首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Circular RNAs (circRNAs) have been shown to modulate gene expression and participate in the development of multiple malignancies. The purpose of this study was to investigate the role of circ_0008039 in breast cancer (BC). The expression of circ_0008039, miR‐140‐3p, and spindle and kinetochore‐associated protein 2 (SKA2) was detected by qRT‐PCR. Cell viability, colony formation, migration, and invasion were evaluated using methylthiazolyldiphenyl‐tetrazolium bromide (MTT) assay, colony formation assay, and transwell assay, respectively. Glucose consumption and lactate production were measured using commercial kits. Protein levels of hexokinase II (HK2) and SKA2 were determined by western blot. The interaction between miR‐140‐3p and circ_0008039 or SKA2 was verified by dual‐luciferase reporter assay. Finally, a mouse xenograft model was established to investigate the roles of circ_0008039 in BC in vivo. We found that circ_0008039 and SKA2 were upregulated in BC tissues and cells, while miR‐140‐3p was downregulated. Knockdown of circ_0008039 suppressed BC cell proliferation, migration, invasion, and glycolysis. Moreover, miR‐140‐3p could bind to circ_0008039 and its inhibition reversed the inhibitory effect of circ_0008039 interference on proliferation, migration, invasion, and glycolysis in BC cells. SKA2 was verified as a direct target of miR‐140‐3p and its overexpression partially inhibited the suppressive effect of miR‐140‐3p restoration in BC cells. Additionally, circ_0008039 positively regulated SKA2 expression by sponging miR‐140‐3p. Consistently, silencing circ_0008039 restrained tumor growth via increasing miR‐140‐3p and decreasing SKA2. In conclusion, circ_0008039 downregulation suppressed BC cell proliferation, migration, invasion, and glycolysis partially through regulating the miR‐140‐3p/SKA2 axis, providing an important theoretical basis for treatment of BC.

Abbreviations

ANOVA
analysis of variance
BC
breast cancer
circRNAs
circular RNAs
DMSO
dimethyl sulfoxide
ECAR
extracellular acidification rate
ECL
enhanced chemiluminescence
FBS
fetal bovine serum
HK2
hexokinase II
MEGM
mammary epithelial growth medium
miR‐140‐3p
microRNA‐140‐3p
MTT
methylthiazolyldiphenyl‐tetrazolium bromide
PBS
phosphate‐buffered saline
PRKAR1B
protein kinase A regulatory subunit R1‐beta
SD
standard ± deviation
SKA2
spindle and kinetochore‐associated protein 2
  相似文献   

2.
3.
Circular RNAs (circRNAs) are key regulatory factors in the development of multiple cancers. This study is targeted at exploring the effect of circ_0002623 on bladder cancer (BCa) progression and its mechanism. Circ_0002623 was screened out by analyzing the expression profile of circRNAs in BCa tissues. Circ_0002623, miR‐1276, and SMAD2 mRNA expression levels in clinical sample tissues and cell lines were detected through quantitative real‐time polymerase chain reaction (qRT‐PCR). After circ_0002623 had been overexpressed or silenced in BCa cells, the cell proliferation, migration, and cell cycle were evaluated by CCK‐8, BrdU, Transwell assay, and flow cytometry. Tumor xenograft model was used to validate the biological function of circ_0002623 in vivo. Bioinformatics analysis and dual‐luciferase reporter gene assay were conducted for analyzing and confirming, respectively, the targeted relationship between circ_0002623 and miR‐1276, as well as between miR‐1276 and SMAD2. The regulatory effects of circ_0002623 and miR‐1276 on the expression levels of TGF‐β, WNT1, and SMAD2 in BCa cells were detected by Western blot. We reported that, in BCa tissues and cell lines, circ_0002623 was upregulated, whereas miR‐1276 was downregulated. Circ_0002623 positively regulated BCa cell proliferation, migration, and cell cycle progression. Additionally, circ_0002623 could competitively bind with miR‐1276 to increase the expression of SMAD2, the target gene of miR‐1276. Furthermore, circ_0002623 could regulate the expression of TGF‐β and WNT1 via modulating miR‐1276 and SMAD2. This study helps to better understand the molecular mechanism underlying BCa progression.  相似文献   

