首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Buteau J  Foisy S  Joly E  Prentki M 《Diabetes》2003,52(1):124-132
We previously provided evidence that glucagon-like peptide 1 (GLP-1) induces pancreatic beta-cell growth nonadditively with glucose in a phosphatidylinositol (PI) 3-kinase- and protein kinase C zeta-dependent manner. However, the exact mechanism by which the GLP-1 receptor (GLP-1R), a member of the G protein-coupled receptor (GPCR) superfamily, activates the PI 3-kinase signaling pathway to promote beta-cell growth remains unknown. We hypothesized that the GLP-1R could activate PI 3-kinase and promote beta-cell proliferation through transactivation of the epidermal growth factor (EGF) receptor (EGFR), an event possibly linked to GPCRs via activation of c-Src and the production of putative endogenous EGF-like ligands. Both the c-Src inhibitor PP1 and the EGFR-specific inhibitor AG1478 blocked GLP-1-induced [(3)H]thymidine incorporation in INS(832/13) cells as well as in isolated rat islets, while only AG1478 inhibited the proliferative action of betacellulin (BTC), an EGFR agonist. Both compounds also suppressed GLP-1-induced PI 3-kinase activation. A time-dependent increase in tyrosine phosphorylation of the EGFR in response to GLP-1 was observed in INS(832/13) cells. This transactivation of the EGFR was sensitive to both the pharmacological agents PP1 and AG1478. The action of GLP-1 and BTC on INS cell proliferation was found to be not additive. Overexpression of a dominant-negative EGFR in INS cells with a retroviral expression vector curtailed GLP-1-induced beta-cell proliferation. GLP-1 treatment of INS cells caused a decrease in cell surface-associated BTC, as shown by FACS analysis. Also, the metalloproteinase inhibitor GM6001 and an anti-BTC neutralizing antibody suppressed the GLP-1 proliferative effect. Finally, coculturing the prostatic cancer cell line LNCaP that lacks GLP-1 responsiveness with INS cells increased LNCaP cell proliferation in the presence of GLP-1, thus revealing that INS cells secrete a growth factor in response to GLP-1. GM6001 and an anti-BTC neutralizing antibody suppressed increased LNCaP cell proliferation in the presence of GLP-1 in the coculture experiments. The results are consistent with a model in which GLP-1 increases PI 3-kinase activity and enhances beta-cell proliferation via transactivation of the EGFR that would require the proteolytic processing of membrane-anchored BTC or other EGF-like ligands.  相似文献   

3.
Donath MY  Gross DJ  Cerasi E  Kaiser N 《Diabetes》1999,48(4):738-744
The gerbil Psammomys obesus develops nutrition-dependent diabetes associated with moderate obesity. The disease is characterized by initial hyperinsulinemia, progressing to hypoinsulinemia associated with depleted pancreatic insulin stores. The contribution of changes in beta-cell turnover to insulin deficiency was investigated in vivo during transition to overt diabetes. Normo glycemic diabetes-prone P. obesus animals who were given a high-calorie diet developed hyperglycemia within 4 days, which was found to be associated with a progressive decline in pancreatic insulin content. This was accompanied by a transient increase in beta-cell proliferative activity and by a prolonged increase in the rate of beta-cell death, culminating in disruption of islet architecture. The hypothesis that "glucotoxicity" was responsible for these in vivo changes was investigated in vitro in primary islet cultures. Exposure of islets from diabetes-prone P. obesus to high glucose levels resulted in a dose-dependent increase in beta-cell DNA fragmentation. In contrast, high glucose levels did not induce DNA fragmentation in rat islets, whereas islets from a diabetes-resistant P. obesus line exhibited a reduced and delayed response. Aminoguanidine did not prevent glucose-induced beta-cell DNA fragmentation in vitro, suggesting that formation of nitric oxide and/or advanced glycation end products plays no major role. Elevated glucose concentrations stimulated beta-cell proliferation in both rat and P. obesus islets. However, unlike the marked long-lasting effect in rat islets, only a transient and reduced proliferative response was observed in P. obesus islets; furthermore, beta-cell proliferation was inhibited after prolonged exposure to elevated glucose levels. These results suggest that hyperglycemia-induced beta-cell death coupled with reduced proliferative capacity may contribute to the insulin deficiency and deterioration of glucose homeostasis in P. obesus. Similar adverse effects of hyperglycemia could play a role in the evolution of type 2 diabetes in genetically susceptible individuals.  相似文献   

