Furthermore, there is no sex difference in the number of neurones expressing vasopressin. Electrical stimulation of the lateral olfactory tract leads to a significant increase in the number of Fos‐positive nuclei in the PC, MOB, AOB, dorsal AON and supraoptic nucleus (SON). However, there was only a significant increase in Fos expression in vasopressin cells of the PC and SON. Thus, functionally distinct populations of vasopressin cells are implicated in olfactory processing at multiple stages of the olfactory pathway.  相似文献   

12.
The lateral cortex of the lizard Gekko gecko is composed of three parts: a dorsal and ventral part located rostrally and a posterior part located caudally. In order to obtain detailed information about the efferent connections of these lateral cortex subdivisions, iontophoretic injections of the anterograde tracers Phaseolus vulgaris leucoagglutinin and biotinylated dextran were made in the various parts. The main projection from the dorsal part terminates in the caudal part of the medial cortex. Other cortical projections were noted to the ipsi- and contralateral lateral cortex, the large-celled part of the medial cortex, and the dorsal cortex. Additional fibers were found bilaterally in the anterior olfactory nucleus and the external amygdaloid nucleus. The ventral part of the lateral cortex projects mainly to the ipsilateral, posterior part of the dorsal ventricular ridge and the external amygdaloid nucleus. Minor contralateral projections to these nuclei were also found. Other projections were observed to travel to the caudal part of the medial cortex, to the nucleus sphericus, and bilaterally to the lateral cortex and the anterior olfactory nucleus. The posterior part of the lateral cortex has similar efferent connections as the dorsal part and should be regarded as the caudal continuation of the dorsal part. Because previous studies have shown that the medial cortex and the amygdaloid complex project to different hypothalamic areas, we conclude that the dorsal and ventral parts of the lateral cortex transmit olfactory information to separate hypothalamic areas that are probably involved with different types of behavior. © 1995 Wiley-Liss, Inc.  相似文献   

13.
The projections of the main olfactory bulbs (MOBs) and the dorsal part of the anterior olfactory nucleus (NOA) in the hedgehog (Erinaceus europaeus) have been studied by fluorescent tracers and the horseradish peroxidase method (HRP), respectively, to reveal the pattern of labeling from these structures. After different dye injections in both MOBs, labeled cells were present in the following structures: tenia tecta, vertical limb of the diagonal band of Broca, and medial septal nucleus in the ipsilateral injection site; and the NOA, piriform cortex, nucleus of the lateral olfactory tract, horizontal limb of the diagonal band of Broca, posterolateral cortical amygdaloid nucleus, anterior amygdaloid area, and dorsal raphe nucleus in both hemispheres. Structures showing double-labeled cells were the NOA, horizontal limb of the diagonal band of Broca, nucleus of the lateral olfactory tract, anterior amygdaloid area, and posterolateral cortical amygdaloid nucleus. After HRP injections in the dorsal part of the NOA, labeled cells were distributed in the NOA, nucleus of the lateral olfactory tract, posterolateral cortical amygdaloid nucleus, piriform cortex, horizontal and vertical limbs of the diagonal band of Broca, mitral cell layer of the MOB, tenia tecta, anterior amygdaloid area, and the contralateral NOA. We suggest that the contralateral projection nuclei to the MOB of the hedgehog, unusual in other mammals, and the large number of cells with axonal collaterals projecting to both hemispheres, may be a strategy in these animals to bilaterally integrate brain functions at the expense of its reduced corpus callosum.  相似文献   

14.
The accessory olfactory system mediates intraspecies pheromonal communication. Two subsets of spatially segregated vomeronasal sensory neurons, presumably handling functionally and structurally different sets of ligand molecules, can be distinguished. The two subsets of sensory neurons project their axons to segregated zones of the accessory olfactory bulb (AOB) and connect with zonally separated mitral/tufted (M/T) cells, suggesting that the accessory olfactory system is divided into two distinct pathways up to the level of the AOB. To examine whether the segregation is maintained at the accessory olfactory cortical (AOC) regions, we selectively tracer-labelled mitral/tufted cells located in the rostral, caudal or in both zones of the adult mouse AOB. The results demonstrate that the axonal projection patterns of rostral zone and caudal zone M/T cells were indistinguishable in the AOC regions. Mitral/tufted cell axons from either zone of the AOB covered the entire area of all four AOC regions: the bed nucleus of the accessory olfactory tract, the medial amygdaloid nucleus, the posteromedial cortical amygdaloid nucleus and the bed nucleus of the stria terminalis. Therefore, over the entire area of each AOC region, ensembles of cortical neurons receive input from both zonal subsets of M/T cells of the AOB. However, the present results do not rule out the possibility that individual cortical neurons sample information from M/T cells of a single zone. These results are consistent with the idea that the segregation of zonal pathways collapses in the AOC regions. Clusters of cortical neurons in each AOC region may combine information from both families of pheromone receptors and thus handle signals from structurally and functionally different categories of pheromone molecules.  相似文献   

