首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
With the exception of cytochrome P450 (CYP) 1A1 and its mRNA, in vitro induction of other CYP forms has not been demonstrated in cryopreserved liver slices until now. Therefore precision-cut rat liver slices were cultured after cryopreservation and thawing in William's medium E for up to 24 h in the presence of inducers to demonstrate CYP2B1- and CYP3A1-mRNA induction. CYP-mRNA expression was determined by competitive RT-PCR. Exposure to 100 microM phenobarbital caused a more than 20-fold increase in CYP2B1-mRNA expression within 24 h, reaching concentrations comparable with those of PB-exposed fresh rat liver slices. Exposure to 1 microM pregnenolone 16 alpha-carbonitrile enhanced CYP3A1-mRNA expression by more than 30-fold within 24 h. This is in the same range, although with higher variability, as detected with fresh liver slices. In spite of considerable variability among the thawed slices, the induction factors are high enough for a sensitive detection of an induction at mRNA level. Additionally, immunostaining of respective CYP-forms was performed in sections of few samples, indicating CYP increase in viable cells of cryopreserved slices.  相似文献   

2.
Lupp A  Danz M  Müller D 《Toxicology》2001,161(1-2):53-66
Precision-cut liver slices are a widely accepted in vitro system for the examination of drug metabolism, enzyme induction, or hepatotoxic effects of xenobiotics. The maintenance of the distinct lobular expression and induction pattern of phase I biotransformation enzymes, however, has not been examined systematically so far. Thus, in the present study, both longitudinal and transversal sections of male rat liver slices were investigated morphologically, as well as immunohistochemically for the expression of different cytochrome P450 (CYP) isoforms after prolonged incubation or after exposure to typical inducers. Histopathological examinations revealed an increasing vacuolization of the periportal hepatocytes mainly in the middle of the slices from 6 h of incubation on, paralleled by a loss of glycogen in the respective cells. After 24 h, mainly in the center of the slices, necroses of cells occurred. After 48 h of incubation, typically a central band of coagulative necrosis flanked by superficial layers of viable cells was observed. Freshly prepared slices displayed a CYP subtypes expression as normal liver specimen, a very low centrilobular CYP 1A1 immunostaining, but a strong CYP 2B1 and 3A2 expression predominantly in the central and intermediate lobular zones. From 2 h on, the immunostaining for CYP 2B1 and 3A2 was to some extent reduced. After 24 h of incubation with beta-naphthoflavone, the CYP 1A1 and 2B1 expression was induced mainly in the viable cells around central veins, around some portal fields with bigger vessels and in the cell layers close to the slice surface. At the same sites, phenobarbital led to an increased CYP 2B1 and 3A2 expression and dexamethasone to an elevated CYP 3A2 immunostaining. These results show, that an in vitro induction of phase I enzymes in precision-cut liver slices can be demonstrated also immunohistochemically.  相似文献   

3.
Lupp A  Danz M  Müller D 《Toxicology》2005,206(3):427-438
Precision-cut rat liver slices are a widely accepted in vitro tool for the examination of drug metabolism, enzyme induction or hepatotoxic effects of xenobiotics. After prolonged incubation, however, distinct histopathological changes and increasing losses in function are seen with liver slices from adult animals. Since tissue from neonatal animals is expected to be less vulnerable, in the present study liver slices from 1-day-old rats were examined for morphological changes and for the expression of different cytochrome P450 (CYP) isoforms after incubation for up to 24 h and after a 24 h in vitro exposure to beta-naphthoflavone (BNF), phenobarbital (PB), dexamethasone (DEX) or pregnenolone 16alpha-carbonitrile (PCN). In parallel, CYP activities were assessed by different model reactions in slice homogenates and in intact slices. Histopathological changes were less pronounced in liver slices from 1-day-old rats than in those from adult animals. During the 24 h of incubation even a maturation of the tissue occurred, since the proportion of haemopoietic stem cells declined and the glycogen content of the hepatocytes increased. The CYP expression pattern after 2 and 24 h of incubation was similar to that of normal liver specimens from neonatal rats showing a moderate CYP1A1, 2B1 and 3A2 expression. The immunostaining for CYP1A1 and 2B1 was elevated after incubation with BNF. PB enhanced CYP2B1 and 3A2 expression, and DEX and PCN increased CYP3A2 immunostaining. This induction pattern was paralleled by respective effects on the corresponding model reactions. Thus, besides increased viability, slices from neonatal rats are excellently suited for the evaluation of an in vitro induction of CYP enzymes as well.  相似文献   

