首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
Saxon LK  Galea G  Meakin L  Price J  Lanyon LE 《Endocrinology》2012,153(5):2254-2266
To determine the effect of estrogen receptors (ER) α and β on bones' adaptive response to loading, we subjected the right tibiae of mice lacking ERα or ERβ activity to either axial loading or to disuse. Adaptive changes in architecture were assessed by comparing differences between the right (treated) and left (control) tibiae in these genotypes as assessed by microcomputed tomography. In female ERα(-/-) mice, the net-osteogenic response to loading was lower in cortical bone compared with their wild-type littermates (11.2 vs. 20.9% in ERα(+/+)), but it was higher in both cortical and cancellous bone of male ERα(-/-) mice (cortical 20.0 vs. 4.6% in ERα(+/+); cancellous 30.0 vs. 5.3% in ERα(+/+), P < 0.05). In ERβ(-/-) male and female mice, the net-osteogenic response to loading was higher in cortical bone (males 10.9 vs. 3.9% in ERβ(+/+); females 18.5 vs. 15.8% in ERβ(+/+), P < 0.05) but no different from controls in cancellous bone. The bone loss in response to disuse was less in cancellous bone of ERα(-/-) mice than in controls (-15.9 vs. -21.3%, respectively, P < 0.05) but no different at any other site or between any other groups. Our conclusion is that functional ERα enhances the net-osteogenic response to loading in cortical but not cancellous bone in female mice but reduces it in males. ERβ decreases the response to loading in cortical bone of males and females but has no effect in cancellous bone. Bone loss due to disuse in cortical bone is unaffected by ER status, but in cancellous bone, functional ERα contributes to greater disuse-related bone loss.  相似文献   

4.
It has generally been assumed that bone mass is controlled by endocrine mechanisms and the local bone environment. Recent findings demonstrate that central pathways are involved in the regulation of bone mass. Estrogen is involved in the regulation of bone homeostasis and the CNS is also a target for estrogen actions. The aim of this study was to investigate in vivo the role of central estrogen receptor-α (ERα) expression for bone mass. Nestin-Cre mice were crossed with ERα(flox) mice to generate mice lacking ERα expression specifically in nervous tissue (nestin-ERα(-/-)). Bone mineral density was increased in both the trabecular and cortical bone compartments in nestin-ERα(-/-) mice compared with controls. Femoral bone strength was increased in nestin-ERα(-/-) mice, as demonstrated by increased stiffness and maximal load of failure. The high bone mass phenotype in nestin-ERα(-/-) mice was mainly caused by increased bone formation. Serum leptin levels were elevated as a result of increased leptin expression in white adipose tissue (WAT) and slightly increased amount of WAT in nestin-ERα(-/-) mice. Leptin receptor mRNA levels were reduced in the hypothalamus but not in bone. In conclusion, inactivation of central ERα signaling results in increased bone mass, demonstrating that the balance between peripheral stimulatory and central inhibitory ERα actions is important for the regulation of bone mass. We propose that the increased bone mass in nestin-ERα(-/-) mice is mediated via decreased central leptin sensitivity and thereby increased secretion of leptin from WAT, which, in turn, results in increased peripheral leptin-induced bone formation.  相似文献   

5.
Like the angiotensin II type 1 receptor blocker, endogenous estrogen (17β-estradiol) is neuroprotective against cerebral ischemia; its effects are thought to be mediated by estrogen receptors (ERs). To verify the role of ERs and the brain renin-angiotensin system in estrogen-deficient rats with ischemia induced by middle cerebral artery occlusion, we compared rats subjected to oophorectomy (OVX(+)) with sham-oophorectomized rats (OVX(-)) and OVX(+) rats treated with 0.3 or 3.0 mg/kg of olmesartan for 2 weeks before middle cerebral artery occlusion. Independent of the blood pressure, the cortical infarct volume was larger in OVX(+) than in OVX(-) rats. It was smaller in olmesartan-pretreated OVX(+) rats. The expression of ERα in the peri-infarct region was correlated with the reduction of cortical infarct but not that of ERβ or G protein-coupled estrogen receptor. Olmesartan prevented ERα downregulation in the cortical peri-infarct area, without affecting ERβ or G protein-coupled estrogen receptor. Olmesartan also increased mRNA expression of angiotensin-converting enzyme 2, Bcl-2, and Bcl-xL and reduced angiotensin II and cleaved caspase 3. These effects were augmented by olmesartan and abolished by the ER inhibitor. In OVX(+) rats treated with the ERα agonist alone, the infarct size was decreased, and the neuroprotective genes were upregulated. These findings suggest that the transactivation of neuroprotective genes and the reduction in brain angiotensin II are ERα dependent and that this may augment neuroprotection together with an angiotensin II type 1 receptor blockade by olmesartan. We present the new insight that the activation of ERα independent of estrogen contributes at least partly to limiting cerebral ischemic damage.  相似文献   

