首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
Autosomal recessive nonsyndromic hearing impairment (ARNSHI) segregating in three unrelated, large consanguineous Pakistani families (PKDF528, PKDF859 and PKDF326) is linked to markers on chromosome 12q14.2-q15. This novel locus is designated DFNB74 . Maximum two-point limit of detection (LOD) scores of 5.6, 5.7 and 2.6 were estimated for markers D 12 S 313, D 12 S 83 and D 12 S 75 at θ = 0 for recessive deafness segregating in these three families. Haplotype analyses identified a critical linkage interval of 5.35 cM (5.36 Mb) defined by D 12 S 329 at 74.58 cM and D 12 S 313 at 79.93 cM. DFNB74 is the second ARNSHI locus mapped to chromosome 12, but the physical intervals do not overlap with one another. A locus contributing to the early onset, rapidly progressing hearing loss of A/J mice ( ahl4 , age-related hearing loss 4) was reported to map to chromosome 10 in a region of conserved synteny to DFNB74 , suggesting that ahl4 and DFNB74 may be due to mutations of the same gene in these two species.  相似文献   

2.

Background

Non‐syndromic hearing loss is among the most genetically heterogeneous traits known in humans. To date, at least 50 loci for autosomal dominant non‐syndromic sensorineural hearing loss (ADNSSHL) have been identified by linkage analysis.

Objective

To report the mapping of a novel autosomal dominant deafness locus on the long arm of chromosome 14 at 14q11.2‐q12, DFNA53, in a large multigenerational Chinese family with post‐lingual, high frequency hearing loss that progresses to involve all frequencies.

Results

A maximum multipoint LOD score of 5.4 was obtained for marker D14S1280. The analysis of recombinant haplotypes mapped DFNA53 to a 9.6 cM region interval between markers D14S581 and D14S1021. Four deafness loci (DFNA9, DFNA23, DFNB5, and DFNB35) have previously been mapped to the long arm of chromosome 14. The critical region for DFNA53 contains the gene for DFNA9 but does not overlap with the regions for DFNB5, DFNA23, or DFNB35. Screening of the COCH gene (DFNA9), BOCT, EFS, and HSPC156 within the DFNA53 interval did not identify the cause for deafness in this family.

Conclusions

Identifying the DFNA53 locus is the first step in isolating the gene responsible for hearing loss in this large multigeneration Chinese family.  相似文献   

3.
Autosomal recessive nonsyndromic hearing impairment (ARNSHI) is the most frequent form of prelingual hereditary hearing loss in humans. Between 75 and 80% of all nonsyndromic deafness is inherited in an autosomal recessive pattern. Using linkage analysis, we have mapped a novel gene responsible for this form of nonsyndromic hearing impairment, DFNB65, in a consanguineous family from the Azad Jammu and Kashmir regions, which border Pakistan and India. A maximum multipoint LOD score of 3.3 was obtained at marker D20S840. The three-unit support interval is contained between markers D20S902 and D20S430, while the region of homozygosity is flanked by markers D20S480 and D20S430. The novel locus maps to a 10.5-cM region on chromosome 20q13.2–q13.32 and corresponds to a physical map distance of 4.3 Mb. DFNB65 represents the first ARNSHI locus to map to chromosome 20.  相似文献   

4.
Hereditary hearing impairment (HI) displays extensive genetic heterogeneity. To date, 67 autosomal recessive nonsyndromic hearing impairment (ARNSHI) loci have been mapped, and 24 genes have been identified. This report describes three large consanguineous ARNSHI Pakistani families, all of which display linkage to marker loci located in the genetic interval of DFNB49 locus on chromosome 5q13. Recently, Riazuddin et al. (Am J Hum Genet 2006; 79:1040–1051) reported that variants within the TRIC gene, which encodes tricellulin, are responsible for HI due to DFNB49. TRIC gene sequencing in these three families led to the identification of a novel mutation (IVS4 + 1G > A) in one family and the discovery of a previously described mutation (IVS4 + 2T > C) in two families. It is estimated that 1.06% (95% confidence interval 0.02–3.06%) of families with ARNSHI in Pakistan manifest HI due to mutations in the TRIC gene.  相似文献   