15.
The lateral telencephalon of Chimaera possesses several unique features but also has nuclei and fiber systems homologous with those of other sub-mammalian vertebrates. Ventricular ridges, similar to those of reptiles, are quite evident. Accessory olfactory bulbs are associated with the dorsal and ventral parts of each olfactory bulb. These contribute to the lateral olfactory tract. The internal granular layer caudal to the olfactory and the accessory bulbs blends with the anterior olfactory nucleus. Caudal to this nuclear area, the nuclei of the rostral telencephalon are well differentiated. Nuclear areas distinguishable in the lateral hemisphere include: the primordial dorsal pallium, the primordial piriform cortex, the primordial striatal and amygdaloid nuclei, and the lateral zone of the olfactory tubercle. These areas replace dorsal, dorsolateral, ventrolateral and ventral parts of the anterior olfactory nucleus, respectively. The primordial striatum is subdivided into hyperstriatum, neostriatum, paleostriatum augmentatum and paleostriatum primitivum. The amygdaloid area has anterior, corticomedial and basolateral nuclear groups. The basolateral area is best differentiated. The hyperstriatum forms a rostral ventricular eminence; the basolateral amygdaloid nucleus is present in a larger caudal ventricular ridge. Fiber tracts of the lateral wall include the lateral olfactory tract, the lateral corticohabenular tract, the lateral forebrain bundle and the stria terminalis. Nuclei of medial and lateral walls are interrelated through the hippocampal and the anterior commissures.  相似文献   

16.
The efferent connections from the dorsal cortex of the lizard Gekko gecko have been studied with the anterograde tracer Phaseolus vulgaris-leucoagglutinin. It appeared that the dorsal cortex is not a homogeneous structure as far as the efferent connections are concerned. All parts of the dorsal cortex project to the septum. All parts except the most medial project to the dorsal ventricular ridge, amygdala, nucleus periventricularis hypothalami, area lateralis hypothalami, and the anterior olfactory nucleus. The most medial part, in addition to the septal projections, is connected with the medial cortex and the contralateral medial and dorsal cortices. From the rostral part additional projections could be traced to the nucleus dorsolateralis hypothalami, nucleus ventromedialis thalami, nucleus dorsolateralis thalami, striatum, pallial thickening, medial cortex, nucleus olfactorius anterior, and the main and accessory olfactory bulbs. From the caudal part additional projections exist to the nucleus dorsomedialis thalami, nucleus accumbens, and the contralateral dorsal cortex. A system of intrinsic connections exists that can be subdivided into four subsystems, each of which subserves the interconnections within four subdivisions of the cortex: 1) the superficial medial part, 2) the deep medial part, 3) the caudal lateral and caudal intermediate parts, and 4) the rostral lateral and rostral intermediate parts. Connections between these four areas are scarce. From the present results the conclusion is drawn that the dorsal cortex of the lizard Gekko gecko has many hodological aspects in common with the ventral subiculum of mammals. The present results do not support the hypothesis that the dorsal cortex is the reptilian equivalent of the mammalian neocortex.  相似文献   

17.
Anterograde and retrograde axonal tracing methods have been combined with transection of the stria terminalis to investigate the centrifugal afferent connections of the accessory olfactory bulb in the mouse.Injection of tritiated proline into the postero-medial cortical amygdaloid nucleus (C3) gives rise to anterograde autoradiographic labelling of a pathway terminating in the internal granular layer of the accessory olfactory bulb (AOB). Transection of the ipsilateral stria terminalis completely abolishes labelling of this pathway. Injections further rostral, in the bed nucleus of the accessory olfactory tract (bnAOT) and medial amygdaloid nucleus (M), give rise to labelling of a second ipsilateral afferent pathway to the AOB which terminates in the internal plexiform layer (IPL) and is unaffected by strial transection.Injections of wheat germ lectin-HRP conjugate into the AOB confirm that it receives afferents from the ipsilateral bnAOT, M and C3, and from a few cells in the contralateral C3. Transection of the ipsilateral stria terminalis prevents retrograde labelling of any cells in the ipsilateral C3, but does not affect labelling of cells in M or bnAOT (or contralateral C3). The conjugate is also transported anterogradely in this system, labelling the efferent projections of the AOB to bnAOT, M and C3.It is concluded that the AOB receives at least two sets of ipsilateral afferents: one set from C3, via the stria terminalis, terminating in the internal granular layer, and a second set from M and/or bnAOT terminating in the IPL and probably running in the accessory olfactory tract.  相似文献   