4.
Precision-cut liver slices are an accepted in vitro system for toxicological investigations. However, cryopreservation of slices would make a more efficient utilisation, particularly of human liver tissue possible. In the present study sections of cryopreserved male rat liver slices were examined immunohistochemically for cytochrome P450 (CYP) isoforms expression after prolonged incubation and after exposure to typical inducers. Morphologically, with just thawed slices no major alterations were seen, but remarkable cell damage was observed even after 2 h of incubation mainly in the middle of the slices and in the periportal and intermediate regions of the lobules. After 24 h of incubation, viable cells were only observed at the edges of the slices or around bigger vessels. In the viable cells of the cryopreserved liver slices after 2 h of incubation CYP expression pattern was similar to that in normal liver specimens: a low CYP1A1, but a strong CYP2B1 and 3A2 expression predominantly in the central and intermediate lobular zones. After 24 h, the immunostaining for CYP2B1 and 3A2 in the viable cells was reduced, but that for CYP1A1 was increased. Incubation with beta-naphthoflavone further elevated CYP1A1 and 2B1 expression. Phenobarbital caused an enhanced CYP2B1 and 3A2 and dexamethasone and pregnenolone 16 alpha-carbonitrile an increased CYP3A2 immunostaining. These results show that also in cryopreserved liver slices and after a prolonged incubation, a distinct expression pattern and an in vitro induction of phase I enzymes can be demonstrated immunohistochemically.  相似文献   

5.
The principal objective was to ascertain whether precision-cut tissue slices can be used to evaluate the potential of chemicals to induce CYP1, epoxide hydrolase and glutathione S-transferase activities, all being important enzymes involved in the metabolism of polycyclic aromatic hydrocarbons. Precision-cut rat liver and lung slices were incubated with a range of benzo[a]pyrene concentrations for various time periods. A rise in the O-deethylation of ethoxyresorufin was seen in both liver and lung slices exposed to benzo[a]pyrene, which was accompanied by increased CYP1A apoprotein levels. Pulmonary CYP1B1 apoprotein levels and hepatic mRNA levels were similarly enhanced. Elevated epoxide hydrolase and glutathione S-transferase activities were also observed in liver slices following incubation for 24h; similarly, a rise in apoprotein levels of both enzymes was evident, peak levels occurring at the same time point. When mRNA levels were monitored, a rise in the levels of both enzymes was seen as early as 4h after incubation, but maximum levels were attained at 24 h. In lung slices, induction of epoxide hydrolase by benzo[a]pyrene was observed after a 24-h incubation, and at a concentration of 1 microM; a rise in apoprotein levels was seen at this time point. Glutathione S-transferase activity was not inducible in lung slices by benzo[a]pyrene but a modest increase was observed in hepatic slices. Collectively, these studies confirmed CYP1A induction in rat liver slices and established that CYP1B1 expression, and epoxide hydrolase and glutathione S-transferase activities are inducible in precision-cut tissue slices.  相似文献   