5.
Non-syndromic deafness is genetically heterogeneous. We previously reported that mutations of transmembrane channel-like gene 1 (TMC1) cause non-syndromic recessive deafness at the DFNB7/B11 locus on chromosome 9q13-q21 in nine Pakistani families. The goal of this study was to define the identities, origins and frequencies of TMC1 mutations in an expanded cohort of 557 large Pakistani families segregating recessive deafness. We screened affected family members for homozygosity at short-tandem repeats flanking known autosomal recessive (DFNB) deafness loci, followed by TMC1 sequence analysis in families segregating deafness linked to DFNB7/B11. We identified 10 new families segregating DFNB7/B11 deafness and TMC1 mutations, including three novel alleles. Overall, 9 different TMC1 mutations account for deafness in 19 (3.4%) of the 557 Pakistani families. A single mutation, p.R34X, causes deafness in 10 (1.8%) of the families. Genotype analysis of p.R34X-linked markers indicates that it arose from a common founder. We also detected p.R34X among normal control samples of African-American and northern European origins, raising the possibility that p.R34X and other mutations of TMC1 are prevalent contributors to the genetic load of deafness across a variety of populations and continents.  相似文献   

6.
We report the identification of a novel locus responsible for an autosomal recessive form of hearing loss (DFNB) segregating in a Palestinian consanguineous family from Jordan. The affected individuals suffer from profound prelingual sensorineural hearing impairment. A genetic linkage with polymorphic markers surrounding D9S1776 was detected, thereby identifying a novel deafness locus, DFNB31. This locus could be assigned to a 9q32-34 region of 15 cM between markers D9S289 and D9S1881. The whirler (wi) mouse mutant, characterised by deafness and circling behaviour, maps to the corresponding region on the murine chromosome 4, thus suggesting that DFNB31 and whirler may result from orthologous gene defects.  相似文献   

7.
Homozygosity mapping is a powerful resource for mapping and identifying loci and genes responsible for autosomal recessive disorders. Nevertheless, it could result in the identification of several homozygous regions unrelated to the disease locus or non-informative regions. Previously, a genome-wide screen in a large consanguineous Jordanian family allowed us to assign the DFNB33 locus to chromosome 9q34.3. Sequencing of 23 candidate genes showed 11 SNPs in a heterozygous state in affected individuals. These results ruled out the candidate region on chromosome 9. Using additional markers, we were able to restrict the disease locus to an approximately 14 cM region at chromosome 10, located between markers D10S193 and D10S1784. A maximum LOD score of 3.99 was obtained with two markers, D10S199 and D10S220. The screening of two candidate genes, CX40.1 and FXYD4, failed to reveal any disease-causing mutations.  相似文献   

8.
Recently the TMPRSS3 gene, which encodes a transmembrane serine protease, was found to be responsible for two non‐syndromic recessive deafness loci located on human chromosome 21q22.3, DFNB8 and DFNB10. We found evidence for linkage to the DFNB8/10 locus in two unrelated consanguineous Tunisian families segregating congenital autosomal recessive sensorineural deafness. The audiometric tests showed a loss of hearing greater than 70 dB, in all affected individuals of both families. Mutation screening of TMPRSS3 revealed two novel missense mutations, W251C and P404L, altering highly conserved amino acids of the serine protease domain. Both mutations were not found in 200 control Tunisian chromosomes. The detection of naturally‐occurring TMPRSS3 missense mutations in deafness families identifies functionally important amino acids. Comparative protein modeling of the TMPRSS3 protease domain predicted that W251C might lead to a structural rearrangement affecting the active site H257 and that P404L might alter the geometry of the active site loop and therefore affect the serine protease activity. Hum Mutat 18:101–108, 2001. © 2001 Wiley‐Liss, Inc.  相似文献   

9.
The locus for a type of an autosomal recessive non-syndromic deafness (ARND), DFNB13, was previously mapped to a 17-cm interval of chromosome 7q34-36. We identified two consanguineous Tunisian families with severe to profound ARND. Linkage analyses with microsatellites surrounding the previously identified loci detected linkage with markers corresponding to the DFNB13 locus in both families. Haplotype analyses assigned this locus to a 3.2-Mb region between markers D7S2468 and D7S2473. In order to refine this interval, we identified nine dinucleotide repeats in the 7q34 region. To investigate the polymorphism of these repeats, a population study of 74 unrelated individuals from different regions of Tunisia was carried out. Our results demonstrated that eight of the nine repeats are polymorphic. The average number of alleles at these informative loci was 9.12 with a polymorphism information content of 0.71. Little evidence for linkage disequilibrium between some marker pairs was found. Haplotype analysis using these microsatellites refined the DFNB13 interval to an area of 2.2 Mb between the D7S5377 and D7S2473. In order to identify the DFNB13 gene, we sequenced and eliminated three candidate genes. Other known and predicted genes are being screened for deafness-causing mutations.  相似文献   

