首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Changes in the firing probability of single motor units in response to electrical stimulation of muscle nerves were used to derive the projections of muscle spindle Ia afferents to the motoneurones of various leg and thigh muscles. Discharges of units in soleus, gastrocnemius medialis, peroneus brevis, tibialis anterior, quadriceps, biceps femoris and semitendinosus were investigated after stimulation of inferior soleus, gastrocnemius medialis, superficial peroneal, deep peroneal and femoral nerves. Homonymous facilitation, occurring at the same latency as the H reflex and therefore attributed to monosynaptic Ia EPSPs, was found in virtually all the sampled units. In many motor nuclei an early facilitation was also evoked by heteronymous low-threshold afferents. The heteronymous facilitation was considered to be mediated through a monosynaptic pathway when the difference between the central latencies of heteronymous and homonymous peaks was not more than 0.2 ms. The heteronymous Ia connections were widely distributed. In particular, monosynaptic coupling between muscles operating at different joints appears to be the rule in humans, though it is rare between ankle and knee muscles in the cat and the baboon.  相似文献   

2.
The peristimulus frequencygram (PSF) has recently been shown to illustrate postsynaptic potentials of motoneurones much more reliably than the peristimulus time histogram (PSTH). The aim of this investigation was to examine the profile of the postsynaptic potential (PSP) in soleus motoneurones in response to an H-reflex with and without accompanying M waves of different magnitude by using PSTH and PSF profiles of single motor units. Nine men and five women healthy subjects participated in this study. Electrical stimuli were delivered to the tibial nerve in the popliteal fossa. The reflex response of the soleus muscle was recorded using both surface electromyogram and single motor unit potentials. The PSTH analysis demonstrated that there were four different synaptic events following low-intensity stimulation of the tibial nerve: primary enhancement in firing probability (H-reflex or E1), primary reduction in firing probability (primary silent period or SP1), secondary reduction in firing probability (secondary silent period or SP2), and secondary enhancement in firing probability (E2). On the other hand, the PSF analysis indicated only two reflex responses, long-lasting enhancement in discharge rate including the H-reflex (LLE) and long-lasting decrease in discharge rate (LLD). The results of the two analyses methods are compared and contrasted. While the PSTH demonstrated that there was a silent period (SP1) immediately following the H-reflex, the PSF indicated an increase in discharge rate during the same period. The PSF also indicated that, during SP2 and E2, the discharge rate actually decreased (LLD). It was therefore suggested that LLD involved activation of several inhibitory pathways including the autogenic inhibition of units via the Golgi tendon organs. It was concluded that the PSF could indicate the details of the postsynaptic potentials and is very useful for bringing out previously unknown effects of electrical stimulation of muscle nerves.  相似文献   

3.
The properties of the human motor cortex can be studied non-invasively using transcranial magnetic stimulation (TMS). Stimulation at high intensity excites corticospinal cells with fast conducting axons that make direct connections to motoneurones of human upper limb muscles, while low-intensity stimulation can suppress ongoing EMG. To assess whether these cells are used in normal voluntary contractions, we used TMS at very low intensities to suppress the firing of single motor units in biceps brachii ( n = 14) and first dorsal interosseous (FDI, n = 6). Their discharge was recorded with intramuscular electrodes and cortical stimulation was delivered at multiple intensities at appropriate times during sustained voluntary firing at ∼10 Hz. For biceps, high-intensity stimulation produced facilitation at 17.1 ± 2.1 ms (lasting 2.4 ± 0.9 ms), while low-intensity stimulation (below motor threshold) produced suppression (without facilitation) at 20.2 ± 2.1 ms (lasting 7.6 ± 2.2 ms). For FDI, high-intensity stimulation produced facilitation at 23.3 ± 1.2 ms (lasting 1.8 ± 0.4 ms), with suppression produced by low-intensity stimulation at 25.2 ± 2.6 ms (lasting 7.5 ± 2.6 ms). The difference between the onsets of facilitation and suppression was short: 3.1 ± 1.2 ms for biceps and 2.0 ± 1.5 ms for FDI. This latency difference is much less than that previously reported using surface EMG recordings (∼10 ms). These data suggest that low-intensity cortical stimulation inhibits ongoing activity in fast-conducting corticospinal axons through an oligosynaptic (possibly disynaptic) path, and that this activity is normally contributing to drive the motoneurones during voluntary contractions.  相似文献   

