首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Micronemes are secretory organelles of the invasive stages of apicomplexan parasites and contain proteins that are important for parasite motility and host cell invasion. We have examined the induction of microneme secretion in the coccidian Eimeria tenella. When sporozoites were added to MDBK cells in culture, microneme proteins were secreted, capped backwards over the parasite surface and deposited onto underlying host cells from the posterior end of gliding parasites. Induction of secretion was also achieved by the addition of foetal calf serum, or purified albumin, to extracellular sporozoites. Microneme secretion per se was not dependent on parasites being able to move or to invade host cells. However, in the presence of cytochalasin D, which disrupts actin polymerisation and prevents parasite movement, microneme proteins were secreted from the apical tip but were not capped backwards over the sporozoite surface. These observations support the hypothesis that microneme proteins function as ligands which, when secreted out onto the parasite surface, form a link, either directly or indirectly, between the sub-pellicular actin–myosin cytoskeletal motor of the parasite and the surface of target host cells.  相似文献   

2.
Microneme organelles are present in all apicomplexan protozoa and contain proteins that are critical for parasite motility and host cell invasion. One apicomplexan-wide family of microneme proteins has been identified with members that are characterised by the possession of thrombospondin type I repeats, conserved adhesive motifs which are implicated in binding to glycosaminoglycan chains. In this paper we describe a micronemal glycoprotein, EtMIC 5, from Eimeria tenella which contains eleven cysteine-rich motifs that have striking similarity to the adhesive Apple (A-) domains of blood coagulation factor XI and plasma pre-kallikrein. EtMIC 5 is confined to an intracellular location in resting sporozoites but is translocated to the parasite surface and secreted into the culture supernatant during parasite infection of MDBK cells. During intracellular replication, the protein is switched off in early schizogony and is then re-expressed within the apical tips of newly formed merozoites. A-domain sequences were also found in microneme proteins from Sarcocystis muris and Toxoplasma gondii and in a protein of unknown localisation from Eimeria acervulina. These studies suggest that A-domain containing proteins may comprise a novel apicomplexan-wide family of microneme adhesins.  相似文献   

3.
In apicomplexan parasites, host cell adhesion and subsequent invasion involve the sequential release of molecules originating from secretory organelles named micronemes, rhoptries, and dense granules. Microneme proteins have been shown to be released at the onset of the initial contact between the parasite and the host cell and thus mediate and establish the physical interaction between the parasite and the host cell surface. This interaction most likely involves adhesive domains found within the polypeptide sequences of most microneme proteins identified to date. NcMIC3 is a microneme-associated protein found in Neospora caninum tachyzoites and bradyzoites, and a large portion of this protein is comprised of a stretch of four consecutive epidermal growth factor (EGF)-like domains. We determined the subcellular localization of NcMIC3 prior to and following host cell invasion and found that NcMIC3 was secreted onto the tachyzoite surface immediately following host cell lysis in a temperature-dependent manner. Surface-exposed NcMIC3 could be detected up to 2 to 3 h following host cell invasion, and at later time points the distribution of the protein was again restricted to the micronemes. In vitro secretion assays using purified tachyzoites showed that following secretion onto the surface, NcMIC3 was largely translocated towards the posterior end of the parasite, employing a mechanism which requires a functional actin microfilament system. Following this, the protein remained bound to the parasite surface, since it could not be detected in a soluble form in respective culture supernatants. Secretion of NcMIC3 onto the surface resulted in an outward exposure of the EGF-like domains and coincided with an increased capacity of N. caninum tachyzoites to adhere to Vero cell monolayers in vitro, a capacity which could be inhibited by addition of antibodies directed against the EGF-like domains. NcMIC3 is a prominent component of Triton X-100 lysates of tachyzoites, and cosedimentation assays employing prefixed Vero cells showed that the protein binds to the Vero cell surface. In addition, the EGF-like domains, expressed as recombinant proteins in Escherichia coli, also interacted with the Vero cell surface, while binding of NcSRS2 and NcSAG1, the major immunodominant surface antigens, was not as efficient. Our data are indicative of a functional role of NcMIC3 in host cell infection.  相似文献   