4.
Gliomas are the most common type of primary brain tumors. CircRNA ephrin type‐B receptor 4 (circEPHB4) is a circular RNA derived from the receptor tyrosine kinase EPHB4. However, the clinical significance and the specific roles of circEPHB4 in gliomas and glioma cancer stem cells (CSC) have not been studied. Here, we found that circEPHB4 (hsa_circ_0081519) and SOX10 were up‐regulated and microRNA (miR)‐637 was down‐regulated in glioma tissues and cell lines. Consistently, circEPHB4 was positively correlated with SOX10 but negatively correlated with miR‐637. The altered expressions of these molecules were independently associated with overall survival of patients. CircEPHB4 up‐regulated SOX10 and Nestin by directly sponging miR‐637, thereby stimulating stemness, proliferation and glycolysis of glioma cells. Functionally, silencing circEPHB4 or increasing miR‐637 levels in glioma cells was sufficient to inhibit xenograft growth in vivo. In conclusion, the circEPHB4/miR‐637/SOX10/Nestin axis plays a central role in controlling stem properties, self‐renewal and glycolysis of glioma cells and predicts the overall survival of glioma patients. Targeting this axis might provide a therapeutic strategy for malignant gliomas.

Abbreviations

ANOVA
analysis of variance
circEPHB4
circRNA ephrin type‐B receptor 4
circRNA
circular RNA
HK2
hexokinase 2
mRNA
messenger RNA
miRNA
microRNA
PDK1
pyruvate dehydrogenase kinase 1
PI
propidium iodide
PKM2
pyruvate kinase M2
qRT‐PCR
quantitative real‐time polymerase chain reaction
RIP
RNA immunoprecipitation
SD
standard deviation
shcircEPHB4
short hairpin RNA specifically targeting circEPHB4
  相似文献   

5.
Persistent mortality rates of medulloblastoma (MB) and severe side effects of the current therapies require the definition of the molecular mechanisms that contribute to tumor progression. Using cultured MB cancer stem cells and xenograft tumors generated in mice, we show that low expression of miR‐326 and its host gene β‐arrestin1 (ARRB1) promotes tumor growth enhancing the E2F1 pro‐survival function. Our models revealed that miR‐326 and ARRB1 are controlled by a bivalent domain, since the H3K27me3 repressive mark is found at their regulatory region together with the activation‐associated H3K4me3 mark. High levels of EZH2, a feature of MB, are responsible for the presence of H3K27me3. Ectopic expression of miR‐326 and ARRB1 provides hints into how their low levels regulate E2F1 activity. MiR‐326 targets E2F1 mRNA, thereby reducing its protein levels; ARRB1, triggering E2F1 acetylation, reverses its function into pro‐apoptotic activity. Similar to miR‐326 and ARRB1 overexpression, we also show that EZH2 inhibition restores miR‐326/ARRB1 expression, limiting E2F1 pro‐proliferative activity. Our results reveal a new regulatory molecular axis critical for MB progression.

Abbreviations

ARRB1
β‐arrestin1
BTC
bulk tumor cell
CSCs
cancer stem cells
EZH2
enhancer of zeste homolog 2
GCP
granule cell progenitors
MB
medulloblastoma
OFC
oncosphere‐forming cell
  相似文献   

6.
Long non‐coding RNAs (lncRNAs) are emerging as key molecules in various cancers, yet their potential roles in the pathogenesis of breast cancer are not fully understood. Herein, using microarray analysis, we revealed that the lncRNA RACGAP1P, the pseudogene of Rac GTPase activating protein 1 (RACGAP1), was up‐regulated in breast cancer tissues. Its high expression was confirmed in 25 pairs of breast cancer tissues and 8 breast cell lines by qRT‐PCR. Subsequently, we found that RACGAP1P expression was positively correlated with lymph node metastasis, distant metastasis, TNM stage, and shorter survival time in 102 breast cancer patients. Then, in vitro and in vivo experiments were designed to investigate the biological function and regulatory mechanism of RACGAP1P in breast cancer cell lines. Overexpression of RACGAP1P in MDA‐MB‐231 and MCF7 breast cell lines increased their invasive ability and enhanced their mitochondrial fission. Conversely, inhibition of mitochondrial fission by Mdivi‐1 could reduce the invasive ability of RACGAP1P‐overexpressing cell lines. Furthermore, the promotion of mitochondrial fission by RACGAP1P depended on its competitive binding with miR‐345‐5p against its parental gene RACGAP1, leading to the activation of dynamin‐related protein 1 (Drp1). In conclusion, lncRNA RACGAP1P promotes breast cancer invasion and metastasis via miR‐345‐5p/RACGAP1 pathway‐mediated mitochondrial fission.