6.
Although regulation of phase I drug metabolism in human liver is relatively well studied, the regulation of phase II enzymes and of drug transporters is incompletely characterized. Therefore, we used human liver slices to investigate the PXR, CAR and AhR-mediated induction of drug transporters and phase I and II metabolic enzymes. Precision-cut human liver slices were incubated for 5 or 24 h with prototypical inducers: phenobarbital (PB) (50 μM) for CAR, β-naphthoflavone (BNF) (25 μM) for AhR, and rifampicin (RIF) (10 μM) for PXR, and gene expression of the phase I enzymes CYP1A1, 1A2, 3A4, 3A5, 2B6, 2A6, the phase II enzymes UGT1A1 and 1A6, and the transporters MRP2, MDR1, BSEP, NTCP and OATP8 was measured. BNF induced CYP1A1, UGT1A1 and UGT1A6 and MRP2, NTCP and MDR1. RIF induced CYP3A4, 3A5, 2B6, 2A6, UGT1A1, UGT1A6 and BSEP, MRP2 and MDR1 and slightly downregulated OATP8. PB induced CYP3A4, 3A5, 2B6 and 2A6, UGT1A1 and all transporters.

Large interindividual differences were found with respect to the level of induction.

Enzyme activity of CYP3A4, measured by testosterone metabolism, was increased after 24 h by RIF. 7-Ethoxycoumarin O-deethylation activity, mediated predominantly by CYP 1A1/1A2 but also by other CYPs, was increased after 24 h with PB.

We have shown that regulation of all phases of the (in)activation of a drug via the CAR, AhR and the PXR pathways can be studied in human liver slices. The concomitant induction of metabolic enzymes and transporters shows that also in the human liver transporters and metabolic enzymes are regulated coordinately.  相似文献   


7.
8.
9.
10.
11.
12.
In these experiments precision-cut tissue slices from two existing transgenic mouse strains, with transgenes that couple promoting or binding elements to a reporter protein, were used for determination of reporter induction. This approach combines the power of transgenic animals with the practicality of in vitro systems to investigate the biological impact of xenobiotics. Additionally, the normal cellular architecture and heterogeneity is retained in precision-cut tissue slices. Two transgenic mouse strains, one of which couples the promoting region of CYP 1A1 to beta-galactosidase, and another which couples two forward and two backward 12-O-tetradecanoyl phorbol-13-acetate (TPA) repeat elements (TRE) to luciferase (termed AP-1/luciferase), were used to determine the feasibility of this approach. Precision-cut kidney and liver slices from both transgenic strains remain viable as determined by slice K(+) ion content and LDH enzyme release. Liver slices harvested from the CYP 1A1/beta-galactosidase transgenic mice exhibit a 14-fold increase in beta-galactosidase activity when incubated with beta-napthoflavone for 24 h. Kidney and liver slices obtained from the AP-1/luciferase transgenic mice demonstrate induction of luciferase (up to 2.5-fold) when incubated with phorbol myristate acetate (PMA or TPA) up to 4 h. These data indicate that precision-cut tissue slices from transgenic mice offer a novel in vitro method for toxicity evaluation while maintaining normal cell heterogeneity.  相似文献   

