首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Orphaned ryanodine receptors in the failing heart   总被引:1,自引:0,他引:1  
Heart muscle is characterized by a regular array of proteins and structures that form a repeating functional unit identified as the sarcomere. This regular structure enables tight coupling between electrical activity and Ca(2+) signaling. In heart failure, multiple cellular defects develop, including reduced contractility, altered Ca(2+) signaling, and arrhythmias; however, the underlying causes of these defects are not well understood. Here, in ventricular myocytes from spontaneously hypertensive rats that develop heart failure, we identify fundamental changes in Ca(2+) signaling that are related to restructuring of the spatial organization of the cells. Myocytes display both a reduced ability to trigger sarcoplasmic reticulum Ca(2+) release and increased spatial dispersion of the transverse tubules (TTs). Remodeled TTs in cells from failing hearts no longer exist in the regularly organized structures found in normal heart cells, instead moving within the sarcomere away from the Z-line structures and leaving behind the sarcoplasmic reticulum Ca(2+) release channels, the ryanodine receptors (RyRs). These orphaned RyRs appear to be responsible for the dyssynchronous Ca(2+) sparks that have been linked to blunted contractility and, probably, Ca(2+)-dependent arrhythmias in diverse models of heart failure. We conclude that the increased spatial dispersion of the TTs and orphaned RyRs lead to the loss of local control and Ca(2+) instability in heart failure.  相似文献   

2.
T-type Ca(2+) channels (TTCCs) are expressed in the developing heart, are not present in the adult ventricle, and are reexpressed in cardiac diseases involving cardiac dysfunction and premature, arrhythmogenic death. The goal of this study was to determine the functional role of increased Ca(2+) influx through reexpressed TTCCs in the adult heart. A mouse line with cardiac-specific, conditional expression of the alpha1G-TTCC was used to increase Ca(2+) influx through TTCCs. alpha1G hearts had mild increases in contractility but no cardiac histopathology or premature death. This contrasts with the pathological phenotype of a previously studied mouse with increased Ca(2+) influx through the L-type Ca(2+) channel (LTCC) secondary to overexpression of its beta2a subunit. Although alpha1G and beta2a myocytes had similar increases in Ca(2+) influx, alpha1G myocytes had smaller increases in contraction magnitude, and, unlike beta2a myocytes, there were no increases in sarcoplasmic reticulum Ca(2+) loading. Ca(2+) influx through TTCCs also did not induce normal sarcoplasmic reticulum Ca(2+) release. alpha1G myocytes had changes in LTCC, SERCA2a, and phospholamban abundance, which appear to be adaptations that help maintain Ca(2+) homeostasis. Immunostaining suggested that the majority of alpha1G-TTCCs were on the surface membrane. Osmotic shock, which selectively eliminates T-tubules, induced a greater reduction in L- versus TTCC currents. These studies suggest that T- and LTCCs are in different portions of the sarcolemma (surface membrane versus T-tubules) and that Ca(2+) influx through these channels induce different effects on myocyte contractility and lead to distinct cardiac phenotypes.  相似文献   

3.
Reduced peak systolic Ca2+ and slow decay of the Ca2+ transient are common features of the end-stage failing human ventricular myocyte and are thought to underlie abnormal ventricular contractility in congestive heart failure (CHF). Individual changes in the expression or activity of Ca2+ transport proteins of the sarcoplasmic reticulum (SR Ca2+ ATPase, SERCa) or the sarcolemmal (sodium-calcium exchanger, NCX) have not always been observed in CHF and cannot per se consistently explain these Ca2+ transient defects. We review recent data that suggests that the normal balance of transport activities of SERCa and NCX is deranged in failing human myocytes. We hypothesize that an increase in the NCX/SERCa transport capacity in failing myocytes can explain the abnormal Ca2+ homeostasis of the failing human ventricular myocyte.  相似文献   