Abbreviations

CDS
coding sequence
ceRNAs
competitive endogenous RNAs
Drp1
dynamin‐related protein 1
FFPE
formalin‐fixed paraffin‐embedded
lncRNAs
long non‐coding RNAs
miRNAs
microRNAs
RACGAP1
Rac GTPase activating protein 1
TCGA
The Cancer Genome Atlas
  相似文献   

7.
8.
Increasing evidence demonstrates that Lin28B plays critical roles in numerous biological processes including cell proliferation and stemness maintenance. However, the molecular mechanisms underlying Lin28B nuclear translocation remain poorly understood. Here, we found for the first time that KRAS promoted Lin28B nuclear translocation through PKCβ, which directly bound to and phosphorylated Lin28B at S243. Firstly, we observed that Lin28B was upregulated in pancreatic cancer, contributing to cellular migration and proliferation. Furthermore, nuclear Lin28B upregulated TET3 messenger RNA and protein levels by blocking the production of mature let‐7i. Subsequently, increased TET3 expression could also promote the expression of Lin28B, thereby forming a Lin28B/let‐7i/TET3 feedback loop. Our results suggest that the KRAS/Lin28B axis drives the let‐7i/TET3 pathway to maintain the stemness of pancreatic cancer cells. These findings illuminate the distinct mechanism of Lin28B nuclear translocation and its important roles in KRAS‐driven pancreatic cancer, and have important implications for development of novel therapeutic strategies for this cancer.

Abbreviations

CCK‐8
cell counting kit‐8
CSC
cancer stem cells
IP
immunoprecipitation
MUT
mutant type
NLS
nuclear localization signal
PC
pancreatic cancer
PCSC
pancreatic cancer stem cells
PKC
protein kinase C
WT
wild‐type
  相似文献   

9.
10.
Overexpression of TRIP13, a member of the AAA‐ATPase family, is linked with various cancers, but its role in metastasis is unknown in colorectal cancer (CRC). In the current study, we investigated the role TRIP13 in experimental metastasis and its involvement in regulation of WNT/β‐catenin and EGFR signaling pathways. Evaluation of formalin‐fixed paraffin‐embedded (FFPE) and frozen tissues of adenomas and CRCs, along with their corresponding normal samples, showed that TRIP13 was gradually increased in its phenotypic expression from adenoma to carcinoma and that its overexpression in CRCs was independent of patient''s gender, age, race/ethnicity, pathologic stage, and p53 and microsatellite instability (MSI) status. Moreover, liver metastases of CRCs showed TRIP13 overexpression as compared to matched adjacent liver tissues, indicating the biological relevance of TRIP13 in CRC progression and metastasis. TRIP13 knockdown impeded colony formation, invasion, motility, and spheroid‐forming capacity of CRC cells irrespective of their p53 and MSI status. Furthermore, xenograft studies demonstrated high expression of TRIP13 contributed to tumor growth and metastasis. Depletion of TRIP13 in CRC cells decreased metastasis and it was independent of the p53 and MSI status. Furthermore, TRIP13 interacted with a tyrosine kinase, FGFR4; this interaction could be essential for activation of the EGFR‐AKT pathway. In addition, we demonstrated the involvement of TRIP13 in the Wnt signaling pathway and in the epithelial–mesenchymal transition. Cell‐based assays revealed that miR‐192 and PNPT1 regulate TRIP13 expression in CRC. Additionally, RNA sequencing of CRC cells with TRIP13 knockdown identified COL6A3, TREM2, SHC3, and KLK7 as downstream targets that may have functional relevance in TRIP13‐mediated tumor growth and metastasis. In summary, our results demonstrated that TRIP13 promotes tumor growth and metastasis regardless of p53 and MSI status, and indicated that it is a target for therapy of CRC.