6.
7.
We examined whether estrogen receptor (ER)alpha is required for estrogen to stimulate cancellous bone formation in long bones of male mice. 17 beta-Estradiol (E(2)) was administered to ER alpha(-/-) male mice or wild-type (WT) littermate controls at 40, 400, or 4000 microg/kg by daily sc injection for 28 d and histomorphometric analysis performed at the distal femoral metaphysis. In WT mice, treatment with E(2) (40 microg/kg per d) increased the proportion of cancellous bone surfaces undergoing mineralization and stimulated mineral apposition rate. In addition, higher doses of E(2) induced the formation of new cancellous bone formation surfaces in WT mice. In contrast, E(2) had little effect on any of these parameters in ER alpha(-/-) mice. Immunohistochemistry was subsequently performed using an ER alpha-specific C-terminal polyclonal antibody. In WT mice, ER alpha was expressed both by cancellous osteoblasts and a significant proportion of mononuclear bone marrow cells. Immunoreactivity was also observed in cancellous osteoblasts of ER alpha(-/-) mice, resulting from expression of the activation function-1-deficient 46-kDa ER alpha isoform previously reported to be expressed in normal osteoblasts and bones of ER alpha(-/-) mice. Taken together, our results suggest that estrogen stimulates bone formation in mouse long bones via a mechanism that requires the presence of full-length ER alpha possessing activation function-1.  相似文献   

8.
The modulation of cardiac growth by estrogen in healthy mice is not completely understood. The aim was to investigate the effects of estrogen on cardiac growth in healthy mice lacking either estrogen receptor (ER) α or β. Wild-type (WT), ERα knockout (ERKO) and ERβ knockout (BERKO) 2-month-old mice were ovariectomized and randomly assigned to groups receiving an estradiol (E2)-containing or soy-free (control, CON) diet (= 5–7/group). After three months of E2 administration, WT and BERKO mice had significantly lower body weight, higher relative uterus and heart weight than CON mice, while there was no major E2 effect in ERKO mice. Furthermore, there was a higher concentration of E2-responsive genes Igf1 and Myocd in WT and BERKO but not in ERKO mice. Together, these findings indicate that the estrogenic regulation of cardiac growth in healthy mice is primarily mediated through ERα and not ERβ.  相似文献   

9.
Estrogen exerts a variety of important physiological effects, which have been suggested to be mediated via the two known estrogen receptors (ERs), alpha and beta. Three-month-old ovariectomized mice, lacking one or both of the two estrogen receptors, were given estrogen subcutaneously (2.3 micro g/mouse per day) and the effects on different estrogen-responsive parameters, including skeletal effects, were studied. We found that estrogen increased the cortical bone dimensions in both wild-type (WT) and double ER knockout (DERKO) mice. DNA microarray analysis was performed to characterize this effect on cortical bone and it identified four genes that were regulated by estrogen in both WT and DERKO mice. The effect of estrogen on cortical bone in DERKO mice might either be due to remaining ERalpha activity or represent an ERalpha/ERbeta-independent effect. Other effects of estrogen, such as increased trabecular bone mineral density, thymic atrophy, fat reduction and increased uterine weight, were mainly ERalpha mediated.  相似文献   

