首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
While gustation in the hamster has been extensively studied at the behavioral and physiological level, very little is known about the central anatomy of the taste system. The purpose of this study was to trace the connections of the parabrachial nucleus (PBN) in the golden Syrian hamster (Mesocricetus auratus) using wheat germ agglutinin-conjugated horseradish peroxidase. The PBN is the site of the second central synapse for the ascending gustatory system and receives taste afferents from the nucleus of the solitary tract. Following large injections into the PBN, anterogradely transported label was seen in the lateral hypothalamus, dorsal thalamus, bed nucleus of the stria terminalis, and amygdala. The anatomy of the two primary targets, the ventral posteromedial thalamus and central nucleus of the amygdala, is described based on Nissl-stained material, and acetylcholinesterase and NADH dehydrogenase histochemistry. Injections into these two regions revealed different patterns of efferents within the PBN. Following injections into the thalamus, retrogradely labelled cell bodies were distributed throughout the PBN subdivisions bilaterally, but concentrated in the central medial (CM) and external lateral (EL) subdivisions. Following injections into the amygdala, retrogradely labelled cell bodies were primarily in the ipsilateral PBN EL, while anterogradely transported label was distributed throughout much of the ipsilateral PBN. The majority of CM efferents projecting to the thalamus were elongate cells, whereas the majority of CM efferents to the amygdala were round-oval cells. These results indicate that the ascending central gustatory system changes from a serial pathway (nucleus of the solitary tract-PBN) to a parallel organization consisting of two major projections, the parabrachio-thalamo-cortical and parabrachio-amygdaloid pathways.  相似文献   

2.
The connections of a relatively homogeneous band of neurons in the caudal amygdala have been examined with anterograde and retrograde axonal tracing methods in the rat. This region, called here the posterior nucleus of the amygdala (PA), corresponds in part to an area that has been referred to as the cortico-amygdaloid transition area, posterior part of the medial nucleus of the amygdala, amygdalo-hippocampal transition area, and posteromedial basal nucleus. Experiments with fluorogold and phaseolus vulgaris leucoagglutinin (PHAL) indicate that the major neuronal input to the PA arises in the ventral premammillary nucleus, and that substantial projections also arise in olfactory-related areas such as the medial nucleus of the amygdala, bed nucleus of the accessory olfactory tract, and posterior cortical nucleus of the amygdala, as well as in the ventral subiculum and adjacent parts of hippocampal field CA1. Other seemingly minor inputs, including cholinergic fibers from the substantia innominata, dopaminergic fibers from the ventral tegmental area, and serotoninergic fibers from the dorsal nucleus of the raphe, were also identified. The efferent projections of the PA as determined with the PHAL method appear to follow five major routes: 1) a relatively small group of laterally directed fibers innervates the dorsal endopiriform nucleus, and a few of these fibers reach cortical area TR and the lateral entorhinal area; 2) another small group of fibers courses medially to innervate the ventral subiculum and adjacent parts of field CA1; 3) many fibers course ventrally to innervate the outer molecular layer of the medial part of the posterior cortical nucleus of the amygdala; 4) a moderate group of fibers courses rostrally to innervate primarily the posterodorsal part of the medial nucleus of the amygdala, although some fibers continue on to end less densely in rostral parts of the medial nucleus of the amygdala before leaving the amygdala through the ansa peduncularis; and 5) the major output of the PA courses through the stria terminalis. One branch of this pathway massively innervates the principal nucleus of the bed nuclei of the stria terminalis before entering the medial hypothalamus, where it ends massively in the anteroventral periventricular and medial preoptic nuclei, ventrolateral part of the ventromedial nucleus and adjacent parts of the basal lateral hypothalamic area, and ventral premammillary nucleus. The other branch sends fibers to the ventral lateral septal nucleus, nucleus accumbens, olfactory tubercle, and infralimbic area of the prefrontal cortex.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