4.
The invasive stages of apicomplexan parasites enter their host cells through mechanisms which are largely conserved throughout the phylum. Host cell invasion is divided into two distinct events, namely, adhesion onto the host cell surface and the actual host cell entry process. The former is mediated largely through microneme proteins which are secreted at the onset of establishing contact with the host cell surface. Many of the microneme proteins identified so far contain adhesive domains. We here present the genomic and corresponding cDNA sequences coding for a 460-amino-acid (aa) microneme protein in Neospora caninum tachyzoites which, due to its homology to MIC1 in Toxoplasma gondii (TgMIC1), was named NcMIC1. The deduced NcMIC1 polypeptide sequence contains an N-terminal signal peptide of 20 aa followed by two tandemly internal repeats of 48 and 44 aa, respectively. Integrated into each repeat is a CXXXCG sequence motif reminiscent of the thrombospondin-related family of adhesive proteins. The positioning of this motif is strictly conserved in TgMIC1 and NcMIC1. The C-terminal part, comprised of 278 aa, was expressed in Escherichia coli, and antibodies affinity purified on recombinant NcMIC1 were used to confirm the localization within the micronemes by immunofluorescence and immunogold transmission electron microscopy of tachyzoites. Immunohistochemistry of mouse brains infected with tissue cysts showed that expression of this protein is reduced in the bradyzoite stage. Upon initiation of secretion by elevating the temperature to 37 degrees C, NcMIC1 is released into the medium supernatant. NcMIC1 binds to trypsinized, rounded Vero cells, as well as to Vero cell monolayers. Removal of glycosaminoglycans from the host cell surface and modulation of host cell surface glycosaminoglycan sulfation significantly reduces the binding of NcMIC1 to the host cell surface. Solid-phase binding assays employing defined glycosaminoglycans confirmed that NcMIC1 binds to sulfated glycosaminoglycans.  相似文献   

5.
Pore-forming proteins are employed by many pathogens to achieve successful host colonization. Intracellular pathogens use pore-forming proteins to invade host cells, survive within and productively interact with host cells, and finally egress from host cells to infect new ones. The malaria-causing parasites of the genus Plasmodium evolved a number of life cycle stages that enter and replicate in distinct cell types within the mosquito vector and vertebrate host. Despite the fact that interaction with host-cell membranes is a central theme in the Plasmodium life cycle, little is known about parasite proteins that mediate such interactions. We identified a family of five related genes in the genome of the rodent malaria parasite Plasmodium yoelii encoding secreted proteins all bearing a single membrane-attack complex/perforin (MACPF)-like domain. Each protein is highly conserved among Plasmodium species. Gene expression analysis in P. yoelii and the human malaria parasite Plasmodium falciparum indicated that the family is not expressed in the parasites blood stages. However, one of the genes was significantly expressed in P. yoelii sporozoites, the stage transmitted by mosquito bite. The protein localized to the micronemes of sporozoites, organelles of the secretory invasion apparatus intimately involved in host-cell infection. MACPF-like proteins may play important roles in parasite interactions with the mosquito vector and transmission to the vertebrate host.  相似文献   

6.
Microneme proteins have been shown to play an important role in the early phase of host cell adhesion, by mediating the contact between the parasite and host cell surface receptors. In this study we have identified and characterized a lectin-like protein of Neospora caninum tachyzoites which was purified by alpha-lactose-agarose affinity chromatography. Upon separation by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, this lactose-binding protein migrated at 70 and 55 kDa under reducing and nonreducing conditions, respectively. Immunofluorescence and immunogold electron microscopy with affinity-purified antibodies showed that the protein was associated with the tachyzoite micronemes. Mass spectrometry analyses and expressed sequence tag database mining revealed that this protein is a member of the Neospora microneme protein family; the protein was named NcMIC4 (N. caninum microneme protein 4). Upon two-dimensional gel electrophoresis, NcMIC4 separated into seven distinct isoforms. Incubation of extracellular parasites at 37 degrees C resulted in the secretion of NcMIC4 into the medium as a soluble protein, and the secreted protein exhibited a slightly reduced M(r) but retained its lactose-binding properties. Immunofluorescence was used to investigate the temporal and spatial distribution of NcMIC4 in tachyzoites entering their host cells and showed that reexpression of NcMIC4 took place 30 min after entry into the host cell. Incubation of secreted fractions and purified NcMIC4 with Vero cells demonstrated binding of NcMIC4 to Vero cells as well as binding to chondroitin sulfate A glycosaminoglycans.  相似文献   

7.
艾美耳球虫是一类重要的肠道病原,其裂殖生殖阶段的虫体逸出过程是造成畜禽肠道破坏的主要原因之一,但此逸出过程的机制仍鲜有报道。本研究以乙醇作为诱导剂研究柔嫩艾美耳球虫M2e株子孢子从宿主细胞中逸出的机制。结果显示,乙醇可诱导子孢子从MDBK细胞中逸出,此逸出过程依赖于虫体的运动能力;同时,乙醇可激发子孢子逸出相关的微线体蛋白2(Mic2)的分泌释放。进一步实验证实,螯合虫体内部钙离子明显阻断了子孢子逸出及Mic2蛋白的释放。本研究初步证实了与柔嫩艾美耳球虫逸出相关的蛋白和离子,为深入解析球虫致病的分子机制、研发新型抗球虫药物提供了新的研究方向。  相似文献   