4.
The synaptic efficacy of muscle and cutaneous afferents on single tibialis anterior motoneurones in man was derived from changes in the firing probability of single, voluntarily activated, motor units in response to electrical stimulation of peripheral nerves or skin. The motor units were recorded with a Macro EMG electrode. The Macro motor unit potential (Macro MUP) recorded with this electrode reflects the electrical activity of all of the muscle fibres in a single motor unit. The amplitude of the Macro MUP is positively correlated with the recruitment threshold of the unit. Motor units with different Macro MUP amplitudes were examined at approximately the same level of voluntary contraction (less than 20% of maximum). The synaptic efficacy of muscle and cutaneous afferents was similar for units with small and with large Macro MUP amplitudes. Single motor units were examined at several different levels of muscle contraction. There was no consistent change in the facilitation from muscle afferents but there was less facilitation from cutaneous afferents during stronger contractions. This was not simply a consequence of the units faster firing rate. It is concluded that, with increasing voluntary drive to tibialis anterior motoneurones in man, there is a reduction in transmission in the pathways from cutaneous afferents to tibialis anterior motoneurones. There is no evidence that low and high threshold units (judging from their Macro MUP amplitudes) have different afferent connections.  相似文献   

5.
Long-latency electromyographic (EMG) responses can be evoked in the first dorsal interosseous muscle (FDI) by unexpected slips of an object (skin stretch) held between the index and thumb, or by forcible adduction of the metacarpophalangeal joint (muscle stretch). The former type of response is due to stimulation of tactile afferents in the skin of the digits, whereas the latter also activates muscle receptors. Previous studies have provided good evidence that long-latency reflex responses to stretch of distal muscles involve activity in a transcortical reflex pathway. The present experiments examined whether cutaneous reflexes also utilise a transcortical route. Transcranial magnetic or electrical stimuli were given over the motor cortex to evoke EMG activity during the period of the long-latency reflex response. When evoked by muscle stretch the responses to magnetic stimulation were facilitated more than those to electric stimulation. In contrast, facilitation was equal during the long-latency reflex elicited by cutaneous stimulation. Because of the different ways in which electrical and magnetic stimuli are believed to activate the motor cortex, we interpret these results to mean that the long-latency response to skin stretch is not mediated by a transcortical mechanism in the majority of subjects, whereas that following muscle stretch is. However, these are average data. In a few individual subjects, the opposite results were obtained. We suggest that there may be differences between subjects in the transcortical contribution to long-latency reflex responses. The implication is that, under normal circumstances, several pathways may contribute to these responses. If so, the relative roles of the pathways may change during different tasks, and in pathological states lesions in one system may well be accompanied by compensatory changes in other systems.  相似文献   

6.
 Non-monosynaptic group I and group II excitation of human lower limb motoneurones was investigated. Changes in the firing probability of individual voluntarily activated motor units belonging to various muscles (soleus, gastrocnemius medialis, tibialis anterior, peroneus brevis, quadriceps and biceps femoris) were investigated after stimulation of various nerves (posterior tibial, common peroneal and femoral nerves) with weak (0.4–0.6×motor threshold) electrical stimuli. In all investigated motor nuclei, stimulation of the ”homonymous” nerve evoked a peak of increased firing probability with a latency that was 3–7 ms longer than the monosynaptic Ia latency. The more caudal the motor nucleus explored, the greater the central delay. This strongly suggests a transmission through neurones located above the lumbar enlargement. If one excepts the sural-induced excitation of peroneus brevis units, which seems to be mediated through a particular pathway, the main peripheral input to neurones mediating non-monosynaptic excitation evoked by these weak stimuli is group I in origin. The pattern of distribution of non-monosynaptic group I excitation was very diffuse, since stimulation of each nerve was able to evoke excitation in all investigated nuclei. In most cases, non-monosynaptic excitation evoked in a given motor unit by stimulation of one nerve was depressed on combined stimulation of two nerves, and evidence is presented that this lateral inhibition is exerted at a premotoneuronal level. By contrast, there was no evidence that increasing the afferent input in a given pathway evokes an ”autogenetic” inhibition in this pathway. The negative correlation found between non-monosynaptic group I-induced and late group II-induced facilitation of the quadriceps H-reflex when using high stimulus intensities applied on the common peroneal nerve suggests that these two effects could be mediated through common interneurones. Received: 21 June 1996 / Accepted: 9 December 1996  相似文献   