3.
4.
High K+ medium and glutamate elicited a significant [3H]-GABA release in the golden hamster retina. High K+ -induced GABA release was largely calcium-dependent, while the effect of glutamate was Ca2+ -independent. After replacing Na+ by Li+, glutamate-evoked [3H]-GABA release was abolished, while high K+ -evoked release remained unchanged. The effect of glutamate was completely blocked by DNQX but not by APV. Furthermore, kainate induced [3H]-GABA release, whereas NMDA was ineffective. Assessment of endogenous GABA efflux further confirmed results obtained for [3H]-GABA. GABA-like immunoreactivity was observed in amacrine cells, in neurons localized in ganglion cell layer, as well as in fibers and terminals at the inner plexiform layer. In addition a few horizontal cells showed GABA-like immunolabeling. The present results suggest the existence of at least two pools of GABA in the hamster retina, compatible with both vesicular and carrier-mediated mechanisms of transmitter release, being the amacrine cells the main gabaergic source in this tissue.  相似文献   

5.
The distribution of hypothalamic projections to the spinal cord in hamsters was determined using the retrograde tracers horseradish peroxidase (HRP) and wheat germ agglutinin-HRP (WGA-HRP). Large injections of HRP or WGA-HRP were made into the thoracic spinal cord of adult male golden hamsters. HRP-labeled neurons were observed primarily in the parvocellular division of the paraventricular nucleus and in the lateral hypothalamus. The organization of hypothalamo-spinal connections appears to be highly conserved in mammalian species.  相似文献   

6.
Lateral cerebroventricular injection of the peptide bombesin (0.01-1.0 micrograms) promptly elicited excessive grooming and scratching behaviors in home-caged male and female golden hamsters. Bombesin-induced grooming persisted throughout a 60-min observation period at doses of 0.1-1.0 micrograms. Grooming with forepaws and mouth was more consistently increased than hindleg scratching behaviors. Dependence of this neuropeptide effect on grooming on muscarinic cholinergic activity was assessed by injecting scopolamine (0.001-1 mg/kg) intraperitoneally 15 min prior to 0.1 microgram bombesin. Excessive grooming induced by centrally administered bombesin was abolished by 0.1 and 1 mg/kg scopolamine, although basal level of grooming was not significantly affected. The findings indicate a cross-species generality of the dependence of bombesin-induced grooming on muscarinic cholinergic activity, and species-specific differences among rodents in the components of excessive grooming elicited by bombesin.  相似文献   

7.
Retrograde transport of horseradish peroxidase (HRP) was used to determine the origins of afferent connexions to the visual cortex (areas 17, 18a and 18b) in the hamster. The distribution of neurons projecting to the visual cortex from other cortical areas, from the thalamus and from the brainstem was studied using a computer technique for three-dimensional reconstruction. There is a topographically organized projection from the dorsal lateral geniculate nucleus to area 17, but probably to no other of the areas studied. The lateral posterior nucleus of the thalamus (LP) projects to area 18a and weakly to area 17. The lateral nucleus (L) projects to area 18b and also, probably, weakly to area 17. The cortical projections from LP and L are also organized topographically but relatively grossly compared with the geniculo-cortical pathway. There are reciprocal association projections between area 17 and areas 18a and 18b. Areas 18a projects weakly to 18b. The main commissural connexions of the posterior neocortex are between the area 17/18a boundary zones in the two hemispheres, with little between the bodies of area 17. Labelled neurons were found bilaterally in the locus coeruleus, more ipsilaterally than contralaterally, after multiple injections into the visual cortex: single, small injections sometimes resulted in the labelling of a single cell body in the locus coeruleus.  相似文献   