Abbreviations

CIN
chromosomal instability
CRC
colorectal cancer
EMT
epithelial–mesenchymal transition
FFPE
formalin‐fixed, paraffin‐embedded
LEF
lymphoid enhancer factor
MS
microsatellite
MSI
microsatellite instable
MSS
microsatellite stable
NSG
NOD/SCID/IL2γ receptor‐null
NT
nontargeting
SAC
spindle assembly checkpoint
TCF
T‐cell factor
TRIP13
thyroid hormone receptor interactor 13
UAB
University of Alabama at Birmingham
  相似文献   

11.
Early stage localized prostate cancer (PCa) has an excellent prognosis; however, patient survival drops dramatically when PCa metastasizes. The molecular mechanisms underlying PCa metastasis are complex and remain unclear. Here, we examine the role of a new member of the fatty acid‐binding protein (FABP) family, FABP12, in PCa progression. FABP12 is preferentially amplified and/or overexpressed in metastatic compared to primary tumors from both PCa patients and xenograft animal models. We show that FABP12 concurrently triggers metastatic phenotypes (induced epithelial‐to‐mesenchymal transition (EMT) leading to increased cell motility and invasion) and lipid bioenergetics (increased fatty acid uptake and accumulation, increased ATP production from fatty acid β‐oxidation) in PCa cells, supporting increased reliance on fatty acids for energy production. Mechanistically, we show that FABP12 is a driver of PPARγ activation which, in turn, regulates FABP12''s role in lipid metabolism and PCa progression. Our results point to a novel role for a FABP‐PPAR pathway in promoting PCa metastasis through induction of EMT and lipid bioenergetics.

Abbreviations

AR
androgen receptor
ATP
adenosine triphosphate
CN
copy number
CPT1
carnitine palmitoyltransferase I
CS
citrate synthase
EMT
epithelial–mesenchymal transition
ET
electron transfer‐state
FABP
fatty acid‐binding protein
LD
lipid droplet
OA
oleic acid
PCa
prostate cancer
PPAR
peroxisome proliferator‐activated receptor
PPRE
peroxisome proliferator‐activated receptor response element
TZD
thiazolidinediones
  相似文献   

12.
The acquisition of chemoresistance remains a major cause of cancer mortality due to the limited accessibility of targeted or immune therapies. However, given that severe alterations of molecular features during epithelial‐to‐mesenchymal transition (EMT) lead to acquired chemoresistance, emerging studies have focused on identifying targetable drivers associated with acquired chemoresistance. Particularly, AXL, a key receptor tyrosine kinase that confers resistance against targets and chemotherapeutics, is highly expressed in mesenchymal cancer cells. However, the underlying mechanism of AXL induction in mesenchymal cancer cells is poorly understood. Our study revealed that the YAP signature, which was highly enriched in mesenchymal‐type lung cancer, was closely correlated to AXL expression in 181 lung cancer cell lines. Moreover, using isogenic lung cancer cell pairs, we also found that doxorubicin treatment induced YAP nuclear translocation in mesenchymal‐type lung cancer cells to induce AXL expression. Additionally, the concurrent activation of TGFβ signaling coordinated YAP‐dependent AXL expression through SMAD4. These data suggest that crosstalk between YAP and the TGFβ/SMAD axis upon treatment with chemotherapeutics might be a promising target to improve chemosensitivity in mesenchymal‐type lung cancer.