4.
OBJECTIVE: Activity of single L-type calcium channels (LTCC) is enhanced in human failing myocardium (Circulation 98 (1998) 969.), most likely due to impaired dephosphorylation. Protein phosphatase 2B (calcineurin) has recently been shown to be involved in heart failure pathophysiology. We now focus on the regulation of single LTCC by calcineurin that were prevented by Ca(2+)-free experimental conditions in our previous study. METHODS: Single LTCC currents were recorded in myocytes from human atrium and ventricle. Charge carriers were 70 mM Ba(2+), or a mixture of 30 mM Ca(2+) and 60 mM Ba(2+) to facilitate Ca(2+) permeation through recorded channels. The calcineurin inhibitor cyclosporine (10 microM) was used to reveal a putative role for calcineurin in regulation of LTCC. RESULTS: A mixture of Ca(2+) and Ba(2+) as charge carriers allowed for Ca(2+) permeation through recombinant human embryonic kidney cells and native (atrial and ventricular) human cardiac LTCC. With only Ba(2+) as the charge carrier, activities of both ventricular and atrial LTCC were strongly decreased by cyclosporine. In contrast, channel activity remained constant when Ca(2+) permeation was provided. In the presence of thapsigargin and (S)-BayK 8644, cyclosporine here even increased channel activity. CONCLUSIONS: We propose a dual cyclosporine effect on human cardiac LTCC. A non-specific inhibitory effect prevails with Ba(2+) permeation but can be compensated or overcome by a specific Ca(2+)-dependent stimulation with Ca(2+) permeation. More complete restoration of physiological Ca(2+) movements (e.g., Ca(2+) release from sarcoplasmic reticulum) will help to define even more precisely the involvement of calcineurin in regulation of human cardiac LTCC.  相似文献   

5.
Depressed contractility of failing myocytes involves a decreased rate of rise of the Ca2+ transient. Synchronization of Ca2+ release from the junctional sarcoplasmic reticulum (SR) is responsible for the rapid rise of the normal Ca2+ transient. This study examined the idea that spatially and temporally dyssynchronous SR Ca2+ release slows the rise of the cytosolic Ca2+ transient in failing feline myocytes. Left ventricular hypertrophy (LVH) with and without heart failure (HF) was induced in felines by constricting the ascending aorta. Ca2+ transients were measured in ventricular myocytes using confocal line scan imaging. Ca2+ transients were induced by field stimulation, square wave voltage steps, or action potential (AP) voltage clamp. SR Ca2+ release was significantly less well spatially and temporally synchronized in field-stimulated HF versus control or LVH myocytes. Surprisingly, depolarization of HF cells to potentials where Ca2+ currents (ICa) were maximal resynchronized SR Ca2+ release. Correspondingly, decreases in the amplitude of ICa desynchronized SR Ca2+ release in control, LVH, and HF myocytes to the same extent. HF myocytes had significant loss of phase 1 AP repolarization and smaller ICa density, which should both reduce Ca2+ influx. When normal myocytes were voltage clamped with HF AP profiles SR Ca2+ release was desynchronized. SR Ca2+ release becomes dyssynchronized in failing feline ventricular myocytes because of reductions in Ca2+ influx induced in part by alterations in early repolarization of the AP. Therefore, therapies that restore normal early repolarization should improve the contractility of the failing heart.  相似文献   

6.
During cardiac development, there is a reciprocal relationship between cardiac morphogenesis and force production (contractility). In the early embryonic myocardium, the sarcoplasmic reticulum is poorly developed, and plasma membrane calcium (Ca(2+)) channels are critical for maintaining both contractility and excitability. In the present study, we identified the Ca(V)3.1d mRNA expressed in embryonic day 14 (E14) mouse heart. Ca(V)3.1d is a splice variant of the alpha1G, T-type Ca(2+) channel. Immunohistochemical localization showed expression of alpha1G Ca(2+) channels in E14 myocardium, and staining of isolated ventricular myocytes revealed membrane localization of the alpha1G channels. Dihydropyridine-resistant inward Ba(2+) or Ca(2+) currents were present in all fetal ventricular myocytes tested. Regardless of charge carrier, inward current inactivated with sustained depolarization and mirrored steady-state inactivation voltage dependence of the alpha1G channel expressed in human embryonic kidney-293 cells. Ni(2+) blockade discriminates among T-type Ca(2+) channel isoforms and is a relatively selective blocker of T-type channels over other cardiac plasma membrane Ca(2+) handling proteins. We demonstrate that 100 micromol/L Ni(2+) partially blocked alpha1G currents under physiological external Ca(2+). We conclude that alpha1G T-type Ca(2+) channels are functional in midgestational fetal myocardium.  相似文献   