7.
Summary Distribution of heteronymous Ia facilitation and of heteronymous recurrent inhibition in motoneurones innervating the anterior part of the deltoid muscle were investigated in normal human subjects following electrical stimulation of the nerves innervating the main muscles of the upper limb. Activation of group I afferents originating from deltoid, biceps, triceps and extensor carpi radialis (ECR) muscles resulted in an early increase in firing probability of voluntarily activated motor units belonging to the anterior part of the deltoid muscle whereas activation of motor axons supplying deltoid, triceps, ECR and flexor carpi radialis (FCR) muscles resulted in an early and long-lasting decrease in firing probability. No effect was seen following activation of group I afferents and motor axons contained in the ulnar nerve. The characteristics of the early facilitation suggest that it is at least partly due to heteronymous Ia monosynaptic connections while these of the long-lasting inhibition suggest that it is at least partly due to heteronymous recurrent inhibition. Their patterns of distribution are discussed with regards to the functional role of the human deltoid.  相似文献   

8.
Summary The reflex responses of single motor units in the soleus muscle to electrical stimulation of the tibial nerve were recorded in human volunteers. A feature of the experiments was the stimulation paradigm used. In order to control the peristimulus firing rate, a computer triggered the stimulus isolator only when 2 interspike intervals of specified duration occurred in succession. In addition, the timing of the stimulus in relation to the preceding action potential was controlled in a manner similar to a conditioning/testing paradigm. The general pattern of response was an initial, H-reflex excitation at monosynaptic latency, followed first by a silent period due to the refractoriness of the motor neurone, then by other phases of reduced activity. When the stimulus intensity was increased, the intensity of the excitation and the duration of the silent period increased in parallel. When the pre-stimulus firing rate of the motor unit was varied, the amplitude of the H-reflex response, normalized to the number of stimulus trials, was similar at 6, 8 and 10 Hz, but was greater at 4 Hz in most units tested. These findings were consistent with a simple model of the events occurring at the cell membrane in this reflex which was proposed by Ashby and Zilm (1982a), although some modification of the model was necessary to account for the different response at 4 Hz. The improved stimulation paradigm enabled a direct estimate to be made of the amplitude and shape of the rising phase of the Ia EPSP in human motor neurones.  相似文献   

9.
Modulation of ongoing electromyographic (EMG) activity in the small hand muscles can be induced by electrical stimulation of the digital nerves or by stimulation of the skin of the fingers. Several groups have attempted to establish a role for the motor cortex in the generation of the facilitatory component of the cutaneomotor reflex. Our aim was to establish if the facilitatory component of the reflex could be diminished by a procedure known to inhibit the motor cortex, namely, subthreshold transcranial magnetic stimulation. During sustained small contractions of the first dorsal interosseus muscle transcranial magnetic stimuli (TMS), which were subthreshold for the generation of a motor evoked potential, were delivered via a figure-of-eight coil. Inhibition of ongoing EMG was observed in all subjects. In two separate series of trials, TMS was timed so that the resultant inhibition occurred coincident with either the short or long latency stretch reflex or with the initial or later part of the facilitatory component of the cutaneomotor reflex. The short latency stretch reflex is known to involve a largely monosynaptic loop via the spinal cord, whereas the long latency response involves a transcortical loop. The long latency response was reduced in size following subthreshold TMS, whereas the short latency response was unchanged. This provides evidence of the effectiveness of subthreshold TMS in inhibiting a transcortical reflex. When the TMS was timed so that the inhibition occurred coincident with the facilitatory component of the cutaneomotor response, neither the early nor later changes were inhibited. Thus, the pathway of the long-latency cutaneomotor reflex is not similar to the transcortical pathway of the stretch reflex. Either the response does not travel via the cortex or it involves different cortical neurones.  相似文献   