8.
The efferents and centrifugal afferents of the hamster olfactory bulbs were studied using orthograde and retrograde tracing techniques. Following injections of tritiated amino acids which were restricted to the main olfactory bulb (MOB), autoradiographic grains were observed ipsilaterally over layer IA of the entire anterior olfactory nucleus (AON), the ventral portion of the hippocampal rudiment (HR), the entire prepyriform cortex and olfactory tubercle, the anterior and posterolateral cortical amygdaloid nuclei and the lateral entorhinal cortex. An ipsilateral projection to the nucleus of the lateral olfactory tract (nLOT) was also indicated. No subcortical or contralateral projections were observed. Amino acid injections into the accessory olfactory bulb (AOB) revealed ipsilateral projections to the superficial plexiform layer of the medial and posteromedial cortical amygdaloid nuclei and to the bed nucleus of the accessory olfactory tract (nAOT) and the bed nucleus of the stria terminalis (nST). Following injections of HRP which were restricted to the MOB, contralateral HRP-positive neurons were found predominantly in pars externa and to a lesser extent in the other subdivisions of the AON. Centrifugal projections to the MOB were identified ipsilaterally from the entire AON, the ventral portion of the HR, the anterior portion of the prepyriform cortex, and the nLOT. No labelled neurons were found in the olfactory tubercle, the anterior and posterolateral cortical amygdaloid nuclei or the entorhinal cortex. Centrifugal projections to the MOB were also identified from subcortical structures of the ipsilateral basal forebrain and from midline structures of the midbrain. Labelling occurred in the fusiform neurons of the diagonal band near the medial base of the forebrain at the level of caudal olfactory tubercle. Heavy labelling was seen in a distinct group of large, predominantly multipolar neurons (magnocellular preoptic area) that continued from the level of caudal olfactory tubercle to the level of the nLOT. This band of HRP-positive neurons could be followed more caudally to a position dorsal and medial to the nLOT near the lateral margin of the lateral anterior hypothalamic area. The midbrain projections to the MOB originated in the dorsal and median raphe nuclei. After injections of HRP into the AOB, centrifugal projections were identified from the nAOT and the posteromedial cortical amygdaloid nucleus. In addition, isolated neurons were labelled in the medial cortical amygdaloid nucleus but no labelled neurons were found in the nST. These results support the notion of two anatomically distinct olfactory systems and demonstrate two previously unreported pathways through which the limbic system may modulate sensory processing in the olfactory bulb.  相似文献   

9.
10.
As part of an experimental study of the ventral striatum, the horseradish peroxidase (HRP) method was used to examine the afferent and efferent neuronal connections of the nucleus accumbens. Following iontophoretic applications or hydraulic injections of HRP in nucleus accumbens, cells labeled by retrograde transport of HRP were observed in the ipsilateral telencephalon in the posterior agranular insular, perirhinal, entorhinal, and primary olfactory cortices, in the subiculum and hippocampal field CA1, and in the anterior and posterior divisions of the basolateral amygdaloid nucleus. In the diencephalon, labeled neurons were present ipsilaterally in the central medial, paracentral and parafascicular intralaminar nuclei, and in the midline nuclei parataenialis, paraventricularis, and reuniens. Retrograde labeling was observed in the ipsilateral brainstem in cells of the ventral tegmental area and dorsal raphe. Many of these projections to nucleus accumbens were found to be topographically organized. Anterograde transport of HRP from nucleus accumbens demonstrated ipsilateral terminal fields in the ventral pallidum and substantia nigra, pars reticulata. The afferent projections to nucleus accumbens from the posterior insular and perirhinal neocortices, intralaminar thalamus, and the dopamine-containing ventral tegmental area are analogous to the connections of the caudatoputamen, as are the efferents from nucleus accumbens to the substantia nigra and ventral globus pallidus. These connections substantiate the classification of nucleus accumbens as a striatal structure and provide support for the recently proposed concept of the ventral striatum. Furthermore, the demonstration that a number of limbic system structures, including the amygdala, hippocampal formation, entorhinal cortex, and olfactory cortex are important sources of afferents to the nucleus accumbens, suggests that the ventral striatum may serve to integrate limbic information into the striatal system.  相似文献   

11.
The electronmicroscopic examination of sections taken from the hamster's optic nerve 5 mm behind the globe indicated that the nerve contains 110,165 +/- 4,177 (p less than 0.05) fibres of which 96.4% are myelinated. The fibre diameter distribution is unimodal with a peak at 1.2 micrometer and axon diameters ranging from 0.20 micrometer to 3.93 micrometer. Fibres of all sizes are distributed uniformly throughout the cross section of the nerve. The thickness of the myelin sheath surrounding a given axon is highly (0.80) correlated with axonal diameter and the degree of myelination for a fibre of a given size is nearly constant throughout the nerve's cross section. In nerve sections taken just posterior to the globe most (64%) of the fibres counted are unmyelinated and the percentage of unmyelinated axons is highest near the peripheral boundary of the nerve. The process of myelination is essentially complete in sections taken 3.5 mm behind the eye. These differences in the myelination of the proximal and distal nerve most probably account for the discrepancy between the results reported here and those provided by a previous study (Tiao and Blakemore, '76) concerned with the structure of the optic nerve in this species.  相似文献   