Abbreviations

AUC
area under the curve
AXL
AXL receptor tyrosine kinase
BCL2
B‐cell lymphoma 2
CTD2
cancer target discovery and development
CTGF
connective tissue growth factor
DEG
differentially expressed genes
DOXO
doxorubicin
EMT
epithelial–mesenchymal transition
Eto
etoposide
FDA
Food and Drug Administration
ITGB3
integrin beta‐3
MAPK
mitogen‐activated protein kinase
MMP2
matrix metalloproteinase‐2
MMP9
matrix metalloproteinase‐9
mRNA
messenger RNA
NF‐κB
nuclear factor kappa‐light‐chain‐enhancer of activated B cells
SBE
SMAD binding element
SERPINE1
serpin family E member 1
siRNA
small interfering RNA
ssGSEA
single‐sample gene set enrichment analysis
TCGA
The Cancer Genome Atlas
TGFβ
transforming growth factor beta
YAP
Yes‐associated protein
YAP8SA
mutants of inhibitory phosphorylation site at eight serine to Alanine of YAP
ZEB1
zinc finger E‐box binding homeobox 1
ZEB2
zinc finger E‐box‐binding homeobox 2
  相似文献   

13.
14.
15.
Lung cancer is one of the most common cancers, still characterized by high mortality rates. As lipid metabolism contributes to cancer metabolic reprogramming, several lipid metabolism genes are considered prognostic biomarkers of cancer. Statins are a class of lipid‐lowering compounds used in treatment of cardiovascular disease that are currently studied for their antitumor effects. However, their exact mechanism of action and specific conditions in which they should be administered remains unclear. Here, we found that simvastatin treatment effectively promoted antiproliferative effects and modulated lipid metabolism‐related pathways in non‐small cell lung cancer (NSCLC) cells and that the antiproliferative effects of statins were potentiated by overexpression of acyl‐CoA synthetase long‐chain family member 3 (ACSL3). Moreover, ACSL3 overexpression was associated with worse clinical outcome in patients with high‐grade NSCLC. Finally, we found that patients with high expression levels of ACSL3 displayed a clinical benefit of statins treatment. Therefore, our study highlights ACSL3 as a prognostic biomarker for NSCLC, useful to select patients who would obtain a clinical benefit from statin administration.

Abbreviations

3‐HMGCR
3‐hydroxy‐3‐methylglutaryl‐coenzyme A reductase
95% CI
95% confidence intervals
ACSL3
acyl‐CoA synthetase long‐chain family member 3
ACSLs
long‐chain acyl‐CoA synthetases
ALP
alkaline phosphatase
APOA1
apolipoprotein A1
ATCC
American Type Culture Collection
CASP9
caspase 9
ECAR
extracellular acidification rate
ECOG
Eastern Cooperative Oncology Group
EMT
epithelial‐to‐mesenchymal transition
ER
endoplasmic reticulum
FAs
fatty acids
FFPE
formalin‐fixed, paraffin‐embedded
GTEx
genotype‐tissue expression
HR
Hazard ratio
IC50
half‐maximal inhibitory concentration
LDH
lactate dehydrogenase
MTT
3‐(4,5‐dimethylthiazol‐2‐yl)‐2,5‐diphenyltetrazolium
NID1
nidogen 1
No ORF
no open reading frame
NSCLC
non‐small cell lung cancer
OCR
oxygen consumption rate
OS
overall survival
PGE2
prostaglandins E2
RETN
resistin
TCGA
The Cancer Genome Atlas
TMA
tumor tissue microarray
  相似文献   

16.
Osteosarcoma (OS) is a primary and highly malignant mesenchymal tissue tumor. The specific pathological mechanism underlying disease initiation or progression remains unclear. Circular RNAs (circRNAs) are a type of covalently circular RNA with a head‐to‐tail junction site. In this study, we aimed to investigate the sponging mechanism between circRNAs and microRNAs (miRNAs) in OS. Based on the inhibited effect of miR‐16‐5p reported on OS, circUSP34 was analyzed as a sponge of miR‐16‐5p via Starbase. We found that circUSP34 promoted the proliferation, migration, and invasion of OS in vitro and in vivo. circUSP34 increased but miR‐16‐5p decreased in OS by qRT‐PCR. Function assays showed that the malignancy of OS cells, including proliferation, migration, and invasion, was inhibited after knocking out circUSP34. Western blotting results showed that the expression level of vimentin and Ki‐67 decreased. Similarly, miR‐16‐5p mimic compromised the proliferation, migration, and invasion of OS cells. FISH assay results indicated that circUSP34 and miR‐16‐5p were colocalized in the cytoplasm. The sponging mechanism of circUSP34 and miR‐16‐5p was verified by dual‐luciferase reporter assay, RNA immunoprecipitation (RIP), and RNA pull down assays. Interestingly, the miR‐16‐5p inhibitor partly reversed the inhibitory effect of sh‐circUSP34 on the malignancy of OS cells. Further, mice tumors for IHC indicated that vimentin, N‐cadherin, and Ki‐67 protein expression decreased, but E‐cadherin protein expression increased. Collectively, circUSP34 promoted OS malignancy, including proliferation, migration, and invasion, by sponging miR‐16‐5p. It can serve as a potential therapeutic target and biomarker.  相似文献   