7.
Although several risk factors including hypertension, cardiac hypertrophy, coronary artery disease, and diabetes are known to result in heart failure, elderly subjects are more susceptible to myocardial infarction and more likely to develop heart failure. This article is intended to discuss that cardiac dysfunction in hearts failing due to myocardial infarction and aging is associated with cardiac remodeling and defects in the subcellular organelles such as sarcolemma (SL), sarcoplasmic reticulum (SR), and myofibrils. Despite some differences in the pattern of heart failure due to myocardial infarction and aging with respect to their etiology and sequence of events, evidence has been presented to show that subcellular remodeling plays a critical role in the occurrence of intracellular Ca(2+)-overload and development of cardiac dysfunction in both types of failing heart. In particular, alterations in gene expression for SL and SR proteins induce Ca(2+)-handling abnormalities in cardiomyocytes, whereas those for myofibrillar proteins impair the interaction of Ca(2+) with myofibrils in hearts failing due to myocardial infarction and aging. In addition, different phosphorylation mechanisms, which regulate the activities of Ca(2+)-cycling proteins in SL and SR membranes as well as Ca(2+)-binding proteins in myofibrils, become defective in the failing heart. Accordingly, it is suggested that subcellular remodeling involving defects in Ca(2+)-handling and Ca(2+)-binding proteins as well as their regulatory mechanisms is intimately associated with cardiac remodeling and heart failure due to myocardial infarction and aging.  相似文献   

8.
Rose RA  Kabir MG  Backx PH 《Circulation research》2007,101(12):1274-1282
Ablation of the enzyme phosphoinositide 3-kinase (PI3K)gamma (PI3Kgamma(-/-)) in mice increases cardiac contractility by elevating intracellular cAMP and enhancing sarcoplasmic reticulum Ca(2+) handling. Because cAMP is a critical determinant of heart rate, we investigated whether heart rate is altered in mice lacking PI3Kgamma. Heart rate was similar in anesthetized PI3Kgamma(-/-) and wild-type (PI3Kgamma(+/+)) mice. However, IP injection of atropine (1 mg/kg), propranolol (1 mg/kg), or both drugs in combination unmasked elevated heart rates in PI3Kgamma(-/-) mice, suggesting altered sinoatrial node (SAN) function. Indeed, spontaneous action potential frequency was approximately 35% greater in SAN myocytes isolated from PI3Kgamma(-/-) mice compared with PI3Kgamma(+/+) mice. These differences in action potential frequency were abolished by intracellular dialysis with the cAMP/protein kinase A antagonist Rp-cAMP but were unaffected by treatment with ryanodine to inhibit sarcoplasmic reticulum Ca(2+) release. Voltage-clamp experiments demonstrated that elevated action potential frequencies in PI3Kgamma(-/-) SAN myocytes were more strongly associated with cAMP-dependent increases in L-type Ca(2+) current (I(Ca,L)) than elevated hyperpolarization-activated current (I(f)). In contrast, I(Ca,L) was not increased in working atrial myocytes, suggesting distinct subcellular regulation of L-type Ca(2+) channels by PI3Kgamma in the SAN compared with the working myocardium. In summary, PI3Kgamma regulates heart rate by the cAMP-dependent modulation of SAN function. The effects of PI3Kgamma ablation in the SAN are unique from those in the working myocardium.  相似文献   