12.
The response latency of golden hamsters to nociceptive stimuli was measured under cyclic lighting conditions and during constant illumination. A day-night rhythm of nociception was demonstrated; response latencies were significantly longer during the day. A circadian rhythm of nociception was displayed by hamsters maintained for 30 days in constant dim light. Short response latencies noted under these conditions were associated with the inactive period of the animals circadian cycle (subjective day). The experiments provide data which indicate the phase relationship between the circadian rhythms of nociception and locomotor activity differs under entrained and free-running conditions.  相似文献   

13.
Male hamsters in which the stria terminalis (ST) had been interrupted either by electrolytic lesions or knife cuts, or normal control males, received iontophoretic injections of horseradish peroxidase in either the bed nucleus of the stria terminalis (BNST) or the medial preoptic-anterior hypothalamic area (MPOAH). Comparison of intact and ST-lesioned brains revealed the existence of a ventral non-strial pathway, from cells in the medial amygdaloid nucleus (M) to the preoptic portion of the BNST but not to the MPOAH. Since bilateral lesions of M completely eliminate male hamster mating behavior, but ST lesions do not, we suggest that the ventral pathway to the BNST may be an important route by which M influences male copulatory behavior.  相似文献   

14.
The distribution of corticotropin-releasing hormone-immunoreactive (CRH-IR) neurons and fibers was observed in golden hamsters. CRH-IR neurons and fibers were observed within the hypothalamus, thalamus, amygdala, cortex, midbrain, and hindbrain. The largest numbers of CRH-IR neurons were seen within the magno- and parvocellular divisions of the paraventricular nucleus of the hypothalamus and within the septum, bed nucleus of the stria terminalis, preoptic area continuum. The highest density of immunoreactive fibers was observed in the external zone of the median eminence. In addition, many immunoreactive fibers were observed within the bed nucleus of the stria terminalis and the preoptic area. The distribution obtained in hamsters was compared with previously reported distributions from rats, and both were generally similar.  相似文献   

15.
16.
A laminar representation of sensory modalities was present in the hamster superior colliculus (SC) with upper laminar cells being exclusively visual, while intermediate and deeper layer cells were visual, somatic acoustic or multimodal. Receptive field (RF) properties of visual SC cells were studied quantitatively with stationary spots and moving bars of light of various sizes, velocities and directions of movement. The most effective stimuli were usually less than half of the diameter of the RF. Increasing stimulus size beyond a critical range produced progressively lower discharge rates even though the stimulus was confined within the borders of the RF. Low velocities (10–50°/sec) were most frequently optimal for both upper and lower laminar cells and the majority of cells were directionally selective. Movements in the upper nasal direction usually elicited the highest discharge rates and were thus preferred most frequently. However, directional preferences often could be minimized, or obliterated, by employing nonoptimal stimulus sizes and/or velocities. Most intermediate and deeper laminar somatic cells could be activated by gentle cutaneous stimuli and a general somatotopic plan, which was in register with the overlying visuotopy, was noted. Cells optimally, or solely, activated by noxious stimuli were also located, but RFs of such cells were extensive and a somatotopic plan was not apparent. Although species differences are apparent, the similarities between the organization and the RF properties of SC cells of the hamster and distantly related species are striking. Apparently the same SC system is adaptive in diverse species despite the very different behavioral repertories of these animals and their different ecological niches.  相似文献   

17.
Using a radioiodinated ligand and autoradiography on film, specific binding sites for oxytocin were detected in the brain of the golden hamster. Sites were present in the endopiriform nucleus, the cingulate cortex, the islands of Calleja, the lateral septum, the dorsal hippocampus and the amygdala. The distribution of these binding sites was similar in males and females and was independent of the photoperiod. No binding sites were detected in the ventromedial hypothalamic nucleus or in the dorsal motor nucleus of the vagus nerve; areas which were labelled in the rat and where oxytocin is thought to participate in the control of sexual and autonomic functions. These data suggest that the role of oxytocin in the brain may differ among mammalian species.  相似文献   

