首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
The thalamic relay for lingual tactile, thermal, and gustatory sensibility was defined electrophysiologically in the rat. Subsequently, injections of tritiated leucine were centered in these functionally defined locations in separate series of rats. Following suitable survival periods, the brains were processed for autoradiographic tracing of axonal projections. After injections confined to the thalamic gustatory relay, labeled fibers terminated in agranular insular cortex. These results provide support for our previous experiments correlating neurophysiological localization of rat gustatory cortex and regional cytoarchitecture, and contrast with the traditional assignation of gustatory cortex to the granular insular area.  相似文献   

2.
The gustatory area was searched in the cerebral cortex of the hamster by means of a combined approach using electrophysiological, behavioral, and histological experiments. The chorda tympani (CT), which innervates taste buds on the anterior part of the tongue, projected to a confined area anterior to the middle cerebral artery and just dorsal to the rhinal fissure. The trigeminal component of the lingual nerve (LN) area was located anterodorsal to the CT area, and the glossopharyngeal nerve (GN), which innervates taste buds on the posterior part of the tongue, was posterior to the CT area. The center of the CT and GN areas belonged to the dorsal part of the dysgranular insular cortex, and the LN area was within the primary somatosensory granular cortex. Bilateral symmetrical ablations of the CT and GN areas abolished the conditioned taste aversion (to sodium saccharin) that had been acquired before ablations, indicating a role of these areas in some cognitive processes of taste perception. Injections of horseradish peroxidase conjugated with wheat germ agglutinin (WGA-HRP) in the CT and GN areas, centered in the dysgranular insular cortex, revealed that this cortical region had major fiber connections with the contralateral homotypical cortical area, ipsilateral amygdala (central, lateral and basolateral nuclei), ipsilateral parvicellular part of the posteromedial ventral nucleus of the thalamus, bilateral parabrachial nucleus, contralateral nucleus of the solitary tract, raphe nuclei, and the locus ceruleus. Conversely, injections of WGA-HRP in these target areas showed anterograde and/or retrograde transport in the similar dysgranular insular cortex and additionally in the ventral part of the granular insular cortex. The present results suggest that the cortical gustatory area of the hamster is about 1.5 × 1.5 mm in size with the topographic organization between anterior and posterior parts of the tongue, and is located mainly in the dysgranular insular cortex around the middle cerebral artery.  相似文献   

3.
The distribution of surface positive cortical potentials evoked by electrical stimulation of the chorda tympani, glossopharyngeal and lingual nerves which innervate the tongue was mapped in rabbits. All projections were bilateral. Judging from the extent of the cortical response area and the amplitude and latency of the responses, the major projection of the chorda tympani was ipsilateral, whereas that of the lingual and the glossopharyngeal nerves was contralateral. Both the chorda tympani and the glossopharyngeal nerve project to a confined area in the insular cortex and the lingual nerve projects to the appropriate part of the somatotopic pattern of somatic sensory area I. Further, a single unit study was undertaken to characterize the response of units in the cerebral cortex which was induced by gustatory stimulation of the anterior tongue, Twenty-four gustatory units were found in the insular cortex and the claustrum. The gustatory units were divided into an early response type (21 units) and a late response type (3 units) based on latency measurements. Gustatory units were also classified according to discharge patterns into excitation type (21 units) and inhibition type (4 units). Eleven units responded to 1 or 2 kinds of conventional taste stimuli, and 13 units responded to more than 3 different taste stimuli. Sensitivities of cortical units to the 4 conventional taste stimuli were found to be mutually independent and randomly distributed among cortical units. The frequency of discharges increased in the excitation type units and decreased in the inhibition type units monotonically with the excitation type units and decreased in the inhibition type units monotonically with an increse of NaCl concentration exfept at the highest concentrations.  相似文献   

4.
The existence, location and interrelationships of cortical gustatory association areas in primates and rodents are discussed. Based on previous proposals, and on anatomical, physiological and lesion data, we propose that in addition to primary gustatory cortex, located in primate opercular cortex and rodent granular insular cortex, three association areas exist. A secondary area is located in dysgranular insular cortex, a tertiary area in agranular insular cortex, and the terminus of the cortical gustatory analyzer is located in perirhinal cortex. We propose that the subjective awareness of flavor is most probably due to neuronal activities in agranular insular cortex.  相似文献   