10.
In communities with high rates of consanguinity and consequently high prevalence of recessive phenotypes, homozygosity mapping with SNP arrays is an effective approach for gene discovery. In 20 Palestinian kindreds with prelingual nonsyndromic hearing loss, we generated homozygosity profiles reflecting linkage to the phenotype. Family sizes ranged from small nuclear families with two affected children, one unaffected sibling, and parents to multigenerational kindreds with 12 affected relatives. By including unaffected parents and siblings and screening 250 K SNP arrays, even small nuclear families yielded informative profiles. In 14 families, we identified the allele responsible for hearing loss by screening a single candidate gene in the longest homozygous region. Novel alleles included missense, nonsense, and splice site mutations of CDH23, MYO7A, MYO15A, OTOF, PJVK, Pendrin/SLC26A4, TECTA, TMHS, and TMPRSS3, and a large genomic deletion of Otoancorin (OTOA). All point mutations were rare in the Palestinian population (zero carriers in 288 unrelated controls); the carrier frequency of the OTOA genomic deletion was 1%. In six families, we identified five genomic regions likely to harbor novel genes for human hearing loss on chromosomes 1p13.3 (DFNB82), 9p23–p21.2/p13.3–q21.13 (DFNB83), 12q14.3–q21.2 (DFNB84; two families), 14q23.1–q31.1, and 17p12–q11.2 (DFNB85).  相似文献   

11.

Background

Approximately half the cases of prelingual hearing loss are caused by genetic factors. Identification of genes causing deafness is a crucial first step in understanding the normal function of these genes in the auditory system. Recently, a mutant allele of Tmhs was reported to be associated with deafness and circling behaviour in the hurry‐scurry mouse. Tmhs encodes a predicted tetraspan protein of unknown function, which is expressed in inner ear hair cells. The human homologue of Tmhs is located on chromosome 6p.

Objective

To determine the cause of deafness in four consanguineous families segregating recessive deafness linked to markers on chromosome 6p21.1‐p22.3 defining a novel DFNB locus.

Results

A novel locus for non‐syndromic deafness DFNB67 was mapped in an interval of approximately 28.51 cM on human chromosome 6p21.1‐p22.3. DNA sequence analysis of TMHS revealed a homozygous frameshift mutation (246delC) and a missense mutation (Y127C) in affected individuals of two families segregating non‐syndromic deafness, one of which showed significant evidence of linkage to markers in the DFNB67 interval. The localisation of mTMHS in developing mouse inner ear hair cells was refined and found to be expressed briefly from E16.5 to P3.

Conclusions

These findings establish the importance of TMHS for normal sound transduction in humans.There are approximately 100 genes that are associated with hearing loss in the mouse.1 In humans, more than 47 deafness loci have been mapped and 21 of the corresponding genes have been identified.2,3 Because of the similarities in the morphology of their auditory systems, deaf mice have provided a valuable resource for understanding the pathophysiology of human hereditary hearing disorders and the normal functions of these genes. Molecular genetic studies of deaf mice have been instrumental in identifying six orthologous deafness genes in humans, including MYO7A (USH1B), MYO15 (DFNB3), TMIE (DFNB6), PCDH15 (DFNB23/USH1F), WHRN (DFNB31), and SANS (USH1G).4,5,6,7,8,9,10,11,12,13,14,15When a novel human deafness locus is mapped, the question arises as to whether or not there is a strain of deaf mouse that carries a mutated gene at a chromosomal map position suggesting conserved synteny with a human locus for deafness. Positional cloning in the mouse or phenotypic rescue using a BAC transgene13,16 can lead to gene identification more quickly than sequencing human genes in a large chromosomal interval of a deafness locus.17 Alternatively, identification of a gene responsible for deafness in a mouse may suggest a candidate human chromosomal location to screen for linkage of deafness segregating in large families that have a structure suitable for providing significant evidence of linkage.18 A combination of two of these strategies was used to identify mutations of TMHS (MIM_609427) as the gene on human chromosome 6p21.1‐p22.3 responsible for non‐syndromic deafness DFNB67, segregating in two consanguineous families.  相似文献   