10.
11.
Gao F  Ma X  Ostmann AB  Das SK 《Endocrinology》2011,152(4):1434-1447
Although estradiol-17β (E2)-regulated early and late phase uterine responses have been well defined, the molecular mechanisms linking the phases remain poorly understood. We have previously shown that E2-regulated early signals mediate cross talk with estrogen receptor (ER)-α to elicit uterine late growth responses. G protein-coupled receptor (GPR30) has been implicated in early nongenomic signaling mediated by E2, although its role in E2-dependent uterine biology is unclear. Using selective activation of GPR30 by G-1, we show here a new function of GPR30 in regulating early signaling events, including the inhibition of ERK1/2 and ERα (Ser118) phosphorylation signals and perturbation of growth regulation under the direction of E2 in the mouse uterus. We observed that GPR30 primarily localizes in the uterine epithelial cells, and its activation alters gene expression and mediates inhibition of ERK1/2 and ERα (Ser118) phosphorylation signals in the stromal compartment, suggesting a paracrine signaling is involved. Importantly, viral-driven manipulation of GPR30 or pharmacological inhibition of ERK1/2 activation effectively alters E2-dependent uterine growth responses. Overall, GPR30 is a negative regulator of ERα-dependent uterine growth in response to E2. Our work has uncovered a novel GPR30-regulated inhibitory event, which may be physiologically relevant in both normal and pathological situations to negatively balance ERα-dependent uterine growth regulatory functions induced by E2.  相似文献   

12.
Activation of beta2-adrenergic receptors inhibits osteoblastic bone formation and enhances osteoclastic bone resorption. Whether beta-blockers inhibit ovariectomy-induced bone loss and decrease fracture risk remains controversial. To further explore the role of beta-adrenergic signaling in skeletal acquisition and response to estrogen deficiency, we evaluated mice lacking the three known beta-adrenergic receptors (beta-less). Body weight, percent fat, and bone mineral density were significantly higher in male beta-less than wild-type (WT) mice, more so with increasing age. Consistent with their greater fat mass, serum leptin was significantly higher in beta-less than WT mice. Mid-femoral cross-sectional area and cortical thickness were significantly higher in adult beta-less than WT mice, as were femoral biomechanical properties (+28 to +49%, P < 0.01). Young male beta-less had higher vertebral (1.3-fold) and distal femoral (3.5-fold) trabecular bone volume than WT (P < 0.001 for both) and lower osteoclast surface. With aging, these differences lessened, with histological evidence of increased osteoclast surface and decreased bone formation rate at the distal femur in beta-less vs. WT mice. Serum tartrate-resistance alkaline phosphatase-5B was elevated in beta-less compared with WT mice from 8-16 wk of age (P < 0.01). Ovariectomy inhibited bone mass gain and decreased trabecular bone volume/total volume similarly in beta-less and WT mice. Altogether, these data indicate that absence of beta-adrenergic signaling results in obesity and increased cortical bone mass in males but does not prevent deleterious effects of estrogen deficiency on trabecular bone microarchitecture. Our findings also suggest direct positive effects of weight and/or leptin on bone turnover and cortical bone structure, independent of adrenergic signaling.  相似文献   

13.
AMP-activated protein kinase (AMPK) is a key regulator of cellular and body energy homeostasis. We previously demonstrated that AMPK activation in osteoblasts increases in vitro bone formation while deletion of the Ampkα1 (Prkaa1) subunit, the dominant catalytic subunit expressed in bone, leads to decreased bone mass in vivo. To investigate the cause of low bone mass in the Ampkα1(-/-) mice, we analysed bone formation and resorption in the tibia of these mice by dynamic histomorphometry and determined whether bone turnover can be stimulated in the absence of the Ampkα1 subunit. We subjected 12-week-old Ampkα1(+)(/)(+) and Ampkα1(-/-) mice to ovariectomy (OVX), intermittent PTH (iPTH) administration (80?μg/kg per day, 5 days/week) or both OVX and iPTH hormonal challenges. Tibiae were harvested from these mice and bone micro-architecture was determined by micro-computed tomography. We show for the first time that Ampkα1(-/-) mice have a high bone turnover at the basal level in favour of bone resorption. While both Ampkα1(+)(/)(+) and Ampkα1(-/-) mice lost bone mass after OVX, the bone loss in Ampkα1(-/-) mice was lower compared with controls. iPTH increased trabecular and cortical bone indexes in both ovariectomised Ampkα1(+)(/)(+) and Ampkα1(-/-) mice. However, ovariectomised Ampkα1(-/-) mice showed a smaller increase in bone parameters in response to iPTH compared with Ampkα1(+)(/)(+) mice. By contrast, non-ovariectomised Ampkα1(-/-) mice responded better to iPTH treatment than non-ovariectomised Ampkα1(+)(/)(+) mice. Overall, these data demonstrate that Ampkα1(-/-) mice are less affected by changes in bone turnover induced by OVX but respond better to the anabolic challenge induced by iPTH. These results suggest that AMPKα1 activation may play a role in the hormonal regulation of bone remodelling.  相似文献   