5.
Thalamic and cortical afferents to the insular and perirhinal cortex of the rat were investigated. Unilateral injections of horseradish peroxidase (HRP) were made iontophoretically along the rhinal sulcus. HRP injections covered or invaded areas along the rhinal fissure from about the level of the middle cerebral artery to the posterior end of the fissure. The most anterior injection labeled a few cells in the mediodorsal nucleus. More posterior injections labeled neurons in the basal portion of the nucleus ventralis medialis, thus suggesting that this cortical region constitutes the rat's gustatory (insular) cortex. We consider the cortex situated posterior to the gustatory cortex in and above the rhinal sulcus as the core region of the rat's (associative) insular cortex, as this cortex receives afferents from the regions of and between the nuclei suprageniculatus and geniculatus medialis, pars magnocellularis. It includes parts of the cortex termed perirhinal in other studies. The cortex dorsal and posterior to the insular cortex we consider auditory cortex, as it receives afferents from the principal part of the medial geniculate nucleus, and the cortex ventral to the insular cortex (below the fundus of the rhinal sulcus) we consider to constitute the prepiriform cortex, which is athalamic. The posterior part of the perirhinal cortex (area 35) receives afferents from nonspecific thalamic nuclei (midline nuclei). Cortical afferents to the injection loci arise from a number of regions, above all from regions of the medial and sulcal prefrontal cortex. Those injections confined to the projection cortex of the suprageniculate-magnocellular medial geniculate nuclear complex also led to labeling in contralateral prefrontal regions, particularly in area 25 (infralimbic region). A comparison of our results with those on the insular cortex of cats and monkeys suggests that on the basis of thalamocortical connections, topographical relations, and involvements of neurons in information processing and overt behavior, the insular cortex has to be regarded as a heterogeneous region which may be separated into prefrontal insular, gustatory (somatosensory) insular, and associative insular portions.  相似文献   

6.
Cortical, thalamic, and amygdaloid projections of the rat anterior and posterior insular cortices were examined using the anterograde transport of biocytin. Granular and dysgranular posterior insular areas between bregma and 2 mm anterior to bregma projected to the gustatory thalamic nucleus. Granular cortex projected to the subjacent dysgranular cortex which in turn projected to the agranular (all layers) and granular cortices (layers I and VI). Both granular and dysgranular posterior areas projected heavily to the dysgranular anterior insular cortex. Agranular posterior insular cortex projected to medial mediodorsal nucleus, agranular anterior insular and infralimbic cortices as well as granular and dysgranular posterior insula. No projections to the amygdala were observed from posterior granular cortex, although dysgranular cortex projected to the lateral central nucleus, dorsolateral lateral nucleus, and posterior basolateral nucleus. Agranular projections were similar, although they included medial and lateral central nucleus and the ventral lateral nucleus. Dysgranular anterior insular cortex projected to lateral agranular frontal cortex and granular and dysgranular posterior insular regions. Agranular anterior insular cortex projected to the dysgranular anterior and prelimbic cortices. Anterior insuloamygdaloid projections targeted the rostral lateral and anterior basolateral nuclei with sparse projections to the rostral central nucleus. The data suggest that the anterior insula is an interface between the posterior insular cortex and motor cortex and is connected with motor-related amygdala regions. Amygdaloid projections from the posterior insular cortex appear to be organized in a feedforward parallel fashion targeting all levels of the intraamygdaloid connections linking the lateral, basolateral, and central nuclei . J. Comp. Neurol. 399:440–468, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