13.
14.
In a previous 24-h study, precision-cut rat liver slices were validated as a useful in vitro model for assessing the dose-related induction of CYP1A1 and CYP1A2 in rat liver following exposure to 2, 3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). Further assessment of the utility of this model was accomplished by initially exposing rat liver slices to medium containing TCDD (0.01 nM) for 24 h and incubating the slices up to an additional 72 h in TCDD-free medium. The slices remained viable throughout the incubation period with an intracellular potassium content varying from 45.2 +/- 2.3 micromol/g at 48 h to 50.0 +/- 1.6 micromol/g at 72 h. In TCDD-exposed slices, CYP1A1 protein and its respective enzymatic activity, the O-deethylation of ethoxyresorufin (EROD), significantly increased with time over the 96-h incubation period, with EROD activity increasing from 63.6 +/- 14.2 at 24 h to 905 +/- 291 pmol/mg/min at 96 h. Under identical incubation conditions, but in the absence of TCDD, the EROD activity for the control liver slices ranged from 14. 3 +/- 4.3 to 44.9 +/- 11.9 pmol/min/mg. Conversely, the level of CYP1A2 protein and its respective activity (acetanilide hydroxylation) transiently decreased from 24 to 96 h with no significant differences observed between the control (0 nM TCDD) and treatment group (0.01 nM TCDD). The concentration-effect relationship at 96 h was characterized by incubating rat liver slices for the initial 24 h in medium containing TCDD at concentrations ranging from 0.1 pM to 10 nM. Induction of CYP1A1 protein and EROD activity was observed for all treatment groups with the 10 nM TCDD treatment group displaying greater than 100-fold induction compared to control (0 nM TCDD). Immunohistochemical localization of CYP1A1 protein within liver slices supported the time- and concentration-dependent induction of EROD activity by TCDD. The induction of CYP1A1 was initially observed to be centrilobular, with increased expression due to both elevated CYP1A1 within cells and the recruitment of additional cells expressing CYP1A1 throughout the entire liver slice. Additionally, the immunohistochemical analysis of the liver slices demonstrated the conservation of tissue architecture following up to 96 h of incubation in dynamic organ culture and provided further evidence for maintenance of tissue viability. In comparison to CYP1A1, the induction of CYP1A2 at 96 h was a less sensitive response, with significant induction of CYP1A2 protein and its respective activity occurring at a medium concentration of 0.1 nM TCDD (686 pg/g liver). In general, increasing the incubation period from 24 to 96 h markedly increased TCDD-induced expression of CYP1A1 and minimally enhanced CYP1A2 expression. Moreover, extending the incubation period to 96 h resulted in in vitro induction profiles for CYP1A1 and CYP1A2 that were qualitatively and quantitatively similar to that previously observed following in vivo exposure to TCDD (Drahushuk et al., Toxicol. Appl. Pharmacol. 140, 393-403, 1996).  相似文献   

15.
Precision-cut human liver slices obtained from 11 donors were cultured for 72 h in a defined medium (serum free Williams' medium E) supplemented with 0.1 microM insulin and 0.1 microM dexamethasone (DEX). Liver slices were treated with 50 microM concentrations of beta -naphthoflavone (BNF), lansoprazole, rifampicin (RIF), DEX and methylclofenapate and 500 microM sodium phenobarbital (NaPB). The relative apoprotein levels of 12 cytochrome P450 (P450) enzymes were determined in liver slice microsomes using a panel of antipeptide antibodies. Treatment with BNF significantly induced mean levels of CYP1A2 apoprotein to 160% of levels in 72-h control (no test compound) human liver slice microsomes. NaPB significantly induced levels of CYP3A4 apoprotein to 255% of control and RIF significantly induced levels of CYP2C19 and CYP3A4 apoproteins to 265 and 330% of control, respectively. In addition, treatment with RIF increased levels of CYP2A6 apoprotein to 205% of control, and treatment with both NaPB and RIF increased levels of CYP2B6 apoprotein to 370 and 615% of control, respectively. However, these increases were not statistically significant, owing to a variable response between liver slice preparations from different subjects, this being apparent for all inducible P450s. In contrast, none of the compounds examined significantly increased levels of CYP2C8, CYP2C9, CYP2D6, CYP2E1, and CYP4A11 apoproteins. Levels of CYP1A1 apoprotein were not detected in any liver slice sample, either before or after treatment with the model inducers. Overall, these results demonstrate the utility of cultured human liver slices for assessing the effects of chemicals on P450 enzymes.  相似文献   