10.
1. The effects of stimulating forelimb afferents on various ipsilateral motoneurones of the hind limb have been compared with those of volleys set up in the contralateral pericruciate cortex in cats anaesthetized with chloralose. 2. With intact neuraxis, brachial plexus volleys evoke discharge of flexor and extensor motoneurones; short cortical tetani also elicit discharge mainly of flexor motoneurons. After a pyramid-sparing brainstem lesion, little or no firing is evoked by either input. 3. Monosynaptic reflex testing and intracellular recording reveal subthreshold actions on hind-limb motoneurones, inhibition of FDHL and later facilitation of extensors and flexors by forelimb volleys, facilitation of flexors and extensors together with inconstant inhibition of the latter, by cortical stimulation. 4. Interruption of medullary extrapyramidal paths greatly reduces intensity and duration of facilitation from the forelimb, and largely removes cortically evoked extensor facilitation. Inhibition of FDHL from forelimb and cortex is unchanged; cortical volleys continue to facilitate flexors, and have mainly inhibitory action on extensors in these 'pyramidal' preparations. 5. Hyperpolarization of FDHL motoneurones occurs in response to forelimb and cortical volleys, of time course corresponding to depression of test reflexes. Spinal pathways responsible for the two inhibitory actions are independent, and unless each is very strong, their separate actions summate when elicited together. 6. Receptive field for FDHL inhibition from the forelimb is located distally in the forepaw, and its receptors are largely served by cutaneous fibres of low threshold; some Group II fibres in distal muscle nerves also contribute. Receptive field for facilitation embraces the whole limb, and the executant afferent fibres are of higher threshold. 7. Natural stimulation of the forelimb can evoke the long spinal actions, vibration or light pressure on the forepaw eliciting FDHL inhibition, and strong pinching evoking the more general facilitation. Possible functional roles of these actions in the intact animal are discussed.  相似文献   

11.
Single motor unit and gross surface electromyographic responses to torque motor-produced wrist extensions were studied in human flexor carpi radialis muscle. Surface EMG typically showed two "periods" of reflex activity, at a short and long latency following stretch, but both periods occurring before a subject's voluntary reaction to the stretch. The amplitude of EMG activity in both reflex periods increased monotonically with an increase in the torque load. The amplitude of the short-latency reflex response was very dependent on the motoneuron pool excitability, or preload. The amplitude of the long-latency reflex response also varied with the preload, but could, in addition, be modulated by the subject's preparatory set for a voluntary response to the imposed displacement. When a single motor unit that was not tonically active began to fire during the stretch reflex, it did so primarily during the long-latency period. When caused to fire repetitively by voluntary facilitation of the motoneuron pool, that same unit now showed activity during both periods of the stretch reflex. Further increases in either motoneuron pool facilitation or in perturbation strength resulted in a monotonic increase in response probability of a single motor unit during the short-latency period. However, the response probability of a single unit during the long-latency reflex period did not always vary in a monotonic way with increases in either torque load or motoneuron pool facilitation. For an additional series of experiments, the subject was instructed on how to respond voluntarily to the upcoming wrist perturbation. The three instructions to the subject had no effect on the response probability of a single motor unit during either the background or short-latency periods of the stretch reflex. However, prior instruction clearly affected a unit's response probability during the long-latency reflex period. Changes in the firing rate of motor units, and in the recruitment or derecruitment of nontonic units, contributed to this modulation of reflex activity during the long-latency period.  相似文献   

12.
1. The pattern of variations of a test H-reflex after a conditioning H-reflex was investigated in human subjects by an experimental design in which both reflexes involved the same soleus motoneurones. This was made possible by using a method based upon a collision in the motor axons between the orthodromic conditioning reflex volley and the antidromic volley elicited by a test stimulus supramaximal for the motor axons.

2. The variations of the test reflex amplitude seen when increasing the conditioning reflex discharge were studied. This was made possible by facilitating the conditioning reflex without changing the strength of the afferent volley. This facilitation was obtained through a soleus stretch elicited by a stimulation of the plantar nerves.