18.
The superior colliculus of the golden hamster was investigated by means of multi-unit and single unit recording. The retinotopic map, which probably embraces a projection from the entire retina of the contralateral eye, is organized as in other vertebrates, with the central field represented in the anterior colliculus, the upper field medially. Magnification factor is fairly uniform and is about 0.02 mm/deg. There is a small binocular segment (where almost half of all neurones have input from the ipsilateral eye) in the anterior colliculus, representing the area of field around the area centralis and the anterior pole of the field. In the more superficial layers, units have small (about 10 deg diameter) receptive fields, which can be classified as symmetrical, responding to slow movement (80%) very fast movement detectors (6%) directional movement detectors (13%) and axial movement detectors (%) In the deeper layers, below the stratum opticum, receptive field size increases dramatically and many cells habituate rapidly, making them sensitive only to new events. Receptive fields can be classified as movement detectors (89%) directional movement detectors (10%) and axial movement detectors (2%). All directional receptive fields, at least in the upper visual field, have an upward component in their directional preferences. About 42% of deeper layer cells have somatic sensory input, responding to light touch on the fur or whiskers of the contralateral half of the body. Some 5% of cells respond to complex sounds on the contralateral side of the animal. Many of these somatic and auditory cells also have visual receptive fields and, throughout the colliculus, there is general correspondence between the maps of visual space, auditory space and the body surface. This correlation may be important in the regulation of orienting behaviour towards novel peripheral stimuli.  相似文献   

19.
The visual cortex of the golden hamster was studied by means of multi-unit and single unit recording, which revealed three separate retinotopic maps of the visual field in the posterior cortex. V1, corresponding to cytoarchitectonic area 17, has the contralateral temporal field represented medially, the central visual field (extending about 10 deg ipsilateral) represented laterally and the lower field anteriorly. The borders of the map, especially for the upper field, seem to be more restricted than the whole visual field available to the contralateral hemiretina: V1 probably does not represent the extreme periphery of the field. A large fraction of V1 has binocular input, for up to about 50 deg lateral to the vertical midline. There is a retinotopic reversal near the representation of the vertical midline where V1 meets V2 (corresponding to the more lateral “area 18a”). There is another retinotopic reversal at the extremity of the contralateral field representation, where V1 meets Vm (the medial visual area, corresponding to “area 18”) V2 and Vm each contain a reduced mirror image version of the map in V1. Almost all isolated single units in V1 have receptive fields that can be classified as radially symmetrical (60%) or asymmetrical (35%) Symmetrical fields have ON (13%) OFF (4%) ON-OFF (30%) or “SILENT” (12%) central areas when plotted with flashing spots. There are minor but not striking differences between these groups in their field sizes, velocity preferences and so on. They almost invariably prefer moving to stationary stimuli but are not selective for orientation or direction of movement. Asymmetrical fields are of four types, three of which (type 1, 11% type 2, 17% and type 3, 2%) are orientation selective and resemble simple, complex and hypercomplex cells in the cat cortex. Some of these have direction as well as orientation preference. Axial movement detectors (5%) have a selectivity for one axis of motion, and thus prefer one orientation of edge, but respond equally well to movement of a spot. Vertical and horizontal orientation preferences, especially the latter, are much the most common. There is some evidence of clustering of cells according to receptive field type and, possibly, preferred orientation. Asymmetrical cells are, relatively, somewhat rarer in the deeper cortical layers. Within the binocular segment, fully 89%of cells are binocularly driven and the receptive fields are similar in the two eyes. Receptive fields tend to increase in size away from the area centralis representation and, in a complementary fashion, the magnification factor decreases from up to 0.1 mm/deg at the area centralis representation to about 0.02 mm/deg for the peripheral field.  相似文献   

20.
Approximately 31% of the cells recorded in the hamster's superior colliculus could be activated by stimulation of the ipsilateral primary visual cortex. While cortically activated cells were encountered in all laminae of the colliculus where visual cells were isolated, the highest probability of driving visual cells was observed in the deeper laminae, that is, those ventral to the stratum opticum. Response latency, jitter (latency variability), latency shifts as a function of shock intensity, thresholds, and spike numbers did not vary as a function of depth in the colliculus. There was a clear correspondence between the visual fields of the best cortical stimulus points and the receptive fields of cortically activated cells recorded in the superficial laminae of the colliculus. However, there was considerably less retinotopic fidelity for the cortical areas from which cells isolated in the deeper laminae could be driven. This suggests a greater degree of convergence from relatively widespread cortical regions upon visual cells of the deeper laminae. The visual response properties (directional selectivity, speed preferences, and receptive field organization) of the cortically activated cells did not differ appreciably from the overall sample of visual cells recorded in the colliculus. Only 3 of the 159 cells tested were driven by stimulation of the contralateral visual cortex and two of these were responsive only at very long latencies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号