7.
1. In order to determine whether the responsiveness of neurons in the caudolateral orbitofrontal cortex (a secondary cortical gustatory area) is influenced by hunger, the activity evoked by prototypical taste stimuli (glucose, NaCl, HCl, and quinine hydrochloride) and fruit juice was recorded in single neurons in this cortical area before, while, and after cynomolgous macaque monkeys were fed to satiety with glucose or fruit juice. 2. It was found that the responses of the neurons to the taste of the glucose decreased to zero while the monkey ate it to satiety during the course of which his behaviour turned from avid acceptance to active rejection. 3. This modulation of responsiveness of the gustatory responses of the neurons to satiety was not due to peripheral adaptation in the gustatory system or to altered efficacy of gustatory stimulation after satiety was reached, because modulation of neuronal responsiveness by satiety was not seen at earlier stages of the gustatory system, including the nucleus of the solitary tract, the frontal opercular taste cortex, and the insular taste cortex. 4. The decreases in the responsiveness of the neurons were relatively specific to the food with which the monkey had been fed to satiety. For example, in seven experiments in which the monkey was fed glucose solution, neuronal responsiveness decreased to the taste of the glucose but not to the taste of blackcurrant juice. Conversely, in two experiments in which the monkey was fed to satiety with fruit juice, the responses of the neurons decreased to fruit juice but not to glucose. 5. These and earlier findings lead to a proposed neurophysiological mechanism for sensory-specific satiety in which the information coded by single neurons in the gustatory system becomes more specific through the processing stages consisting of the nucleus of the solitary tract, the taste thalamus, and the frontal opercular and insular taste primary taste cortices, until neuronal responses become relatively specific for the food tasted in the caudolateral orbitofrontal cortex (secondary) taste area. Then sensory-specific satiety occurs because in this caudolateral orbitofrontal cortex taste area (but not earlier in the taste system) it is a property of the synapses that repeated stimulation results in a decreased neuronal response. 6. Evidence was obtained that gustatory processing involved in thirst also becomes interfaced to motivation in the caudolateral orbitofrontal cortex taste projection area, in that neuronal responses here to water were decreased to zero while water was drunk until satiety was produced.  相似文献   

8.
There is considerable uncertainty regarding the cortical areas in the human brain that are involved in gustatory processing. Evidence from nonhuman primates indicates that parts of the peri-central opercular region (secondary somatosensory cortex) and insular cortex may be important for gustatory processing. The aim of the study was to examine changes in cerebral blood flow during gustatory stimulation (with sucrose or water) in the insulo-opercular region of the human brain with positron emission tomography using only movement of the tongue and mouth as control conditions. This is important because subtractions of responses to one gustatory stimulus from those to another may mask gustatory activity that is common to both stimuli, even when the control stimulus is an apparently tasteless one (e.g. water). Bilateral increases in activity were observed in the insulo-opercular region and, consistent with animal work, they indicate that there are a number of separate foci within this general area where primary gustatory inputs may be processed.  相似文献   

9.
Smith DV  Li CS 《Brain research》2000,858(2):408-415
The nucleus of the solitary tract (NST) receives descending connections from several forebrain targets of the gustatory system, including the insular cortex. Many taste-responsive cells in the NST are inhibited by gamma-aminobutyric acid (GABA). In the present study, we investigated the effects of cortical stimulation on the activity of gustatory neurons in the NST. Multibarrel glass micropipettes were used to record the activity of NST neurons extracellularly and to apply the GABA(A) antagonist bicuculline methiodide (BICM) into the vicinity of the cell. Taste stimuli were 0.032 M sucrose (S), 0.032 M NaCl (N), 0.00032 M citric acid (H), and 0.032 M quinine hydrochloride (Q), presented to the anterior tongue. Each of 50 NST cells was classified as S-, N-, H-, or Q-best on the basis of its response to chemical stimulation of the tongue. The ipsilateral insular cortex was stimulated both electrically (0.5 mA, 100 Hz, 0.2 ms) and chemically (10 mM DL-homocysteic acid, DLH), while the spontaneous activity of each NST cell was recorded. The baseline activity of 34% of the cells (n=17) was modulated by cortical stimulation: eight cells were inhibited and nine were excited. BICM microinjected into the NST blocked the cortical-induced inhibition but had no effect on the excitatory response. Although the excitatory effects were distributed across S-, N-, and H-best neurons, the inhibitory effects of cortical stimulation were significantly more common in N-best cells. These data suggest that corticofugal input to the NST may differentially inhibit gustatory afferent activity through GABAergic mechanisms.  相似文献   

10.
The granular and dysgranular insular subregions of the cortical taste area in rats are shown to connect anatomically with the homotopical regions in the opposite hemisphere through the corpus callosum. Cells of callosal efferents and terminals of callosal fibers were found in almost all cortical layers. The findings clarify the current understanding of the morphological substrate of callosal interactions in the gustatory system.  相似文献   