9.
In the cardiac dyad, sarcolemmal L-type Ca(2+) channels (LCCs) and sarcoplasmic reticulum (SR) Ca(2+) release channels (RyR) are structurally in close proximity. This organization provides for an efficient functional coupling, tuning SR Ca(2+) release for optimal contraction of the myocyte. Given that LCC are regulated by the prevailing [Ca(2+)], this structural organization is the setting for feedback mechanisms and crosstalk. A defective coupling of Ca(2+) influx via LCC to activation of RyR has been implicated in reduced SR Ca(2+) release in heart failure. Both functional changes in LCC properties and structural re-organization of LCC in T-tubules could be involved. LCC are regulated by cytosolic Ca(2+), and crosstalk with SR Ca(2+) handling occurs on a long-term basis, i.e. during steady-state changes in heart rate, on an intermediate-term basis, i.e. on a beat-to-beat basis during sudden rate changes, and on a very short- or immediate-term basis, i.e. during a single heartbeat. We review the properties and consequences of these different feedback mechanisms and the changes in heart failure and cardiac hypertrophy that have thus far been studied.  相似文献   

10.
Transgenic mice with cardiac-specific overexpression of G alpha q exhibit a biochemical and physiological phenotype of load-independent cardiac hypertrophy with contractile dysfunction. To elucidate the cellular basis for altered contractility, we measured cellular contraction, Ca(2+)transients, and l -type Ca(2+)channel currents (I(Ca)) in left ventricular (LV) myocytes isolated from non transgenic (NT) controls or G alpha q hearts. Although baseline contractile function (% shortening) and the amplitude of Ca(2+)transients in G alpha q myocytes were similar to NT myocytes, the rates of cellular shortening and relengthening and the duration of Ca(2+)transients were prolonged in G alpha q myocytes. Myocytes from G alpha q hearts had larger cell capacitance but no change in I(Ca)density, voltage-dependence of activation and inactivation. The responses of I(Ca)to dihydropyridine drugs and a membrane permeable cAMP analog, 8-(4-chlorophenylthio) cAMP, were not altered; however, the time course of I(Ca)inactivation was significantly slower in G alpha q myocytes compared to NT myocytes. The kinetic difference in inactivation was abolished when Ba(2+)was used as the charge carrier or when the sarcoplasmic reticulum (SR) Ca(2+)was depleted by ryanodine, suggesting that Ca(2+)-dependent inactivation is reduced in G alpha q myocytes due to altered SR Ca(2+)release. Consistent with this hypothesis, the function of SR as assessed by the maximal Ca(2+)uptake rates and the apparent affinity of SR Ca(2+)-ATPase for Ca(2+)was reduced in ventricles of G alpha q heart. These results suggest that the reduced SR function contributes to the depressed contractility associated with this form of cardiac hypertrophy.  相似文献   

11.
The human heart proceeds from a relaxed state (diastole) to a fully contracted state (systole) and recovery in 600ms. During this period, Ca(2+) inside the myocardial cell rises from about 10nM to about 100nM and returns to the former. The contractile-relaxation cycle is tightly coupled to the Ca(2+)transient. In the normal physiological state, the autonomic nervous system (ANS) plays a major role in the regulation of cardiac function and important changes occur in diseases of the heart. Sympathetic overdrive is a major determinant of the critical transition from initial compensatory hypertrophy to decompensated failure. Cardiac myocytes from failing hearts are characterized by a number of abnormalities in excitation-contraction coupling, that are a direct consequence of beta-adrenergic signaling defects. Although desensitized in cardiac hypertrophy and failure, the beta-adrenergic signaling pathway retains receptor capacity, a characteristic that is used in therapeutic approaches. There are several putative Ca(2+)-dependent pathways that exert counterbalancing negative regulation over cAMP-dependent positive inotropic effect and may represent potential targets for contractile stimulation. This review is focused on the interactions between sympathetic drive and aspects of calcium signaling in the heart.  相似文献   