3. The amplitude of the test reflex depended only on the size of the conditioning reflex discharge.

4. As long as the conditioning reflex was of low amplitude, all the motoneurones responsible for the conditioning response could be activated by the test volley, even though these motoneurones were undergoing after-hyperpolarization. This indicates that, in man, the after-hyperpolarization of the most excitable motoneurones can be completely overcome by a large Ia afferent volley.

5. Increasing the conditioning reflex beyond a specific value resulted in an absolute decrease in the number of motoneurones involved in the test reflex. The amount of this decrease was related only to the amplitude of the conditioning reflex.

6. This inhibition decreased progressively as the time interval separating the test stimulus from the conditioning stimulus increased. The time course of this inhibition was studied with conditioning reflexes of different amplitudes. The duration of the inhibition increased with the size of the conditioning reflex.

7. These results strongly suggest that Renshaw cells excited by the conditioning reflex are responsible for this inhibition. The results are in agreement with observations made in animals on recurrent inhibition.

  相似文献   

13.
Neural projection from the brachioradialis to the biceps brachii motoneurones in human was studied using the method of post-stimulus time histogram. Electrical stimulation to the radial branch innervating the brachioradialis produced inhibition in 11 out of 21 biceps motor units. The central delays of the inhibition were 0.7–1.2 ms longer than those of the homonymous facilitation. The inhibition was evoked with the intensity below the motor threshold. Pure cutaneous stimulation provoked no effects on the motor-unit firing. These findings suggest that group I afferents from the brachioradials mediate an oligosynaptic inhibition of the biceps brachii motoneurones.  相似文献   

14.
Segmental effects of epidural spinal cord stimulation in humans.   总被引:3,自引:1,他引:3       下载免费PDF全文
1. The segmental effects of spinal cord stimulation (SCS) were studied in twenty-four human subjects who had spinal cord stimulators implanted for the treatment of pain. The cathode was in the epidural space over the dorsum of the thoracic cord. 2. SCS generated action potentials in sensory, motor and mixed nerves which could be recorded with near-nerve electrodes. These action potentials could follow high frequencies of stimulation and appeared to be due to the antidromic activation of primary afferents in the dorsal columns. 3. Synaptic actions on single lumbosacral motoneurons were derived from peristimulus time histograms (PSTHs) of single motor units. SCS produced a brief short-latency period of increased firing probability (PIF) in motoneurons of all of the muscles examined, probably representing monosynaptic activation. It is argued that the facilitation arises from the antidromic activation of Ia afferents in the dorsal columns. This is the probable explanation for the muscle contractions that can be induced by SCS. 4. SCS inhibited short-latency group I homonymous facilitation and reciprocal inhibition. The mechanism appears to be presynaptic to the motoneurons and may represent collision in Ia afferents, presynaptic inhibition or homosynaptic depression. 5. It was difficult to demonstrate consistent effects of SCS on reflex pathways from cutaneous afferents to flexor motoneurons because the effects of stimulation of cutaneous nerves on these motoneurons were themselves variable. 6. It is concluded that SCS applied with epidural electrodes over the dorsal cord activates primary afferents in the dorsal columns. Antidromic activation of these afferents results in strong monosynaptic facilitation of motoneurons as well as reduction in transmission in some reflex pathways to motoneurons.  相似文献   