14.
In this study, we compared the uterine tissue of estrogen receptor (ER)beta(-/-) mice and their WT littermates for differences in morphology, proliferation [the percentage of labeled cells 2 h after BrdUrd injection and EGF receptor (EGFR) expression], and differentiation (expression of progesterone receptor, E-cadherin, and cytokeratins). In ovariectomized mice, progesterone receptor expression in the uterine epithelium was similar in WT and ERbeta(-/-) mice, but E-cadherin and cytokeratin 18 expression was lower in ERbeta(-/-) mice. The percentage of cells in S phase was 1.5% in WT mice and 8% in ERbeta(-/-) mice. Sixteen hours after injection of 17beta-estradiol (E(2)), the number of BrdUrd-labeled cells increased 20-fold in WT mice and 80-fold in ERbeta(-/-) mice. Although ERalpha was abundant in intact mice, after ovariectomy, ERalpha could not be detected in the luminal epithelium of either WT or ERbeta(-/-) mice. In both untreated and E(2)-treated mice, ERalpha and ERbeta were colocalized in the nuclei of many stromal and glandular epithelial cells. However, upon E(2) + progesterone treatment, ERalpha and ERbeta were not coexpressed in any cells. In WT mice, EGFR was located on the membranes and in the cytoplasm of luminal epithelium, but not in the stroma. In ERbeta(-/-) mice, there was a marked expression of EGFR in the nuclei of epithelial and stromal cells. Upon E(2) treatment, EGFR on cell membranes was down-regulated in WT but not in ERbeta(-/-) mice. These findings reveal an important role for ERbeta in response to E(2) and in the organization, growth, and differentiation of the uterine epithelium.  相似文献   

15.

Objective

T cell production of RANKL, interferon‐γ (IFNγ), and other cytokines in inflammatory processes such as rheumatoid arthritis or secondary to conditions such as estrogen deficiency stimulates osteoclast activity, which leads to bone resorption and bone loss. The purpose of this study was to characterize the effects of interleukin‐15 (IL‐15), a master T cell growth factor whose role in bone remodeling remains unknown.

Methods

We used mice lacking the IL‐15 receptor (IL‐15Rα−/−) to investigate the effects of IL‐15 on osteoclast development, T cell and dendritic cell activation in vitro and in vivo, bone mass, and microarchitecture in intact and ovariectomized (OVX) mice.

Results

In wild‐type (WT) animals, IL‐15 and RANKL provided a costimulatory signal for osteoclast development. Spleens from IL‐15Rα−/− mice contained few c‐Kit+ osteoclast precursors, and the expression of NF‐ATc1 and the osteoclastogenic response to RANKL were impaired. In addition, dendritic cell–dependent and T cell–dependent mechanisms of osteoclast activation, including RANKL and IFNγ production, were impaired in IL‐15Rα−/− mice. In turn, IL‐15Rα−/− T cells failed to stimulate WT osteoclasts, whereas WT T cells failed to stimulate IL‐15Rα−/− osteoclasts. Compared with WT mice, both intact and OVX IL‐15Rα−/− mice had significantly greater bone mineral density and microarchitecture, including a higher trabecular bone volume fraction and cortical thickness. The numbers of osteoclasts on the bone surface as well as markers of bone turnover were significantly decreased in IL‐15Rα−/− mice.