18.
The amygdala of the box turtle lies beneath the posterior hypopallial ridge. Three nuclear groups may be distinguished in it: (1) the anterior amygdaloid area, (2) the basolateral group and (3) the corticomedial group. The anterior amygdaloid area shows no subdivisions; its location ventral and ventromedial to the caudal part of the small-celled portion of the piriform area is evident. The basolateral group is subdivided into lateral and basal amygdaloid nuclei. The interconnections of this group through the anterior commissure with the comparable area in the opposite amygdala and with the corticomedial group indicate that it is functionally a vicarious cortex. The corticomedial group is divisible into medial and cortical amygdaloid nuclei. The medial nucleus is poorly defined. The cortical nucleus is bounded by the medial amygdaloid nucleus on the medial side and the ventral border of the piriform cortex laterally, and is comparable to the cortical amygdaloid nucleus of higher vertebrates. The lateral olfactory tract arises from mitral cells of the olfactory bulb and accessory olfactory bulb and neurons of the anterior olfactory nucleus. The lateral part of the anterior olfactory nucleus, the lateral and the intermediate parts of the tuberculum olfactorium and the small-celled part of the piriform cortex contribute to and receive fibers from the lateral olfactory tract. The lateral olfactory tract sends fibers to the anterior amygdaloid area and the corticomedial group. The lateral corticohabenular tract has an anterior and a posterior division. The anterior division arises from cells of the nucleus of the lateral olfactory tract and the lateroventral portion of the piriform cortex. It is joined by those fascicles arising in the corticomedial group and designated as the amygdalohabenular tract. This tract crosses in the habenular commissure and retraces its course to enter the corticomedial amygdaloid nuclear group on the side opposite its origin. The basolateral group is interconnected through the anterior commissure. The stria terminalis contains three components which interconnect the corticomedial amygdaloid nuclear group with the septum, the preoptic area and the hypothalamus. The supracommissural and the intracommissural components relate the cortical and the medial nuclei to the septum, the preoptic area and the hypothalamus of the same side. The infracommissural component interconnects the cortical and the medial amygdaloid nuclei with the septum, the preoptic area and the hypothalamus of the same and the opposite side. The dorsal and the ventral olfactory projection tracts arise from the corticomedial amygdaloid nuclear group. They terminate in the preoptic area and anterior hypothalamus.  相似文献   

19.
Apically and basally located receptor neurons in the vomeronasal sensory epithelium express G(i2 alpha)- and G(o alpha)-proteins, V1R and V2R vomeronasal receptors, project to the anterior and posterior accessory olfactory bulb and respond to different stimuli, respectively. The extent to which secondary projections from the two portions of the accessory olfactory bulb are convergent in the vomeronasal amygdala is controversial. This issue is addressed by using anterograde and retrograde tract-tracing methods in rats including electron microscopy. Injections of dextran-amines, Fluoro Gold, cholera toxin-B subunit and Fast Blue were delivered to the anterior and posterior accessory olfactory bulb, bed nucleus of the stria terminalis, dorsal anterior amygdala and bed nucleus of the accessory olfactory tract/anteroventral medial amygdaloid nucleus. We have demonstrated that, apart from common vomeronasal-recipient areas, only the anterior accessory olfactory bulb projects to the bed nucleus of the stria terminalis, medial division, posteromedial part, and only the posterior accessory olfactory bulb projects to the dorsal anterior amygdala and deep cell layers of the bed nucleus of the accessory olfactory tract and the anteroventral medial amygdaloid nucleus. These results provide evidence that, excluding areas of convergence, the V1R and V2R vomeronasal pathways project to specific areas of the amygdala. These two vomeronasal subsystems are therefore anatomically and functionally separated in the telencephalon.  相似文献   

20.
We used the anterograde tracers Phaseolus vulgaris-leucoagglutinin (PHA-L) and biotinylated dextran amine (BDA) to examine the projections from the lateral, basal, and accessory basal nuclei of the amygdaloid complex to the entorhinal cortex in Macaca fascicularis monkeys. The heaviest amygdaloid projections originate in the lateral nucleus, which innervates the rostrally situated entorhinal fields but does not project to the caudal entorhinal cortex. The most extensive projections originate in the ventral division of the lateral nucleus. Injections in this subdivision lead to moderate to heavy fiber and terminal labeling in the entorhinal cortex, rostral levels of the rostral intermediate El (ER) and lateral fields, (ELr), and light labeling in the olfactory field EO. The projections from all portions of the lateral nucleus terminate most heavily in layer III. Layer II of EO and ER also receives a substantial input from the ventral division of the lateral nucleus. Layer II of ELr receives light innervation from all portions of the lateral nucleus that project to layer III. Projections from the basal nucleus arise mainly from the parvicellular division and are light to moderate in density. Fibers terminate predominantly in ELr, ER, EO, and the caudal portion of the lateral field (Elc); only the most rostral portion of El receives projections. While fibers from the basal nucleus innervate the same layers as the projections from the lateral nucleus, they tend to have a more vertical or radial orientation within the entorhinal cortex. Electron microscopic analysis of these fibers and terminals indicates that they overwhelmingly form asymmetrical synapses onto dendrites and dendritic spines. The accessory basal nucleus provides a light projection to the same regions of the entorhinal cortex innervated by the lateral and basal nuclei.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号