12.
The sympathetic nervous system is a critical regulator of cardiac function (heart rate and contractility) in health and disease. Sympathetic nervous system agonists bind to adrenergic receptors that are known to activate protein kinase A, which phosphorylates target proteins and enhances cardiac performance. Recently, it has been proposed that protein kinase A-mediated phosphorylation of the cardiac ryanodine receptor (the Ca(2+) release channel of the sarcoplasmic reticulum at a single residue, Ser2808) is a critical component of sympathetic nervous system regulation of cardiac function. This is a highly controversial hypothesis that has not been confirmed by several independent laboratories. The present study used a genetically modified mouse in which Ser2808 was replaced by alanine (S2808A) to prevent phosphorylation at this site. The effects of isoproterenol (a sympathetic agonist) on ventricular performance were compared in wild-type and S2808A hearts, both in vivo and in isolated hearts. Isoproterenol effects on L-type Ca(2+) current (I(CaL)), sarcoplasmic reticulum Ca(2+) release, and excitation-contraction coupling gain were also measured. Our results showed that isoproterenol caused significant increases in cardiac function, both in vivo and in isolated hearts, and there were no differences in these contractile effects in wild-type and S2808A hearts. Isoproterenol increased I(CaL), the amplitude of the Ca(2+) transient and excitation-contraction coupling gain, but, again, there were no significant differences between wild-type and S2808A myocytes. These results show that protein kinase A phosphorylation of ryanodine receptor Ser2808 does not have a major role in sympathetic nervous system regulation of normal cardiac function.  相似文献   

13.
Intracellular Ca(2+) plays an important role in the control of the heart rate through the interaction between Ca(2+) release by ryanodine receptors in the sarcoplasmic reticulum (SR) and the extrusion of Ca(2+) by the sodium-calcium exchanger which generates an inward current. A second type of SR Ca(2+) release channel, the inositol 1,4,5-trisphosphate receptor (IP(3)R), can release Ca(2+) from SR stores in many cell types, including cardiac myocytes. However, it is still uncertain whether IP(3)Rs play any functional role in regulating the heart rate. Accumulated evidence shows that IP(3) and IP(3)R are involved in rhythm control in non-cardiac pacemaker tissues and in the embryonic heart. In this review we focus on intracellular Ca(2+) oscillations generated by Ca(2+) release from IP(3)R that initiates membrane depolarization and provides a common mechanism producing spontaneous activity in a range of cells with pacemaker function. Emerging new evidence also suggests that IP(3)/IP(3)Rs play a functional role in normal and diseased hearts and in cardiac rhythm control. Several membrane currents, including a store-operated Ca(2+) current, might be activated by Ca(2+) release from IP(3)Rs. IP(3)/IP(3)R may thus add another dimension to the complex regulation of heart rate.  相似文献   

14.
Defective excitation-contraction coupling in heart failure is generally associated with both a reduction in sarcoplasmic reticulum (SR) Ca(2+) uptake and a greater dependence on transsarcolemmal Na(+)-Ca(2+) exchange (NCX) for Ca(2+) removal. Although a relative increase in NCX is expected when SR function is impaired, few and contradictory studies have addressed whether there is an absolute increase in NCX activity. The present study examines in detail NCX density and function in left ventricular midmyocardial myocytes isolated from normal or tachycardic pacing-induced failing canine hearts. No change of NCX current density was evident in myocytes from failing hearts when intracellular Ca(2+) ([Ca(2+)](i)) was buffered to 200 nmol/L. However, when [Ca(2+)](i) was minimally buffered with 50 micromol/L indo-1, Ca(2+) extrusion via NCX during caffeine application was doubled in failing versus normal cells. In other voltage-clamp experiments in which SR uptake was blocked with thapsigargin, both reverse-mode and forward-mode NCX currents and Ca(2+) transport were increased >2-fold in failing cells. These results suggest that, in addition to a relative increase in NCX function as a consequence of defective SR Ca(2+) uptake, there is an absolute increase in NCX function that depends on [Ca(2+)](i) in the failing heart.  相似文献   