Conclusion

In the absence of IL‐15 signaling, several converging mechanisms of osteoclastogenesis are inhibited, both directly and indirectly, through T cells, which leads to a high bone mass phenotype. Targeting the IL‐15 pathway may represent a novel therapeutic approach to treating primary and secondary osteoporosis.
  相似文献   

16.
Genistein, an isoflavone abundantly present in soybeans, has structural similarity to estrogen, suggesting that genistein may act as a phytoestrogen. To examine the possible role of genistein in hemopoiesis and bone metabolism, female mice were either sham-operated or ovariectomized (OVX), and selected OVX mice were administered genistein for 2-4 weeks (0.1-0.7 mg/day) or 17beta-estradiol (E2; 0.01-0.1 microg/day) s.c., using a miniosmotic pump (Alza Corp., Palo Alto, CA). In OVX mice, uterine weight declined but was completely restored by E2 administration. In contrast, genistein did not demonstrate a reversal of the OVX-induced uterine atrophy. The number of bone marrow cells markedly increased, 2-4 weeks after OVX, and most of these were B220-weakly positive pre-B cells. The increased B-lymphopoiesis was completely restored, not only by E2 but also by genistein administration. In OVX mice, the trabecular bone volume of the femoral distal metaphysis, measured by microcomputed tomography scanning and dual-energy x-ray absorptiometry, was markedly reduced; and genistein restored this, as did E2. These results indicate that genistein exhibits estrogenic action in bone and bone marrow, to regulate B-lymphopoiesis and prevent bone loss, without exhibiting estrogenic action in the uterus. Phytoestrogens may be useful for preventing bone loss caused by estrogen deficiency in females.  相似文献   

17.
The two known estrogen receptors, ERalpha and ERbeta, mediate the effects of estrogen in all target tissues, including blood vessels. We have shown previously that estrogen inhibits vascular injury response to the same extent in female wild-type (WT), ERalpha knockout (ERalphaKO(CH)), and ERbeta knockout (ERbetaKO(CH)) mice. We generated mice harboring disruptions of both ERalpha and ERbeta genes (ERalpha,betaKO(CH)) by breeding and studied the effect of 17beta-estradiol (E2) on vascular injury responses in ovariectomized female ERalpha,betaKO(CH) mice and WT littermates. E2 inhibited increases in vascular medial area following injury in the WT mice but not in the ERalpha,betaKO(CH) mice, demonstrating for the first time that the two known estrogen receptors are necessary and sufficient to mediate estrogen inhibition of a component of the vascular injury response. Surprisingly, as in WT littermates, E2 still significantly increased uterine weight and inhibited vascular smooth muscle cell (VSMC) proliferation following injury in the ERalpha,betaKO(CH) mice. These data support that the role of estrogen receptors differs for specific components of the vascular injury response in the ERalpha,betaKO(CH) mice. The results leave unresolved whether E2 inhibition of VSMC proliferation in ERalpha,betaKO(CH) mice is caused by a receptor-independent mechanism, an unidentified receptor responsive to estrogen, or residual activity of the ERalpha splice variant reported previously in the parental ERalphaKO(CH) mice. These possibilities may be resolved by studies of mice in which ERalpha has been fully disrupted (ERalphaKO(St)), which are in progress.  相似文献   

18.
It is well known that menopause could worsen age-related ventricular concentric remodeling following estrogen (E2) deficiency. However the underlying mechanisms of such phenomena are not fully understood. Mitochondria, as the ‘cellular power station’ of hearts, play an important role in maintaining normal cardiac function and structure. Therefore, the present study aims to investigate whether mitochondrial compromise is responsible for E2 deficiency associated concentric remodeling and, if so, what is its underlying molecular mechanism. We found evident concentric remodeling pattern in both postmenopausal and ovariectomized (OVX) mice, which could be attenuated by E2 replacement. Further study showed mitochondrial structural damages and respiratory function impairment in myocardium of both postmenopausal and OVX mice and E2 supplement reversed mitochondrial dysfunction in OVX mice, suggesting that E2 deficiency could induce mitochondrial compromise in the heart. Then, peroxisome proliferator-activated receptor-γ co-activator 1-α (PGC-1α), a key mitochondrial function and biology regulator, was found significantly reduced in both postmenopausal and OVX mice. The reduction of PGC-1α protein level in OVX mice could be rescued by E2 delivery, indicating that E2 could positively regulate PGC-1α expression. Next, we found that microRNA-23a (miR-23a) could be negatively regulated by E2 in both myocardium and cultured cardiomyocytes. Moreover, miR-23a could directly downregulate PGC-1α expression in cardiomyocytes via binding to its 3′UTR which implied that miR-23a could be critical for the downregulation of PGC-1α under E2 deficiency. Overexpression of miR-23a was also found to damage mitochondria in cultured cardiomyocytes, ascribed to PGC-1α downregulation. Taken together, E2 deficiency may cause mitochondrial compromise through miR-23a-mediated PGC-1α downregulation, which may subsequently lead to the menopause-associated concentric remodeling.  相似文献   