4.
BACKGROUND: Local anesthetics, especially lidocaine, can lead to persistent cauda equina syndrome after spinal anesthesia. Recently, lidocaine has been reported to trigger apoptosis, although the underlying mechanisms remain unknown. To elucidate the pathway of lidocaine-induced apoptosis, the authors used genetically modified cells with overexpression or deficiencies of key regulators of apoptosis. METHODS: Human Jurkat T-lymphoma cells overexpressing the antiapoptotic protein B-cell lymphoma 2 as well as cells deficient of caspase 9, caspase 8, or Fas-associated protein with death domain were exposed to lidocaine and compared with parental cells. The authors evaluated cell viability, mitochondrial alterations, cytochrome c release, caspase activation, and early apoptosis. Apoptosis was in addition investigated in neuroblastoma cells. RESULTS: In Jurkat cells, lidocaine reduced viability, associated with a loss of the mitochondrial membrane potential. At low concentrations (3-6 mm) of lidocaine, caspase 3 was activated and release of cytochrome c was detected, whereas at higher concentrations (10 mm), no caspase activation was found. Apoptosis by lidocaine was strongly reduced by B-cell lymphoma-2 protein overexpression or caspase-9 deficiency, whereas cells lacking the death receptor pathway components caspase 8 and Fas-associated protein with death domain were not protected and displayed similar apoptotic alterations as the parental cells. Lidocaine also induced apoptotic caspase activation in neuroblastoma cells. CONCLUSIONS: Apoptosis is triggered by concentrations of lidocaine occurring intrathecally after spinal anesthesia, whereas higher concentrations induce necrosis. The data indicate that death receptors are not involved in lidocaine-induced apoptosis. In contrast, the observation that B-cell lymphoma-2 protein overexpression or the lack of caspase 9 abolished apoptosis clearly implicates the intrinsic mitochondrial death pathway in lidocaine-induced apoptosis.  相似文献   

5.
The beta-cells in the pancreatic islets of Langerhans are the targets of autoreactive T-cells and are destroyed in type 1 diabetes. Macrophage-derived interleukin-1beta (IL-1beta) is important in eliciting beta-cell dysfunction and initiating beta-cell damage in response to microenvironmental changes within islets. In particular, IL-1beta can impair glucose-stimulated insulin production in beta-cells in vitro and can sensitize them to Fas (CD95)/FasL-triggered apoptosis. In this report, we have examined the ability to block the detrimental effects of IL-1beta by genetically modifying islets by adenoviral gene transfer to express the IL-1 receptor antagonist protein. We demonstrate that adenoviral gene delivery of the cDNA encoding the interleukin-1 receptor antagonist protein (IL-1Ra) to cultured islets results in protection of human islets in vitro against IL-1beta-induced nitric oxide formation, impairment in glucose-stimulated insulin production, and Fas-triggered apoptosis activation. Our results further support the hypothesis that IL-1beta antagonism in in situ may prevent intra-islet proinsulitic inflammatory events and may allow for an in vivo gene therapy strategy to prevent insulitis and the consequent pathogenesis of diabetes.  相似文献   

6.
7.
8.
9.
Pancreatic islet transplantation as a treatment for type 1 diabetes is limited by human donor tissue availability. We investigated whether the beta-cell mass in human isolated islets could be expanded by treatments with glucagon-like peptide-1 (GLP-1) and gastrin, peptides reported to stimulate beta-cell growth in mice and rats with deficits in beta-cell mass. Human islets with low endocrine cell purity (7% beta-cells, 4% alpha-cells) and abundant exocrine cells (29% duct cells and 25% acinar cells) were implanted under the renal capsule of nonobese diabetic-severe combined immune deficiency (NOD-scid) mice made diabetic with streptozotocin. The mice were treated with GLP-1 and gastrin, separately and together, daily for 5 weeks. Blood glucose was significantly reduced only in mice implanted with human pancreatic cells and treated with GLP-1 plus gastrin. Correction of hyperglycemia was accompanied by increased insulin content in the human pancreatic cell grafts as well as by increased plasma levels of human C-peptide in the mice. Immunocytochemical examination revealed a fourfold increase in insulin-positive cells in the human pancreatic cell grafts in GLP-1 plus gastrin-treated mice, and most of this increase was accounted for by the appearance of cytokeratin 19-positive pancreatic duct cells expressing insulin. We conclude that combination therapy with GLP-1 and gastrin expands the beta-cell mass in human islets implanted in immunodeficient diabetic mice, largely from pancreatic duct cells associated with the islets, and this is sufficient to ameliorate hyperglycemia in the mice.  相似文献   