8.
9.
Previous studies have demonstrated that surface antigen proteins, in particular SAG-1, of Toxoplasma gondii are important to this parasite as attachment ligands for the host cell. An in vitro assay was developed to test whether these ligands and other secretory proteins are involved in the immune response of human cells to toxoplasma. Human monocytes were infected with tachyzoites in the presence of antiparasite antibodies, and their effect on mitogen-induced lymphoproliferation was examined. The presence of antibody to either parasite-excreted proteins (MIC-1 and MIC-2) or surface proteins (SAG-1 and SAG-2) during infection neutralized the marked decrease seen in mitogen-induced lymphoproliferation in the presence of infected monocytes. Conversely, antibodies to other secreted proteins (ROP-1) and cytoplasmic molecules had no effect on parasite-induced, monocyte-mediated downregulation. Fluorescence microscope analysis detected microneme and surface antigen proteins on the monocyte cell surface during infection. These results suggest that microneme and surface antigen proteins trigger monocytes to downregulate mitogen-induced lymphoproliferation.  相似文献   

10.
Thrombospondin-related anonymous protein (TRAP) is a type 1 transmembrane protein that plays an essential role in gliding motility and cell invasion by Plasmodium sporozoites. It is stored in micronemes-secretory organelles located primarily in the apical end of the parasites and is also found on the parasite surface. The mechanisms that target TRAP and other sporozoite proteins to micronemes and subsequently to the parasite surface are not known. Here we report that the micronemal and surface localization of TRAP requires a tyrosine-based motif located in its cytoplasmic tail. This motif is analogous to the YXXphi motif (Y: tyrosine, X: any amino acid; phi: hydrophobic amino acid) that targets eukaryotic proteins to certain sub-cellular compartments and to the plasma membrane. Abrogating the Y motif substantially reduces micronemal and cell surface localization of TRAP. The infectivity of mutant parasites is substantially inhibited. However, there is no significant difference in the amounts of TRAP secreted into the culture medium by wild type and mutant parasites, suggesting that TRAP destined for secretion bypasses micronemal localization.  相似文献   

11.
Rhoptry and microneme organelles of the protozoan parasite Toxoplasma gondii are closely associated with host cell adhesion/invasion and establishment of the intracellular parasitophorous vacuole. In order to study the targeting of proteins to these specialized secretory organelles, we have engineered green fluorescent protein (GFP) fusions to the rhoptry protein ROP1 and the microneme protein MIC3. Both chimeras are correctly targeted to the appropriate organelles, permitting deletion analysis to map protein subdomains critical for targeting. The propeptide and a central 146 amino acid region of ROP1 are sufficient to target GFP to the rhoptries. More extensive deletions result in a loss of rhoptry targeting; the GFP reporter is diverted into the parasitophorous vacuole via dense granules. Certain MIC3 deletion mutants were also secreted into the parasitophorous vacuole via dense granules, supporting the view that this route constitutes the default pathway in T. gondii, and that specific signals are required for sorting to rhoptries and micronemes. Deletions within the cysteine-rich central region of MIC3 cause this protein to be arrested at various locations within the secretory pathway, presumably due to improper folding. Although correctly targeted to the appropriate organelles in living parasites, ROP1-GFP and MIC3-GFP fusion proteins were not secreted during invasion. GFP fusion proteins were readily secreted from dense granules, however, suggesting that protein secretion from rhoptries and micronemes might involve more than a simple release of organellar contents.  相似文献   

12.
The pathology that occurs in mouse embryonic brain (MEB) cells that have been penetrated by sporozoites ofEimeria papillata was studied by light and electron microscopy. At the light microscopy level the greatest number of intracellular parasites was seen at 15 and 45 min postinoculation (PI). The monolayer of MEB cells had begun to round up by 45 min PI, and by 60 min PI most of the cells were stripped from the coverslip. Little ultrastructural damage was seen in MEB cells just penetrated by the parasites at 15 min PI, and no host cell membrane was seen around the sporozoites that had just entered the cells. Flexing and bending of the sporozoites within the MEB cell caused vacuolization of cell cytoplasm and in some cases rupture of host cell membrane. Sporozoites leaving the host cells at 15 min PI caused a rupture of the host cell membrane at the apical end of the parasite, and both host cell membrane and cytoplasm were attached to the surface of the parasite. MEB cells still attached to coverslips at 45 min PI demonstrated complete degeneration.  相似文献   