15.
Summary The neuronal pathway of the facilitation of quadriceps (Q) motoneurones (MNs) evoked by stimulation of the common peroneal nerve (CPN) has been reinvestigated using both the post-stimulus time histogram (PSTH) method for measurement of the firing probability of individual units and the H reflex technique. It has been found that Ia (and to an unknown extent Ib) afferents from pretibial flexors — but not from peroneal muscles — are responsible for this excitation. The central latency of the CPN-induced excitation of Q MNs was estimated to be 3–3.7 ms longer than that of their monosynaptic Ia excitation. To further investigate the neuronal pathway of the CPN-induced excitation the spatial facilitation technique was used, the effects on the Q H reflex of two conditioning stimuli (applied to the CPN and the femoral nerve — FN) being compared when applied separately and together. When the two conditioning volleys were timed to reach the spinal cord simultaneously the facilitation of the H reflex on combined stimulation was larger than the algebraic sum of the effects by separate stimuli in 40% of the cases. It is argued that this additional facilitation reflects summation at a premotoneuronal level and it is concluded that non-monosynaptic Ia excitation of Q MNs from Q and pretibial flexors is, at least partly, mediated through a common pathway. In those individual units in which stimulation of the FN and/or the CPN evoked a non-monosynaptic Ia excitation, this excitation was reduced on combined stimulation of the two nerves. It is argued that this reflects inhibition of the interneurones mediating the excitation, i.e. consists in a disfacilitation of the MNs. It is suggested that the non-monosynaptic (homonymous and heteronymous) Ia excitation of Q MNs in man (and the inhibition of this excitation) is mediated through a system of neurones similar to the system recently described in the cat by Edgley and Jankowska (1987).  相似文献   

16.
Changes in afferent input can alter the excitability of intracortical inhibitory systems. For example, using paired transcranial magnetic stimulation (TMS), both electrical digital stimulation and muscle vibration have been shown to reduce short-interval intracortical inhibition (SICI). The effects following muscle vibration are confined to the corticospinal projection to the vibrated muscles. The results following digital stimulation are less clear and the relative timing of the cutaneous stimulation and TMS is critical. Here we investigated further whether changes in SICI following digit stimulation exhibit topographic specificity. Eleven normal subjects were investigated (age 28.2±7.5 years, mean±SD). Electromyographic recordings were made from the right first dorsal interosseous (FDI), abductor digiti minimi (ADM) and abductor pollicis brevis (APB) muscles. SICI was measured, with and without preceding electrical digit II or digit V cutaneous stimulation. The interval between the digital nerve stimulus and test magnetic stimulus was independently set for each subject and established by subtracting the onset latency of the motor evoked potential (MEP) from the latency of the E2 component of the cutaneomuscular reflex. Therefore, measures of intracortical excitability were made at a time at which it is known that cutaneous input is capable of modulating cortical excitability. Single digital nerve stimuli applied to digit II significantly reduced SICI in FDI but not in ADM. Single digital nerve stimuli applied to digit V significantly reduced SICI in ADM but not in FDI or APB. There was a more generalised effect on intracortical facilitation (ICF) with both digit II and digit V stimulation significantly increasing ICF in FDI and ADM. Digital stimulation (either DII or DV) did not significantly affect SICI/ICF in APB. These findings show that appropriately timed cutaneous stimuli are capable of modulating SICI in a topographically specific manner. We suggest that the selective decrease in SICI seen with cutaneous stimulation may be important for focusing of muscle activation during motor tasks.  相似文献   

17.
1. The spinal integration of cortical, segmental and breathing inputs to thoracic motoneurones was studied in anaesthetized, paralysed cats: the breathing input was intensified by underventilation or abolished by hyperventilation.2. In apnoeic animals, low intensity stimulation of an internal intercostal nerve evoked a brief latency polysynaptic reflex discharge of expiratory motoneurones (direct response) in several adjacent segments with no or little response of the inspiratory motoneurones.3. A similar direct response of expiratory motoneurones occurred with brief tetanic stimulation of the trunk area in the contralateral sensorimotor cortex.4. Conditioning of an intercostal-intercostal test reflex by a prior stimulus to an intercostal nerve or to the cortex gave conditioning curves showing facilitation of transmission to expiratory motoneurones at short intervals (5-25 msec) and inhibition at long intervals (25-200 msec).5. The direct response of expiratory motoneurones to the cortical or segmental inputs was depressed during the inspiratory phase when the animal was underventilated; conversely the spontaneous activity of the inspiratory motoneurones was inhibited for a period that corresponded with the direct response or to the phase of facilitated transmission to expiratory motoneurones. During the expiratory phase, the cortically or segmentally induced direct response was facilitated but the inhibition of inspiratory motoneurone activity was concealed by the absence of spontaneous activity.6. It was possible with discrete lesions of the spinal cord to differentiate between the pathways subserving the responses to cortical stimulation and the spontaneous activity due to the breathing input.7. To account for the results a working hypothesis is proposed utilizing a segmental interneuronal network which transmits mutual reciprocal inhibition between inspiratory and expiratory motoneurones.  相似文献   