10.
Choe SS  Choi AH  Lee JW  Kim KH  Chung JJ  Park J  Lee KM  Park KG  Lee IK  Kim JB 《Diabetes》2007,56(6):1534-1543
Liver X receptor (LXR)alpha and LXRbeta play important roles in fatty acid metabolism and cholesterol homeostasis. Although the functional roles of LXR in the liver, intestine, fat, and macrophages are well established, its role in pancreatic beta-cells has not been clearly defined. In this study, we revealed that chronic activation of LXR contributes to lipotoxicity-induced beta-cell dysfunction. We observed significantly elevated expression of LXR in the islets of diabetic rodent models, including fa/fa ZDF rats, OLETF rats, and db/db mice. In primary pancreatic islets and INS-1 insulinoma cells, activation of LXR with a synthetic ligand, T0901317, stimulated expression of the lipogenic genes ADD1/SREBP1c, FAS, and ACC and resulted in increased intracellular lipid accumulation. Moreover, chronic LXR activation induced apoptosis in pancreatic islets and INS-1 cells, which was synergistically promoted by high glucose conditions. Taken together, we suggest lipid accumulation caused by chronic activation of LXR in beta-cells as a possible cause of beta-cell lipotoxicity, a key step in the development of type 2 diabetes.  相似文献   

11.
Epidermal growth factor receptor (EGF-R) signaling is essential for proper fetal development and growth of pancreatic islets, and there is also evidence for its involvement in beta-cell signal transduction in the adult. To study the functional roles of EGF-R in beta-cell physiology in postnatal life, we have generated transgenic mice that carry a mutated EGF-R under the pancreatic duodenal homeobox-1 promoter (E1-DN mice). The transgene was expressed in islet beta- and delta-cells but not in alpha-cells, as expected, and it resulted in an approximately 40% reduction in pancreatic EGF-R, extracellular signal-related kinase, and Akt phosphorylation. Homozygous E1-DN mice were overtly diabetic after the age of 2 weeks. The hyperglycemia was more pronounced in male than in female mice. The relative beta-cell surface area of E1-DN mice was highly reduced at the age of 2 months, while alpha-cell surface area was not changed. This defect was essentially postnatal, since the differences in beta-cell area of newborn mice were much smaller. An apparent explanation for this is impaired postnatal beta-cell proliferation; the normal surge of beta-cell proliferation during 2 weeks after birth was totally abolished in the transgenic mice. Heterozygous E1-DN mice were glucose intolerant in intraperitoneal glucose tests. This was associated with a reduced insulin response. However, downregulation of EGF-R signaling had no influence on the insulinotropic effect of glucagon-like peptide-1 analog exendin-4. In summary, our results show that even a modest attenuation of EGF-R signaling leads to a severe defect in postnatal growth of the beta-cells, which leads to the development of diabetes.  相似文献   

12.
BACKGROUND: The objective of this study was to characterize the involvement of the Fas receptor/ligand system in p53-dependent apoptosis in human prostate cancer cells. METHODS: The effects of adenovirus-mediated p53 gene transfer (Ad5CMV-p53) into human prostate cancer LNCaP, DU145, and PC3 cells on their growth, apoptosis and Fas receptor/ligand expression were examined by the MTT assay, DNA fragmentation assay, and Northern blot analysis, respectively. The sensitivity of these cells to an agonistic anti-Fas receptor antibody (CH11) and the effects of an antagonistic anti-Fas ligand antibody (4H9) on Ad5CMV-p53-induced apoptosis were analyzed by the MTT assay and DNA fragmentation assay. RESULTS: Ad5CMV-p53 treatment resulted in substantial growth inhibition, induction of apoptosis and up-regulation of Fas receptor as well as Fas ligand mRNA expression in LNCaP, DU145 and PC3 cells. Despite the abundant expression of Fas receptor in all of these cells, CH11 induced apoptosis only in PC3 cells. Furthermore, 4H9 partially blocked the apoptosis induced by Ad5CMV-p53 in PC3 cells, but not in LNCaP and DU145 cells. CONCLUSIONS: The Fas receptor/ligand system is differentially involved in p53-dependent apoptosis in prostate cancer cells; therefore, reintroduction of wild-type p53 into prostate cancer cells may induce apoptosis through Fas receptor/ligand interaction as well as through an alternative pathway.  相似文献   