19.
Hu F  Wang Q  Wang P  Wang W  Qian W  Xiao H  Wang L 《Endocrine》2012,41(2):274-280
Estradiol (E2) plays a key role in pain modulation, and the biological effects of E2 are transduced by binding estrogen receptors (ERs). Voltage-gated sodium (Nav) channels are responsible for the generation and propagation of action potentials in the membranes of most neurons and excitable cells. Adult dorsal root ganglion (DRG) neurons can express the ERs (ERα and ERβ), and Nav channels (TTX-S: Nav1.1, Nav1.6, and Nav1.7; and TTX-R: Nav1.8, and Nav1.9). Although E2 modulates Nav channel currents, little is known about the molecular mechanisms involved. In this study, we investigate the mRNA expressions of Nav channel subtypes mediated differentially by the ERs in the DRGs of wild-type (WT) and estrogen receptor knockout (αERKO and βERKO) mice. By means of quantitative real-time PCR, we found that the expressions of Nav1.1, Nav1.7, Nav1.8, and Nav1.9 subtypes were elevated in αERKO and βERKO mice, whereas Nav1.6 mRNA decreased in αERKO, but not in βERKO mice. The mRNA expressions of Nav subtypes were increased in E2-treated WT ovariectomized animals. We also found that E2-regulation of Nav1.1 and Nav1.9 mRNA expressions is dependent on ERα, ERβ, and another ER, whereas E2-regulation of Nav1.8 appears to be in an ERβ-dependent manner.  相似文献   

20.
Recent data indicate that the catechol estrogen, 2-hydroxyestrone (2-OHE(1)), has no effect on any target tissue including bone, whereas 16 alpha-hydroxyestrone (16 alpha-OHE(1)) exerts tissue-selective estrogen agonist activity. The effect of the catechol estrogen, 4-hydroxyestrone (4-OHE(1)), putatively associated with tumorigenesis, has not been studied in the skeleton. The purpose of this study was to assess the effect of 4-OHE(1) on tibia, uterine and mammary gland histology and blood cholesterol in ovariectomized (OVX'd) growing rats. Ten-week-old female Sprague-Dawley rats were injected subcutaneously with 200 microg/kg BW per day with 4-OHE(1), 17 beta-estradiol (E(2)) or vehicle for three weeks. OVX resulted in uterine atrophy, increased body weight, radial bone growth and cancellous bone turnover, and hypercholesterolemia. E(2) prevented these changes with the expected exception that the subcutaneous infusion of this high dose of estrogen did not prevent the hypercholesterolemia. 4-OHE(1) prevented the increase in blood cholesterol and the increase in body weight. 4-OHE(1) appeared to have partial estrogen activity in the uterus; uterine weight and epithelial cell height were significantly greater than the OVX rats but significantly less (twofold) than the E(2) animals. Analysis of variance indicated that 4-OHE(1) slightly decreased the periosteal mineral apposition rate (P<0.05) compared with vehicle-treated rats but had no effect on double-labeled perimeter or bone formation rate. Similarly, 4-OHE(1) was a partial estrogen agonist on cancellous bone turnover. The data suggest that the catechol estrogen, 4-OHE(1), unlike 2-OHE(1), has estrogen activity. Furthermore, the profile of activity differs from that of 16 alpha-OHE(1). Our results suggest that estrogen metabolites may selectively influence estrogen-target tissues and, concomitantly, modulate estrogen-associated disease risk.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号