18.
Stimulation of baboon motor cortex causes in the motoneurones (MNs) of intrinsic hand muscles monosynaptic excitatory postsynaptic potentials (EPSPs) and a disynaptic inhibitory postsynaptic potential (IPSP). These phenomena have been investigated in human MNs by applying pulsed magnetic stimuli over the scalp at random times during the tonic discharge of single hand muscle motor units (MUs). Post-stimulus time histograms (PSTHs) demonstrated an increased firing probability at between 25 and 35 ms. This major firing peak showed a multimodal form with interpeak intervals of 1.4-1.8 ms. When MUs were not fired by the stimulus, they were nevertheless inhibited from firing spontaneously. There are thus short latency excitatory and inhibitory cortical inputs to human MNs.  相似文献   

19.
The order of recruitment of flexor carpi radialis (FCR) motor units was studied during voluntary and reflexive activation of the motoneuron pool for two adult subjects. During slow "voluntary" activation, the recruitment threshold for tonic motoneuron firing was determined, and then the twitch profile of the motor unit was computed by the spike-triggered averaging technique. A positive correlation (r = 0.79 and 0.68 for the two subjects, respectively) between recruitment threshold and twitch amplitude implies that recruitment of FCR motoneurons during slow ramp isometric contractions proceeds in order of increasing size. The accompanying paper describes the behavior of single motor units during the short- and long-latency periods of the stretch reflex. When the effects of sufficient voluntary facilitation (preload) combined with a sufficiently large torque step were just adequate to cause a motor unit to fire during the stretch reflex, its response was virtually always confined to the long-latency period. In addition, the first unit to begin responding to muscle stretch always had the lowest voluntary recruitment threshold relative to other units "visible" at that recording site. By making this unit tonic, the reflex response to the same load increased substantially during the short-latency reflex period, while a second unit increased its reflex response probability during the long-latency period. Thus the voluntary recruitment order of two or more motor units is preserved during the stretch reflex, and is in fact maintained within first the long-latency and then short-latency components of this reflex.  相似文献   

20.
Summary In anaesthetized cats (chloralose-urethan) the effects of brief tetanic electrical stimulation (50 to 100 ms) of the mesencephalic central gray matter and reticular formation on the inspiratory on-switch were studied during the expiratory (E) phase on the gross and unitary activities of phrenic, laryngeal inspiratory and laryngeal expiratory nerves. On the inspiratory laryngeal and phrenic nerves, stimulation elicited a short latency gross response concomitant with the train: the inspiratory Primary Response (Prim.R.) which is followed by an inspiratory Patterned Response (Patt.R.) of longer duration which corresponded to the inspiratory on-switch. The Patt.R. generally appeared from the Prim.R. within a latent period (Silent Phase: Sil.P.) as long as 100 ms. On the expiratory laryngeal nerve, stimulation elicited a brief activation (expiratory Prim.R.) concomitant with the beginning of the inspiratory laryngeal Prim.R. and which rapidly stopped as the latter continued during the stimulus train. The inspiratory Prim.R. corresponded to a simultaneous activation of both early and late (so defined during their spontaneous discharge) inspiratory motoneurones. The laryngeal motoneurones were more strongly activated than the phrenic ones. During the inspiratory Patt.R. all the phrenic motoneurones presented a recruitment delay earlier, compared with the spontaneous one, whereas the recruitment drastically changed from an inspiratory laryngeal motoneurone to another. Thus, the two pools of motoneurones presented different properties of activation. During the inspiratory Sil.P. no concomitant expiratory laryngeal activation was observed when most of the inspiratory motoneurones were inactive. As some inspiratory laryngeal motoneurones did not stop firing, the existence of some central respiratory neurones exhibiting a similar persistent activity and subserving the inspiratory on-switch mechanisms may be hypothesized.Supported by CNRS (LA 205 and ATP n 4188) and Fondation pour la Recherche Médicale  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号