13.
Toxoplasma gondii sporozoites form two parasitophorous vacuoles during development within host cells, the first (PV1) during host cell invasion and the second (PV2) 18 to 24 h postinoculation. PV1 is structurally distinctive due to its large size, yet it lacks a tubulovesicular network (C. A. Speer, M. Tilley, M. Temple, J. A. Blixt, J. P. Dubey, and M. W. White, Mol. Biochem. Parasitol. 75:75-86, 1995). Confirming the finding that sporozoites have a different electron-dense-granule composition, we have now found that sporozoites within oocysts lack the mRNAs encoding the 5' nucleoside triphosphate hydrolases (NTPase). NTPase first appears 12 h postinfection. Other tachyzoite dense-granule proteins, GRA1, GRA2, GRA4, GRA5, and GRA6, were detected in oocyst extracts, and antibodies against these proteins stained granules in the sporozoite cytoplasm. In contrast to tachyzoite invasion of host cells, however, sporozoites did not exocytose the dense-granule proteins GRA1, GRA2, or GRA4 during PV1 formation. Even after NTPase induction, these proteins were retained within cytoplasmic granules rather than being secreted into PV1. Only GRA5 was secreted by the sporozoite during host cell invasion, becoming associated with the membrane surrounding PV1. Microinjection of sporozoite-infected cells with fluorescent dyes showed that PV1 is impermeable to fluorescent dyes with molecular masses as small as 330 Da, indicating that PV1 lacks channels through which molecules can pass from the host cytoplasm into the vacuole. By contrast, lucifer yellow rapidly diffused into PV2, demonstrating the presence of molecular channels. These studies indicate that PV1 and PV2 are morphologically, immunologically, and functionally distinct, and that PV2 appears to be identical to the tachyzoite vacuole. The inaccessibility of PV1 to host cell nutrients may explain why parasite replication does not occur in this vacuole.  相似文献   

14.
Leishmania are protozoan parasites which invade mammalian macrophages and multiply as amastigotes in phagolysosomes (parasitophorous vacuoles). Using L. mexicana and bone marrow-derived macrophages (BMM), the question is addressed whether infected BMM induced to express major histocompatibility complex class II molecules can present defined antigens to specific T helper type 1 cells. As a model antigen, a membrane-bound acid phosphatase (MAP), a minor protein associated with intracellular vesicles in amastigotes, was either overexpressed at the surface of the parasites or overexpressed in a soluble form leading to antigen secretion into the parasitophorous vacuole. Presentation of MAP epitopes by these three types of amastigotes was then compared for macrophages containing live parasites or amastigotes inactivated by drug treatment. It is shown that surface-exposed and secreted MAP can be efficiently presented to T cells by macrophages harboring live amastigotes. Therefore, the parasitophorous vacuole communicates by vesicular membrane traffic with the plasmalemma of the host cell. The intracellular MAP of wild-type cells or the abundant lysosomal cysteine proteinases are not or only inefficiently presented, respectively. After killing of the parasites, abundant proteins such as overexpressed MAP and the cysteine proteinases efficiently stimulate T cells, while wild-type MAP levels are not effective. We conclude that intracellular proteins of intact amastigotes are not available for presentation, while after parasite inactivation, presentation depends on antigen abundance and possibly stability. The cell biological and possible immunological consequences of these results are discussed.  相似文献   

15.
The Plasmodium sporozoite is infective for mosquito salivary glands and vertebrate host tissues. Although it is a key developmental stage of the malaria parasite, relatively few sporozoite surface or secreted proteins have been identified and characterized. Herein, we describe the molecular and cellular characterization of a novel surface molecule that is preferentially-expressed in salivary gland sporozoites as compared to oocyst and hemolymph sporozoites. This molecule, designated the sporozoite and erythrocytic stages (SES) protein (formerly known as Pg4), exhibits a spiral surface labeling pattern that spans over a known sporozoite surface antigen, the circumsporozoite protein, with only minor co-localization. SES consists of 551 amino acids encoding a putative 63.2kDa protein that has been shown to be expressed not only on particular sporozoite stages, but also during the asexual and gametocyte stages. This novel protein also has three domains of unknown function that are conserved in at least eight Plasmodium spp. that represent human, avian, non-human primate, and rodent malarias.  相似文献   