13.
14.
Homeostasis of blood glucose is mainly regulated by the coordinated secretion of glucagon and insulin from alpha- and beta-cells within the islets of Langerhans. The release of both hormones is Ca(2+) dependent. In the current study, we used confocal microscopy and immunocytochemistry to unequivocally characterize the glucose-induced Ca(2+) signals in alpha- and beta-cells within intact human islets. Extracellular glucose stimulation induced an opposite response in these two cell types. Although the intracellular Ca(2+) concentration ([Ca(2+)](i)) in beta-cells remained stable at low glucose concentrations, alpha-cells exhibited an oscillatory [Ca(2+)](i) response. Conversely, the elevation of extracellular glucose elicited an oscillatory [Ca(2+)](i) pattern in beta-cells but inhibited low-glucose-induced [Ca(2+)](i) signals in alpha-cells. These Ca(2+) signals were synchronic among beta-cells grouped in clusters within the islet, although they were not coordinated among the whole beta-cell population. The response of alpha-cells was totally asynchronic. Therefore, both the alpha- and beta-cell populations within human islets did not work as a syncitium in response to glucose. A deeper knowledge of alpha- and beta-cell behavior within intact human islets is important to better understand the physiology of the human endocrine pancreas and may be useful to select high-quality islets for transplantation.  相似文献   

15.
16.
Ritzel RA  Butler PC 《Diabetes》2003,52(7):1701-1708
Type 2 diabetes is characterized by a relative beta-cell deficit as a result of increased beta-cell apoptosis and islet amyloid derived from the beta-cell peptide islet amyloid polypeptide (IAPP). Human IAPP (h-IAPP) but not mouse IAPP (m-IAPP) induces apoptosis when applied to cells in culture, a property that depends on the propensity of h-IAPP to oligomerize. Since beta-cell mass is regulated, the question arises as to why it is not adaptively increased in response to insulin resistance and hyperglycemia in type 2 diabetes. This adaptation might fail if dividing beta-cells preferentially underwent apoptosis. We tested the hypothesis that beta-cells are preferentially vulnerable to h-IAPP-induced apoptosis. We established a microculture environment to perform time-lapse video microscopy (TLVM) and studied beta-cells (RIN) and HeLa cells undergoing replication or apoptosis. Sequential images (every 10 min for 36 h in RIN or 24 h in HeLa cells) of cells in vivo were analyzed, and each mitotic and apoptotic event was documented. Freshly dissolved h-IAPP caused a dose-dependent increased rate of apoptosis (P < 0.0001) in both cell types. At low and medium levels of toxicity, cells that had previously undergone mitosis were more vulnerable to h-IAPP-induced apoptosis than nondividing cells (P < 0.05). In the first 3 h after mitosis (full cell cycle length 26 +/- 0.6 h), beta-cells were particularly susceptible to h-IAPP-induced apoptosis (P < 0.05). Neither m-IAPP nor mature amyloid aggregates of h-IAPP were cytotoxic (P = 0.49). To corroborate these cell culture studies, we examined sections of human pancreatic tissue (five cases of type 2 diabetes) and human islets incubated for 48 h +/- h-IAPP. Both were stained for apoptosis with the transferase-mediated dUTP nick-end labeling method and analyzed for the presence of paired apoptotic cells anticipated in the event of postmitotic apoptosis. In human pancreatic tissue 26 +/- 5% (single plane of examination) and in human islets incubated with h-IAPP 44 +/- 4% of apoptotic islet cells were paired. In conclusion, replicating beta-cells are preferentially vulnerable to h-IAPP-induced apoptosis in cell culture. Postmitotic apoptosis was also documented in humans with type 2 diabetes and in human islet tissue. We postulate that beta-cell deficiency in type 2 diabetes may result in part from failure to adaptively increase beta-cell mass due to increased vulnerability of replicating beta-cells to undergo apoptosis. If this postulate is correct, then inhibition of apoptosis should allow recovery of beta-cell mass in type 2 diabetes.  相似文献   