17.
Salt‐inducible kinase 2 (SIK2) is an important regulator in various intracellular signaling pathways related to apoptosis, tumorigenesis and metastasis. However, the involvement of SIK2 in gastric tumorigenesis and the functional linkage with gastric cancer (GC) progression remain to be defined. Here, we report that SIK2 was significantly downregulated in human GC tissues, and reduced SIK2 expression was associated with poor prognosis of patients. Overexpression of SIK2 suppressed the migration and invasion of GC cells, whereas knockdown of SIK2 enhanced cell migratory and invasive capability as well as metastatic potential. These changes in the malignant phenotype resulted from the ability of SIK2 to suppress epithelial–mesenchymal transition via inhibition of AKT/GSK3β/β‐catenin signaling. The inhibitory effect of SIK2 on AKT/GSK3β/β‐catenin signaling was mediated primarily through inactivation of AKT, due to its enhanced dephosphorylation by the upregulated protein phosphatases PHLPP2 and PP2A. The upregulation of PHLPP2 and PP2A was attributable to SIK2 phosphorylation and activation of mTORC1, which inhibited autophagic degradation of these two phosphatases. These results suggest that SIK2 acts as a tumor suppressor in GC and may serve as a novel prognostic biomarker and therapeutic target for this tumor.

Abbreviations

AMPK
AMP‐activated protein kinase
Co‐IP
co‐immunoprecipitation
EMT
epithelial–mesenchymal transition
GAPDH
glyceraldehyde‐3‐phosphate dehydrogenase
GC
gastric cancer
GEO
Gene Expression Omnibus
H&E
hematoxylin and eosin
IHC
immunohistochemistry
mTOR
mechanistic target of rapamycin
NC
negative control
PHLPP
PH domain leucine‐rich repeat protein phosphatase
PP2A
protein phosphatase 2A
qRT‐PCR
quantitative real‐time polymerase chain reaction
SIK2
salt‐inducible kinase 2
TCF/LEF
T cell factor/lymphoid enhancer‐binding factor
TCGA
The Cancer Genome Atlas
  相似文献   

18.
Osimertinib is a third‐generation epidermal growth factor receptor tyrosine kinase inhibitor (EGFR‐TKI) for lung adenocarcinoma (LUAD) harboring activating mutations, but patients ultimately develop acquired resistance. Circular RNAs are involved in EGFR‐TKI resistance, while the role of hsa_circ_0005576 in the osimertinib resistance of LUAD remains unknown. In this study, we demonstrated that hsa_circ_0005576 could facilitate osimertinib‐resistant LUAD cells. Briefly, knockdown of hsa_circ_0005576 not only suppressed the proliferation and promoted the apoptosis of resistant LUAD cells, but also increased their sensitivity to osimertinib. Mechanistically, hsa_circ_0005576, serving as an miRNA sponge, could directly interact with miR‐512‐5p and subsequently upregulate the miR‐512‐5p‐targeted insulin‐like growth factor 1 receptor. Rescue assays indicated that miR‐512‐5p inhibition could reverse the effects of hsa_circ_0005576 knockdown in LUAD cells resistant to osimertinib. Overall, our study revealed that hsa_circ_0005576 regulates proliferation and apoptosis through miR‐512‐5p/IGF1R signaling, which contributes further to the resistance of LUAD cells to osimertinib. In addition, this study provides a novel insight into the mechanisms underlying osimertinib resistance of LUAD.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号