12.
Autosomal recessive childhood-onset non-syndromic deafness is one of the most frequent forms of inherited hearing impairment. Recently five different chromosomal regions, 7q31, 11q13.5, 13q12, 14q and the pericentromeric region of chromosome 17, have been shown to harbour disease loci for this type of neurosensory deafness. We have studied a large family from Pakistan, containing several consanguineous marriages and segregating for a recessive non-syndromic childhood-onset deafness. Linkage analysis mapped the disease locus (DFNB8) on the distal long arm of chromosome 21, most likely between D21S212 and D21S1225 with the highest lod score of 7.31 at theta = 0.00 for D21S1575 on 21q22.3.   相似文献   

13.
Usher syndrome (USH) is a hereditary disorder associated with sensorineural hearing impairment, progressive loss of vision attributable to retinitis pigmentosa (RP) and variable vestibular function. Three clinical types have been described with type I (USH1) being the most severe. To date, six USH1 loci have been reported. We ascertained two large Pakistani consanguineous families segregating profound hearing loss, vestibular dysfunction, and RP, the defining features of USH1. In these families, we excluded linkage of USH to the 11 known USH loci and subsequently performed a genome-wide linkage screen. We found a novel USH1 locus designated USH1H that mapped to chromosome 15q22-23 in a 4.92-cM interval. This locus overlaps the non-syndromic deafness locus DFNB48 raising the possibility that the two disorders may be caused by allelic mutations.  相似文献   

14.
In a consanguineous Turkish family, a locus for autosomal recessive nonsyndromic hearing impairment (ARNSHI) was mapped to chromosome 2q31.1-2q33.1. Microsatellite marker analysis in the complete family determined the critical linkage interval that overlapped with DFNB27, for which the causative gene has not yet been identified, and DFNB59, a recently described auditory neuropathy caused by missense mutations in the DFNB59 gene. The 352-amino acid (aa) DFNB59 gene product pejvakin is present in hair cells, supporting cells, spiral ganglion cells, and the first three relays of the afferent auditory pathway. A novel homozygous nonsense mutation (c.499C>T; p.R167X) was detected in the DFNB59 gene, segregating with the deafness in the family. The mRNA derived from the mutant allele was found not to be degraded in lymphocytes, indicating that a truncated pejvakin protein of 166 aa may be present in the affected individuals. Screening of 67 index patients from additional consanguineous Turkish families with autosomal recessive hearing impairment revealed a homozygous missense mutation (c.547C>T; p.R183W) that segregates with the hearing impairment in one family. Furthermore, in a panel of 83 Dutch patients, two additional novel mutations (c.509_512delCACT; p.S170CfsX35 and c.731T>G; p.L244R), which were not present in ethnically matched controls, were found heterozygously. Together, our data indicate that also nonsense mutations in DFNB59 cause nonsyndromic hearing loss, but that mutations in DFNB59 are not a major cause of nonsyndromic hearing impairment in the Turkish and Dutch population.  相似文献   

15.
Background: Allele variants of COL11A2, encoding collagen type XI α2, cause autosomal dominant non-syndromic hearing loss (ARNSHL) at the DFNA13 locus (MIM 601868) and various syndromes that include a deafness phenotype. Objective: To describe a genome-wide scan carried out on a consanguineous Iranian family segregating ARNSHL. Results: Genotyping data identified a novel locus for ARNSHL on chromosome 6p21.3, which was designated DFNB53. Homozygosity for the P621T mutation of COL11A2 was present in all deaf persons in this family; this same variation was absent in 269 Iranian controls. Sequence comparison of collagen type XI α1 and α2 peptides across species shows that the replaced proline is an evolutionarily conserved amino acid. Conclusions: The P621T mutation of COL11A2 affects the Y position of the canonical -Gly-X-Y- repeat in collagens. It lies near the amino-terminus of the triple helical region and causes ARNSHL. This finding suggests that mutation type and location are critical determinants in defining the phenotype of COL11A2 associated diseases.  相似文献   