11.
To examine whether cortical taste neurons use spatial codes for discriminating taste information, we investigated the spatial aspects of optical intrinsic signal (OIS) responses in the gustatory insular cortex (GC) elicited by the administration of two essential tastants, sucrose and NaCl, on the tongue. OIS responses to sucrose appeared in the rostral part of the GC, whereas those to NaCl appeared in the central part of the GC. Local anesthetization of the tongue abolished OIS responses, and the administration of distilled water elicited no OIS response. Thus, taste information elicited by sucrose and NaCl from the peripheral sensory organs is segregated in the GC, suggesting that the information from two essential tastants is assembled as spatial codes in the primary cortical taste area through the process of taste quality perception.  相似文献   

12.
Extracellular unit responses to gustatory stimulation of the pharyngolaryngeal region, baroreceptor and chemoreceptor stimulation, and tail pinch were recorded from the insular cortex of anesthetized and paralyzed rats. Of the 32 neurons identified, 28 responded to at least one of the nine stimuli used in the present study. Of the 32 neurons, 11 showed an excitatory response to tail pinch, 13 showed an inhibitory response, and the remaining eight had no response. Of the 32 neurons, eight responded to baroreceptor stimulation by an intravenous (i.v.) injection of methoxamine hydrochloride (Mex), four were excitatory and four were inhibitory. Thirteen neurons were excited and six neurons were inhibited by an arterial chemoreceptor stimulation by an i.v. injection of sodium cyanide (NaCN). Twenty-two neurons were responsive to at least one of the gustatory stimuli (deionized water, 1.0 M NaCl, 30 mM HCl, 30 mM quinine HCl, and 1.0 M sucrose); five to 11 excitatory neurons and three to seven inhibitory neurons for each stimulus. A large number of the neurons (25/32) received converging inputs from more than one stimulus among the nine stimuli used in the present study. Most neurons (23/32) received converging inputs from different modalities (gustatory, visceral, and tail pinch). The neurons responded were located in the insular cortex between 2.0 mm anterior and 0.2 mm posterior to the anterior edge of the joining of the anterior commissure (AC); the mean location was 1.2 mm (n=28) anterior to the AC. This indicates that most of the neurons identified in the present study seem to be located in the region posterior to the taste area and anterior to the visceral area in the insular cortex. These results indicate that the insular cortex neurons distributing between the taste area and the visceral area receive convergent inputs from gustatory, baroreceptor, chemoreceptor, and nociceptive organs.  相似文献   

13.
Flavor perception requires the neural integration of olfactory, gustatory and, possibly, visceral afferent information. Presently, it is not known where, or how this integration takes place in the brain. Neuroanatomical data presented here suggest that pathways subserving these sensory modalities converge in mouse insular cortex after surprisingly few synaptic relays. Orthograde transport of wheat germ agglutinin conjugated to horseradish peroxidase (WGA-HRP) was used to label main olfactory bulb (MOB) efferents. A projection into layer I of insular cortex was present in every case. Bulb transections were made to provoke anterograde degeneration and EM analysis confirmed that the olfactory projection to insular cortex was a terminal pathway. WGA-HRP injections in the MOB-recipient zone of insular cortex resulted in ortho and retrograde labeling of ascending and descending gustatory-visceral afferent pathways. It is concluded that in the mouse, there is a remarkably direct convergence of olfactory and gustatory-visceral sensory pathways in insular cortex. Together with the descending connections from insular cortex to the amygdala and to brainstem autonomic structures, it is possible that the cortical integration of olfactory and gustatory-visceral information could modulate mechanisms involved in food selection and autonomic reactions relating to the chemical senses. Basic mechanisms subserving flavor perception might be usefully modelled in mouse insular cortex.  相似文献   