16.
Exoerythrocytic (EE) stages of Plasmodium berghei derived from irradiated sporozoites were cultured in vitro in HepG2 cells. They synthesized several antigens, predominantly but not exclusively those expressed by normal early erythrocytic schizonts. After invasion, over half the intracellular sporozoites, both normal and irradiated, appeared to die. After 24 h, in marked contrast to the normal parasites, EE parasites derived from irradiated sporozoites continued to break open, shedding their antigens into the cytoplasm of the infected host cells. Increasing radiation dosage, which has previously been shown to reduce the ability of irradiated sporozoites to protect animals, correlated with reduced de novo antigen synthesis by EE parasites derived from irradiated sporozoites.  相似文献   

17.
Egress, which describes the mechanism that some intracellular parasites use to exit from parasitophorous vacuoles and host cells, plays a very important role in the parasite life cycle and is central to Eimeria propagation and pathogenesis. Despite the importance of egress in the intracellular parasite's life cycle, very little information is known on this process compared to other steps, e.g., invasion. The present study was conducted to investigate the interplay between the host adaptive immune system and Eimeria egression. Splenic lymphocytes or soluble immune factors were incubated with parasite-infected host cells for 3 or 5 h, and the percentage of egress was calculated according to an established formula. Viability of egressed parasites and host cells was tested using trypan blue exclusion and annexin V and propidium iodide staining, respectively. We found that premature egression of sporozoites from Eimeria tenella-infected primary chicken kidney cells or from chicken peripheral blood mononuclear cells occurred when the cells were cocultured in vitro with spleen lymphocytes from E. tenella-infected chickens but not when they were cocultured with splenocytes from uninfected chickens. Eimeria-specific antibodies and cytokines (gamma interferon [IFN-γ], interleukin-2 [IL-2], and IL-15), derived from E. tenella-primed B and T lymphocytes, respectively, were capable of promoting premature egress of sporozoites from infected host cells. Both egressed parasites and host cells were viable, although the latter showed reduced reinvasion ability. These results suggest a novel, immune-mediated mechanism that the host exploits to interrupt the normal Eimeria life cycle in vivo and thereby block the release of mature parasites into the environment.  相似文献   

18.
19.
Scanning and transmission electron microscopy were used to study the invasion of mouse small-intestinal epithelium by sporozoites ofEimeria papillata. Some mice received oocysts by gavage and others received either sporocysts or sporozoites by direct injection into the small intestine. The highest concentration of invaded cells were found in ligated intestinal tissues studied at 5–45 min after the inoculation of sporozoites. Sporozoites actively invaded anterior end first, which resulted in extensive damage to the host cell. Such cells showed disrupted microvilli; protuberances of cytoplasm into the lumen, apparently the result of a disrupted plasma membrane; vacuolization of the cytoplasm; and damage to the mitochondria. These damaged cells were rapidly vacated as the sporozoite moved laterally into one or more adjacent intact host cells without entering the lumen. It is suggested that the host cell initially entered from the lumen becomes so severely traumatized that the parasite of necessity enters an adjacent cell as a prelude to further development. Various aspects of host-cell invasion by coccidia and malarial parasites are reviewed.  相似文献   

20.
The apical organelles in apicomplexan parasites are characteristic secretory vesicles containing complex mixtures of molecules. While apical organelle discharge has been demonstrated to be involved in the cellular invasion of some apicomplexan parasites, including Toxoplasma gondii and Plasmodium spp., the mechanisms of apical organelle discharge by Cryptosporidium parvum sporozoites and its role in host cell invasion are unclear. Here we show that the discharge of C. parvum apical organelles occurs in a temperature-dependent fashion. The inhibition of parasite actin and tubulin polymerization by cytochalasin D and colchicines, respectively, inhibited parasite apical organelle discharge. Chelation of the parasite's intracellular calcium also inhibited apical organelle discharge, and this process was partially reversed by raising the intracellular calcium concentration by use of the ionophore A23187. The inhibition of parasite cytoskeleton polymerization by cytochalasin D and colchicine and the depletion of intracellular calcium also decreased the gliding motility of C. parvum sporozoites. Importantly, the inhibition of apical organelle discharge by C. parvum sporozoites blocked parasite invasion of, but not attachment to, host cells (i.e., cultured human cholangiocytes). Moreover, the translocation of a parasite protein, CP2, to the host cell membrane at the region of the host cell-parasite interface was detected; an antibody to CP2 decreased the C. parvum invasion of cholangiocytes. These data demonstrate that the discharge of C. parvum sporozoite apical organelle contents occurs and that it is temperature, intracellular calcium, and cytoskeleton dependent and required for host cell invasion, confirming that apical organelles play a central role in C. parvum entry into host cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号