15.
Kohlhaas M  Maack C 《Circulation》2010,122(22):2273-2280
BACKGROUND: In heart failure, the Na+-Ca2+ exchanger (NCX) is upregulated and mediates Ca2+ influx (instead of efflux) during the cardiac action potential. Although this partly compensates for impaired sarcoplasmic reticulum Ca2+ release and supports inotropy, the energetic consequences have never been considered. Because NCX-mediated Ca2+ influx is rather slow and mitochondrial Ca2+ uptake (which stimulates NADH production by the Krebs cycle) is thought to be facilitated by high Ca2+ gradients in a "mitochondrial Ca2+ microdomain," we speculated that NCX-mediated Ca2+ influx negatively affects the bioenergetic feedback response. Methods and Results- With the use of a patch-clamp-based approach in guinea-pig myocytes, cytosolic and mitochondrial Ca2+ ([Ca2+](c) and [Ca2+](m), respectively) was determined within the same cell after varying Ca2+ influx via L-type Ca2+ channels (I(Ca,L)) or the NCX. The efficiency of mitochondrial Ca2+ uptake, indexed by the slope of plotting [Ca2+](m) against [Ca2+](c) during each Ca2+ transient, was maximal during I(Ca,L)-triggered sarcoplasmic reticulum Ca2+ release. Depletion of sarcoplasmic reticulum Ca2+ load and increased contribution of the NCX to cytosolic Ca2+ influx independently reduced the efficiency of mitochondrial Ca2+ uptake. The upstroke velocity of cytosolic Ca2+ transients closely correlated with the efficiency of mitochondrial Ca2+ uptake. Despite comparable [Ca2+](c), sarcoplasmic reticulum Ca2+ release, but not NCX-mediated Ca2+ influx, led to stimulation of Ca2+-sensitive dehydrogenases of the Krebs cycle. Conclusions- Increased contribution of the NCX to cytosolic Ca2+ transients, which occurs in cardiac myocytes from failing hearts, impairs mitochondrial Ca2+ uptake and the bioenergetic feedback response. This mechanism could contribute to energy starvation of failing hearts.  相似文献   

16.
Transient receptor potential (TRP) channels of multiple subclasses are expressed in the heart, although their functions are only now beginning to emerge, especially for the TRPC subclass that appears to regulate the cardiac hypertrophic response. Although TRP channels permeate many different cations, they are most often ascribed a specific biological function because of Ca(2+) influx, either for microdomain signaling or to reload internal Ca(2+) stores in the endoplasmic reticulum through a store-operated mechanism. However, adult cardiac myocytes arguably do not require store-operated Ca(2+) entry to regulate sarcoplasmic reticulum Ca(2+) levels and excitation-contraction coupling; hence, TRP channels expressed in the heart most likely coordinate signaling within local domains or through direct interaction with Ca(2+)-dependent regulatory proteins. Here, we review the emerging evidence that TRP channels, especially TRPCs, are critical regulators of microdomain signaling in the heart to control pathological hypertrophy in coordination with signaling through effectors such as calcineurin and NFAT (nuclear factor of activated T cells).  相似文献   

17.
Kamp TJ  Hell JW 《Circulation research》2000,87(12):1095-1102
Voltage-dependent L-type Ca(2+) channels are multisubunit transmembrane proteins, which allow the influx of Ca(2+) (I:(Ca)) essential for normal excitability and excitation-contraction coupling in cardiac myocytes. A variety of different receptors and signaling pathways provide dynamic regulation of I:(Ca) in the intact heart. The present review focuses on recent evidence describing the molecular details of regulation of L-type Ca(2+) channels by protein kinase A (PKA) and protein kinase C (PKC) pathways. Multiple G protein-coupled receptors act through cAMP/PKA pathways to regulate L-type channels. ss-Adrenergic receptor stimulation results in a marked increase in I:(Ca), which is mediated by a cAMP/PKA pathway. Growing evidence points to an important role of localized signaling complexes involved in the PKA-mediated regulation of I:(Ca), including A-kinase anchor proteins and binding of phosphatase PP2a to the carboxyl terminus of the alpha(1C) (Ca(v)1.2) subunit. Both alpha(1C) and ss(2a) subunits of the channel are substrates for PKA in vivo. The regulation of L-type Ca(2+) channels by Gq-linked receptors and associated PKC activation is complex, with both stimulation and inhibition of I:(Ca) being observed. The amino terminus of the alpha(1C) subunit is critically involved in PKC regulation. Crosstalk between PKA and PKC pathways occurs in the modulation of I:(Ca). Ultimately, precise regulation of I:(Ca) is needed for normal cardiac function, and alterations in these regulatory pathways may prove important in heart disease.  相似文献   