16.
We mapped a human deafness locus DFNB36 to chromosome 1p36.3 in two consanguineous families segregating recessively inherited deafness and vestibular areflexia. This phenotype co-segregates with either of two frameshift mutations, 1988delAGAG and 2469delGTCA, in ESPN, which encodes a calcium-insensitive actin-bundling protein called espin. A recessive mutation of ESPN is known to cause hearing loss and vestibular dysfunction in the jerker mouse. Our results establish espin as an essential protein for hearing and vestibular function in humans. The abnormal vestibular phenotype associated with ESPN mutations will be a useful clinical marker for refining the differential diagnosis of non-syndromic deafness.  相似文献   

17.
Hereditary hearing impairment is a genetically heterogeneous disorder. To date, 49 autosomal recessive nonsyndromic hearing impairment (ARNSHI) loci have been described, and there are more than 16 additional loci announced. In 25 of the known loci, causative genes have been identified. A genome scan and fine mapping revealed a novel locus for ARNSHI (DFNB63) on chromosome 11q13.2-q13.4 in a five-generation Turkish family (TR57). The homozygous linkage interval is flanked by the markers D11S1337 and D11S2371 and spans a 5.3-Mb interval. A maximum two-point log of odds score of 6.27 at a recombination fraction of theta = 0.0 was calculated for the marker D11S4139. DFNB63 represents the eighth ARNSHI locus mapped to chromosome 11, and about 3.33 Mb separate the DFNB63 region from MYO7A (DFNB2/DFNB11). Sequencing of coding regions and exon-intron boundaries of 13 candidate genes, namely SHANK2, CTTN, TPCN2, FGF3, FGF4, FGF19, FCHSD2, PHR1, TMEM16A, RAB6A, MYEOV, P2RY2 and KIAA0280, in genomic DNA from an affected individual of family TR57 revealed no disease-causing mutations.  相似文献   

18.
We report on a novel localization for a recessive form of deafness (DFNB), by linkage analysis in an Iranian consanguineous family. Affected individuals suffer from prelingual profound sensorineural hearing loss. Genome-wide analysis led to the characterization of a new locus, DFNB40, which maps to an approximately 9 Mb interval between markers D22S427 and D22S1144 at chromosome 22q11.21-12.1. Maximum lod score of 3.09 was obtained with D22S1174. Since the Bronx waltzer (bv) mouse mutant, characterized by waltzing behavior, deafness, and degeneration of cochlear inner hair cells, has been mapped to the syntenic region on murine chromosome 5, we suggest that DFNB40 and bv may result from orthologous gene defects.  相似文献   

19.
Autosomal recessive non-syndromal deafness is an extremely heterogeneous condition with at least 19 loci (DFNB1-19) already described. We have used autozygosity mapping to localise a further novel locus, DFNB20, to chromosome 11q25-qter in a consanguineous family originating from Pakistan. A region of homozygosity was observed in affected individuals spanning the interval D11S969-qter.  相似文献   

20.
Approximately 80% of the hereditary hearing loss is nonsyndromic. Isolated deafness is the most genetically heterogeneous trait. We have ascertained 10 individuals from a large consanguineous Tunisian family with congenital profound autosomal recessive deafness. All affected individuals are otherwise healthy. Genotype analysis excluded linkage to known recessive deafness loci in this family. Following a genome wide screening, a linkage was detected only with locus D1S206 on chromosome 1, thereby defining a novel deafness locus, DFNB32. In order to confirm linkage and for fine mapping the genetic interval, 12 individuals belonging to this family were added and 19 microsatellite markers were tested. A maximum two-point lodscore of 4.96 was obtained at a new polymorphic marker D1S21401. Haplotype analysis defined a 16 Mb critical region between D1S2868 and afmb014zb9. The interval of DFNB32 locus overlap with DFNA37 locus and the Marshall and Stickler syndromes locus. The entire coding region of COL11A1, responsible of the later syndromes, was screened and no mutation was observed. Towards the identification of the DFNB32 gene, a search on the Human Cochlear cDNA Library and EST Database was done. The genes corresponding to the ESTs found in the DFNB32 interval are being screened for deafness-causing mutations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号