16.
17.
18.
Many drugs and endogenous substances undergo biotransformation by cytochrome P450s (CYPs), and some drugs are also capable of modulating the expression of various CYPs. Knowledge of the potential of a drug to modulate CYPs is useful to help predict potential drug interactions. This study utilized precision-cut rat liver slices in dynamic organ culture to assess the effects of various media on the viability of rat liver slices and the expression of CYP2B and CYP2E1 when the slices are exposed to phenobarbital and isoniazid, which are drugs capable of inducing these respective CYPs. Liver slices were maintained in serum supplemented Waymouths medium and two different serum-free media, Hepatozyme (Life Technologies) and a new defined medium, which is named BPM. While Hepatozyme is considered a suitable medium to support primary hepatocyte cultures, this product did not maintain viable liver slices, even for 24 h. The serum containing and new defined media maintained viable liver slices for up to 96 h in culture. Phenobarbital (0.5 mM) and isoniazid (0.1 or 0.6 mM) did not affect viability in this model. In the absence of phenobarbital or isoniazid, liver slices maintained for 96 h in the new BPM medium maintained the respective levels of CYP2B and 2E1 protein at 1.8 and 1.9-fold higher than in slices maintained in the serum-containing medium. Phenobarbital exposure (0.5 mM) for 96 h induced CYP2B protein 5.2-fold in the BPM medium and 2.5-fold in the serum-containing medium. Isoniazid exposure (0.1 and 0.5 mM) for 96 h induced CYP2E1 protein 1.9 and 2.1-fold (respectively) in the BPM medium and 2.1 and 2.0-fold in the serum-containing medium. The respective CYP enzymatic activities were also increased by these drugs in a similar manner. Thus, the new defined BPM medium provides suitable conditions for maintaining CYP2B and 2E1 in liver slices and supports the investigation of drug-induced modulation of these enzymes.  相似文献   

19.
The utilization of precision-cut liver slices in dynamic organ culture as anin vitromodel was validated by comparing the induction of the biomarker responses followingin vitro(rat liver slice) andin vivoexposure of rats to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). The biomarker responses investigated were cytochrome P450s 1A1 and 1A2 (CYP1A1 and CYP1A2) mRNA, protein, and activities. Precision-cut rat liver slices were incubated in dynamic organ culture for 24 hr with medium containing 0.001–10 nMTCDD or medium without TCDD (control). The resultant mean TCDD concentration in the slices ranged from 19 to 80,925 ppt (wet wt), respectively. A concentration-dependent induction of CYP1A1 mRNA, protein, and activities and a more modest induction of CYP1A2 mRNA was observed in liver slices at all medium concentrations of TCDD. The O-demethylation of 7-methoxyresorufin, a marker for CYP1A2 activity, was induced at TCDD medium levels of 0.01 nMand greater, whereas a detectable increase in CYP1A2 protein occurred only at the higher concentrations. Comparable liver concentrations of TCDD (8–64,698 ppt wet wt) were achieved at 24 hr following a singlein vivoexposure of rats to TCDD at doses ranging from 0.002 to 5 μg/kg po. Concentration–effect and dose–response relationships for induction of CYP1A1 and CYP1A2 were similar followingin vitroandin vivoexposure to TCDD, although the magnitude of induction was greater forin vivoexposure. The data support the use of liver slices in dynamic organ culture for assessing the relativein vivopotency of a compound to induce CYP1A1 and CYP1A2. Human tissue can also be readily utilized in thisin vitromodel to predict the biological and toxicological effects of a givenin vivoexposure to TCDD.  相似文献   

20.
We have studied the effects of three imidazole derivatives, clotrimazole (CLO), ketoconazole (KET) and miconazole (MIC) on the liver microsomal diazepam (DZ) metabolism. In in vitro experiments using rats and human liver microsomes, significant inhibition of CYP3A in terms of DZ-3-hydroxylase activity was observed. The inhibition of DZ metabolism was seen 1 h after CLO dosing. On the other hand, the induction of certain cytochrome P450 (CYP) isozymes was observed in in vivo studies 24 h after dosing. That is, CYP1A, CYP2B and CYP3A2, but not CYP2E, were observed 24 h after CLO or KET or MIC treatment. Under these conditions, CLO was the most potent inducer of CYP3A and MIC was a more potent inducer of CYP1A and CYP2B. KET induced CYP1A and CYP2B whereas the inducibility of KET was less than those of CLO and MIC. All of the imidazole derivatives tested here showed significant inhibition of CYP isozymes which overcame the induction of the CYP isozymes by those drugs in the data of Western blot analysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号