17.
Nucleotides such as adenosine triphosphate (ATP) and uridine triphosphate (UTP) exist in the extracellular environment where they are agonists at P2 receptors. Both P2Y G-protein-coupled receptors and P2X ligand-gated ion channels are expressed by osteoblasts and osteoclasts, reflected in the diverse nucleotide-induced effects reported to occur in bone. Previous reports have implicated ATP as a proresorptive agent; however, these studies were unable to determine whether ATP mediated its actions directly on osteoclasts, or indirectly via osteoblasts. The development of techniques to generate human osteoclasts in vitro has allowed us to further investigate the intriguing role of extracellular nucleotides with regard to osteoclast activity. This study reports that nearly all P2-receptor-subtype mRNAs were expressed throughout human osteoclast development, and provides evidence for functional P2 receptor expression by these cells. In cultures of human osteoclasts alone, neither ATP nor UTP affected the quantity of resorption by these cells; however, in cocultures of osteoblast-like UMR-106 cells and human osteoclasts, ATP, but not UTP, greatly enhanced resorption, indicating a role for osteoblasts in mediating the proresorptive effects of ATP. Furthermore, ATP, but not UTP, elevated receptor activator of nuclear factor-kappaB ligand (RANKL) mRNA and protein expression by UMR-106 cells. These data are consistent with observations that UMR-106 cells predominantly express P2Y(1) with low expression of P2Y(2), thereby explaining the response to ATP and not UTP, and further substantiating the involvement of osteoblasts in ATP-induced effects on osteoclasts. These results significantly advance our understanding of the role of P2 receptors in bone, and indicate that local-acting ATP may play a pivotal role in osteoclast activation at bone-resorbing sites by inducing elevated expression of RANKL.  相似文献   

18.
19.
Prostaglandin D(2) (PGD(2)) is a lipid mediator synthesized from arachidonic acid that directly activates two specific receptors, the D-type prostanoid (DP) receptor and chemoattractant receptor homologous molecule expressed on T-helper type 2 cells (CRTH2). PGD(2) can affect bone metabolism by influencing both osteoblast and osteoclast (OC) functions, both cells involved in bone remodeling and in in vivo fracture repair as well. The objective of the present study was to determine the effects of PGD(2), acting through its two specific receptors, on human OC apoptosis. Human OCs were differentiated in vitro from peripheral blood mononuclear cells in the presence of receptor activator for nuclear factor κB ligand (RANKL) and macrophage-colony stimulating factor (M-CSF), and treated with PGD(2), its specific agonists and antagonists. Treatment with PGD(2) for 24hours in the presence of naproxen (10μM) to inhibit endogenous prostaglandin production increased the percentage of apoptotic OCs in a dose-dependent manner, as did the specific CRTH2 agonist compound DK-PGD(2) but not the DP agonist compound BW 245C. In the absence of naproxen, the CRTH2 antagonist compound CAY 10471 reduced OC apoptosis rate but the DP antagonist BW A868C had no effect. The induction of PGD(2)-CRTH2 dependent apoptosis was associated with the activation of caspase-9, but not caspase-8, leading to caspase-3 cleavage. These data show that PGD(2) induces human OC apoptosis through activation of CRTH2 and the apoptosis intrinsic pathway.  相似文献   

20.
Type 1 diabetes results from islet beta-cell death and dysfunction induced by an autoimmune mechanism. Proinflammatory cytokines such as interleukin-1beta and gamma-interferon are mediators of this beta-cell cytotoxicity, but the mechanism by which damage occurs is not well understood. In the current study, we present multiple lines of evidence supporting the conclusion that cytokine-induced killing of rat beta-cells occurs predominantly by a nonapoptotic mechanism, including the following: 1) A rat beta-cell line selected for resistance to cytokine-induced cytotoxicity (833/15) is equally sensitive to killing by the apoptosis-inducing agents camptothecin and etoposide as a cytokine-sensitive cell line (832/13). 2) Overexpression of a constitutively active form of the antiapoptotic protein kinase Akt1 in 832/13 cells provides significant protection against cell killing induced by camptothecin and etoposide but no protection against cytokine-mediated damage. 3) Small interfering RNA-mediated suppression of the proapoptotic protein Bax enhances viability of 832/13 cells upon exposure to the known apoptosis-inducing drugs but not the inflammatory cytokines. 4) Exposure of primary rat islets or 832/13 cells to the inflammatory cytokines causes cell death as evidenced by the release of adenylate kinase activity into the cell medium, with no attendant increase in caspase 3 activation or annexin V staining. In contrast, camptothecin- and etoposide-induced killing is associated with robust increases in caspase 3 activation and annexin V staining. 5) Camptothecin increases cellular ATP levels, whereas inflammatory cytokines lower ATP levels in both beta-cell lines and primary islets. We conclude that proinflammatory cytokines cause beta-cell cytotoxicity primarily through a nonapoptotic mechanism linked to a decline in ATP levels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号