18.
Voltage-gated Ca(2+) channels in arterial myocytes can mediate Ca(2+) release from the sarcoplasmic reticulum and, thus, induce contraction without the need of extracellular Ca(2+) influx. This metabotropic action of Ca(2+) channels (denoted as calcium-channel-induced calcium release or CCICR) involves activation of G proteins and the phospholipase C-inositol 1,4,5-trisphosphate pathway. Here, we show a form of vascular tone regulation by extracellular ATP that depends on the modulation of CCICR. In isolated arterial myocytes, ATP produced facilitation of Ca(2+)-channel activation and, subsequently, a strong potentiation of CCICR. The facilitation of L-type channel still occurred after full blockade of purinergic receptors and inhibition of G proteins with GDPbetaS, thus suggesting that ATP directly interacts with Ca(2+) channels. The effects of ATP appear to be highly selective, because they were not mimicked by other nucleotides (ADP or UTP) or vasoactive agents, such as norepinephrine, acetylcholine, or endothelin-1. We have also shown that CCICR can trigger arterial cerebral vasoconstriction in the absence of extracellular calcium and that this phenomenon is greatly facilitated by extracellular ATP. Although, at low concentrations, ATP does not induce arterial contraction per se, this agent markedly potentiates contractility of partially depolarized or primed arteries. Hence, the metabotropic action of L-type Ca(2+) channels could have a high impact on vascular pathophysiology, because, even in the absence of Ca(2+) channel opening, it might mediate elevations of cytosolic Ca(2+) and contraction in partially depolarized vascular smooth muscle cells exposed to small concentrations of agonists.  相似文献   

19.
Intracellular concentrations of redox-active molecules can significantly increase in the heart as a result of activation of specific signal transduction pathways or the development of certain pathophysiological conditions. Changes in the intracellular redox environment can affect many cellular processes, including the gating properties of ion channels and the activity of ion transporters. Because cardiac contraction is highly dependent on intracellular Ca(2+) levels ([Ca(2+)](i)) and [Ca(2+)](i) regulation, redox modification of Ca(2+) channels and transporters has a profound effect on cardiac function. The sarcoplasmic reticulum (SR) Ca(2+) release channel, or ryanodine receptor (RyR), is one of the well-characterized redox-sensitive ion channels in the heart. The redox modulation of RyR activity is mediated by the redox modification of sulfhydryl groups of cysteine residues. Other key components of cardiac excitation-contraction (e-c) coupling such as the SR Ca(2+) ATPase and L-type Ca(2+) channel are subject to redox modulation. Redox-mediated alteration of the activity of ion channels and pumps is directly involved in cardiac pathologies such as ischemia-reperfusion injury. Significant bursts of reactive oxygen species (ROS) generation occur during reperfusion of the ischemic heart, and changes in the activity of the major components of [Ca(2+)](i) regulation, such as RyR, Na(+)-Ca(2+) exchange and Ca(2+) ATPases, are likely to play an important role in ischemia-related Ca(2+) overload. This article summarizes recent findings on redox regulation of cardiac Ca(2+) transport systems and discusses contributions of this redox regulation to normal and pathological cardiac function.  相似文献   

20.
[Ca2+]i-transients have been shown to be altered in isolated ventricular myocytes from terminally failing human myocardium. It has been demonstrated that one reason for this alteration is a reduction in the Ca2+ content of the sarcoplasmic reticulum (SR). Further investigations were done to investigate, whether there may be an additional defect of the Ca2+-release mechanisms from the SR. These release mechanisms were investigated through the recording of Ca2+ sparks in single human myocytes. In cardiac myocytes, Ca2+ sparks are elementary units of Ca2+ release, which occur spontaneously, or which are triggered by Ca2+ influx through L-type Ca2+-channels (Ca2+-induced Ca2+ release). Ca2+ sparks have been investigated in various animal models of cardiac hypertrophy and cardiac failure and results were conflicting. Discrepancies may be explained by different species and also by the mechanisms underlying hypertrophy and heart failure. This review summarizes our current knowledge on Ca2+ sparks in heart failure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号