14.
The connections of the amygdala with the insular and temporal cortices were examined by injecting wheat germ agglutinin conjugated to HRP (WGA-HRP) into the rat cortex. Following injections into the posterior agranular insular area (AIp) or perirhinal cortex (PR), bands of labeled neurons extending across nuclear boundaries were observed in the amygdala. These neuronal bands involved cells in the lateral, basolateral, and basomedial nuclei as well as the periamygdaloid cortex. Other nuclei of the corticomedial amygdala and the ventral endopiriform nucleus also exhibited retrogradely labeled cells. Anterograde label was observed in nuclei containing labeled neurons and in the central nucleus. Injections into gustatory, somatosensory, and auditory neocortical areas located dorsal to AIp and PR labeled small numbers of cells in the lateral and basolateral nuclei. Injections into AIp, PR, and, to a lesser extent, dorsally adjacent neocortical areas produced both retrograde and anterograde labeling in the contralateral amygdala. The main nuclei with contralateral insular and temporal projections are the basomedial nucleus, ventral endopiriform nucleus, and nucleus of the lateral olfactory tract. The contralateral central nucleus and to a lesser extent the lateral nucleus exhibited anterograde labeling. The pattern of retrograde labeling seen with injections at different rostrocaudal levels of the AIp-PR continuum indicates that amygdalocortical projections to these areas exhibit an overlapping topographical organization. Comparison of the results of this study with findings on amygdaloprefrontal cortical efferents suggests that amygdaloid projections to the entire fronto-insulo-temporal mesocortical field are topographically organized.  相似文献   

15.
The insular areas of the cerebral cortex in carnivores remain vaguely defined and fragmentarily characterized. We have examined the cortical microarchitecture and thalamic connections of the insular region in cats, as a part of a broader study aimed to clarify their subdivisions, functional affiliations, and eventual similarities with other mammals. We report that cortical areas, which resemble the insular fields of other mammals, are located in the cat's orbital gyrus and anterior rhinal sulcus. Our data suggest four such areas: (a) a “ventral agranular insular area” in the lower bank of the anterior rhinal sulcus, architectonically transitional between iso- and allocortex and sparsely connected to the thalamus, mainly with midline nuclei; (b) a “dorsal agranular insular area” in the upper bank of the anterior rhinal sulcus, linked to the mediodorsal, ventromedial, parafascicular and midline nuclei; (c) a “dysgranular insular area” in the anteroventral half of the orbital gyrus, characterized by its connections with gustatory and viscerosensory portions of the ventroposterior complex and with the ventrolateral nucleus; and (d) a “granular insular area”, dorsocaudal in the orbital gyrus, which is chiefly bound to spinothalamic-recipient thalamic nuclei such as the posterior medial and the ventroposterior inferior. Three further fields are situated caudally to the insular areas. The anterior sylvian gyrus and dorsal lip of the pseudosylvian sulcus, which we designate “anterior sylvian area”, is connected to the ventromedial, suprageniculate, and lateralis medialis nuclei. The fundus and ventral bank of the pseudosylvian sulcus, or “parainsular area”, is associated with caudal portions of the medial geniculate complex. The rostral part of the ventral bank of the anterior ectosylvian sulcus, referred to as “ventral anterior ectosylvian area”, is heavily interconnected with the lateral posterior-pulvinar complex and the ventromedial nucleus. Present results reveal that these areas interact with a wide array of sensory, motor, and limbic thalamic nuclei. In addition, these data provide a consistent basis for comparisons with cortical fields in other mammals. J. Comp. Neurol. 384:456–482, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

16.
In conclusion, the rat primary motor cortex appears to be organized into irregularly shaped patches of cortex devoted to particular movements. The location of major subdivisions such as the forelimb or hindlimb areas is somatotopic and is consistent from animal to animal, but the internal organization of the pattern of movements represented within major subdivisions varies significantly between animals. The motor cortex includes both agranular primary motor cortex (AgL) and, in addition, a significant amount of the bordering granular somatic sensory cortex (Gr(SI)), as well as the rostral portion of the taste sensory insular or claustrocortex (Cl). The rat frontal cortex also contains a second, rostral motor representation of the forelimb, trunk and hindlimb, which is somatotopically organized and may be the rat's supplementary motor area. Both of these motor representations give rise to direct corticospinal projections21,42,51,57, some of which may make monosynaptic connections with cervical enlargement motorneurons16. Medial to the primary motor cortex, in cytoarchitectonic field AgM, is what appears to be part of the rat's frontal eye fields, a region which also includes the vibrissae motor representation. The somatic motor cortical output organization pattern in the rat is remarkably similar to that seen in the primate, whose primary, supplementary and frontal eye field cortical motor regions have been extensively studied.  相似文献   

17.
Cardiovascular effects of human insular cortex stimulation.   总被引:40,自引:0,他引:40  
Recent investigations indicate a site of cardiac representation within the left insular cortex of the rat. Moreover, the results of lesion studies suggest left-sided insular dominance for sympathetic cardiovascular effects. It is unclear whether similar representation exists within the human insular cortex. Five epileptic patients underwent intraoperative insular stimulation prior to temporal lobectomy for seizure control. On stimulation of the left insular cortex, bradycardia and depressor responses were more frequently produced than tachycardia and pressor effects (p less than 0.005). The converse applied for the right insular cortex. We believe this to be the first demonstration of cardiovascular changes elicitable during insular stimulation in humans, and of lateralization of such responses for a cortical site. In humans, unlike the rat, there appears to be right-sided dominance for sympathetic effects. These findings may be of relevance in predicting the autonomic effects of stroke in humans and in the explanation of sudden unexpected epileptic death.  相似文献   

18.
19.
The insular cortex plays a key role in the integration of multimodal information and in interoceptive and exteroceptive processing. For instance, neurons in the central dorsal insula that are active during interoceptive tasks, also show an adaptation to gustatory stimulation. We tested the link between interoception and exteroception for the olfactory system (i.e., the second domain of chemosensation). In a sample of 31 participants, olfactory function was assessed in a two dimensional approach while the Heartbeat Perception Task served as a measurement for cardiac interoceptive accuracy. Subsequent fMRI sessions were performed on a 3‐Tesla MR scanner containing 12–15 olfactory stimulation trials with a mildly pleasant food‐related odor (coffee). Persons scoring high in the cardiac interoceptive accuracy task presented stronger smelling abilities as well as enhanced BOLD responses following olfactory stimulation. The olfactory stimulation triggered enhanced insular activation patterns in the central dorsal insular cortex. Consistent with prior findings on the coherence of gustatory and interoceptive processing in the central dorsal insula, these results base the insula as a common region for the integration of interoception and exteroception. We propose an explanatory model of how exteroception triggers the integration of intero‐ and exteroceptive sensations in the central dorsal insular cortex.  相似文献   

20.
Reciprocal putative connections of the prefrontal cortex (PFC) (agranular insular, ventral and lateral orbital region) with the ipsi and contralateral main olfactory bulb (IOB; COB), the mediodorsal thalamic nucleus (MD), the basolateral amygdaloid nucleus (BLA) and the piriform cortex (PC) were investigated with electrophysiological techniques. Evoked field responses and orthodromic unit driving, generated in PFC following electrical stimulation of the above mentioned structures, were abolished following topical application of KCl, except for COB evoked mass potentials. Thus, locally generated activity was elicited in agranular insular cortex following IOB activation, the same region where recently, the taste cortex in the rat was localized. Since gustatory-visceral afferent information reaches insular cortex via 2-3 synaptic relays, autonomic, olfactory and gustatory inputs may interact at this level, and, as suggested previously for the mouse, play a key integrative role in flavor perception. Antidromically invaded neurons, 47% of which were identified by the collision-extinction technique, were also found in PFC areas which overlapped to a considerable extent with those from which orthodromic unit responses were obtained. In particular, closely spaced neurons in ventrolateral orbital (VLO) and lateral orbital (LO) regions were antidromically invaded following IOB and PC shocks; some neurons antidromically discharged by IOB were also transsynaptically activated following PC stimulation. These findings are in agreement with recent neuroanatomical studies which demonstrate axonal projections from PFC neurons to the IOB and COB in the rat and South American armadillo. In addition, stimulation of PFC regions dorsal to the rhinal fissure mostly inhibited spontaneous unit discharges recorded at the mitral cell layer of the IOB, suggesting that this effect may be partially mediated by excitatory inputs of prefrontal axons onto granule cells. The conduction properties, antidromic thresholds and activity-dependent variations in conduction velocity (CV) of bulbopetal neurons in prefrontal cortex were found to be similar to those exhibited by cells projecting to the IOB from olfactory peduncle regions, but not to those present in bulbopetal neurons of the horizontal limb of diagonal band, indicating that the OB may be subjected to centrifugal control by at least two cell groups differing in both histochemical and electrophysiological properties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号