首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
The Ras/Raf/MEK/ERK and PI3K/PTEN/Akt/mTOR cascades are often activated by genetic alterations in upstream signaling molecules such as receptor tyrosine kinases (RTK). Targeting these pathways is often complex and can result in pathway activation depending on the presence of upstream mutations (e.g., Raf inhibitors induce Raf activation in cells with wild type (WT) RAF in the presence of mutant, activated RAS) and rapamycin can induce Akt activation. Targeting with inhibitors directed at two constituents of the same pathway or two different signaling pathways may be a more effective approach. This review will first evaluate potential uses of Raf, MEK, PI3K, Akt and mTOR inhibitors that have been investigated in pre-clinical and clinical investigations and then discuss how cancers can become insensitive to various inhibitors and potential strategies to overcome this resistance.  相似文献   

2.
The Ras/Raf/MEK/ERK and PI3K/PTEN/Akt/mTOR cascades are often activated by genetic alterations in upstream signaling molecules such as receptor tyrosine kinases (RTK). Integral components of these pathways, Ras, B-Raf, PI3K, and PTEN are also activated/inactivated by mutations. These pathways have profound effects on proliferative, apoptotic and differentiation pathways. Dysregulation of these pathways can contribute to chemotherapeutic drug resistance, proliferation of cancer initiating cells (CICs) and premature aging. This review will evaluate more recently described potential uses of MEK, PI3K, Akt and mTOR inhibitors in the proliferation of malignant cells, suppression of CICs, cellular senescence and prevention of aging. Ras/Raf/MEK/ERK and Ras/PI3K/PTEN/Akt/mTOR pathways play key roles in the regulation of normal and malignant cell growth. Inhibitors targeting these pathways have many potential uses from suppression of cancer, proliferative diseases as well as aging.  相似文献   

3.
The EGFR/PI3K/PTEN/Akt/mTORC1/GSK-3 pathway plays prominent roles in malignant transformation, prevention of apoptosis, drug resistance and metastasis. The expression of this pathway is frequently altered in breast cancer due to mutations at or aberrant expression of: HER2, ERalpha, BRCA1, BRCA2, EGFR1, PIK3CA, PTEN, TP53, RB as well as other oncogenes and tumor suppressor genes. In some breast cancer cases, mutations at certain components of this pathway (e.g., PIK3CA) are associated with a better prognosis than breast cancers lacking these mutations. The expression of this pathway and upstream HER2 has been associated with breast cancer initiating cells (CICs) and in some cases resistance to treatment. The anti-diabetes drug metformin can suppress the growth of breast CICs and herceptin-resistant HER2+ cells. This review will discuss the importance of the EGFR/PI3K/PTEN/Akt/mTORC1/GSK-3 pathway primarily in breast cancer but will also include relevant examples from other cancer types. The targeting of this pathway will be discussed as well as clinical trials with novel small molecule inhibitors. The targeting of the hormone receptor, HER2 and EGFR1 in breast cancer will be reviewed in association with suppression of the EGFR/PI3K/PTEN/Akt/mTORC1/GSK-3 pathway.  相似文献   

4.
The activation of the PI3K signaling pathway resulting from genetic alterations induces carcinogenesis and resistance to anticancer therapies. Breast cancer is a major malignancy that is associated with dysregulation of the PI3K signaling pathway. PIK3CA mutations and PTEN loss occur in every subtype of breast cancer. PI3K inhibitors are being evaluated in breast cancer after the success of an alpha isoform-specific PI3K inhibitor in estrogen receptor (ER)-positive/HER2-negative metastatic breast cancer. Some preclinical data indicate the potential for PI3K/mTOR targeting in combination with trastuzumab for HER2-positive breast cancer with or without expression of the estrogen receptor. However, the role of this therapy in HER2-positive breast cancer with PIK3CA mutations and/or PTEN loss remains unclear. We examined three HER2-positive, ER-negative breast cancer cell lines to determine the efficacy of a novel alpha isoform-specific PI3K inhibitor in combination with trastuzumab. The results indicated that this combination was effective in PIK3CA-mutant or PTEN-deficient breast cancer cells by inducing apoptosis and inhibiting the expression of downstream proteins. PTEN loss by siRNA modulation in parental HER2-positive cancer cells with PI3K signaling pathway alterations could not confer resistance to alpelisib or GDC-0077 plus trastuzumab. We selected the CK-MB-1 cell line without alterations in the PI3K pathway to demonstrate that PI3K inhibitors plus trastuzumab represented a biomarker-specific treatment. In vivo effects of alpelisib plus trastuzumab were tested and confirmed in a mouse model, showing the combination strategy offered the best opportunity to achieve tumor volume reduction. With known safety profiles, this cytotoxic chemotherapy-free regimen warrants further attention as a biomarker-driven strategy for treating HER2-positive breast cancer.  相似文献   

5.
Hou P  Ji M  Xing M 《Cancer》2008,113(9):2440-2447
BACKGROUND: The phosphatidylinositol 3-kinase (PI3K)/AKT pathway plays an important role in thyroid tumorigenesis and progression. Genetic alterations, particularly PIK3CA amplification and mutations and ras mutations, are the major cause of aberrant activation of this pathway in thyroid tumors. Epigenetic silencing of the PTEN gene, a negative regulator of the PI3K/AKT pathway, also occurs in thyroid tumors, but its relationship with genetic alterations in this pathway is unclear. METHODS: By using quantitative methylation-specific polymerase chain reaction, the authors examined PTEN methylation and its relationship with genetic alterations in the PI3K/AKT pathway in various types of thyroid tumors. RESULTS: The authors found PTEN methylation to become progressively higher from benign thyroid adenoma to follicular thyroid cancer and to aggressive anaplastic thyroid cancer, which harbored activating genetic alterations in the PI3K/AKT pathway correspondingly with a progressively higher prevalence. The association of PTEN methylation was seen with both overall genetic alterations and individual genetic alterations, particularly PIK3CA alterations and ras mutations, in the PI3K/AKT pathway within each of the 3 types of thyroid tumors. In contrast, no such relationship was observed for the tumor suppressor gene RASSF1A. CONCLUSIONS: The authors found an interesting association of PTEN methylation with the activating genetic alterations in the PI3K/AKT pathway in thyroid tumors. This finding is consistent with a model in which aberrant methylation and hence silencing of the PTEN gene, which coexists with activating genetic alterations of the PI3K/AKT pathway, may enhance the signaling of this pathway aberrantly activated by genetic alterations and hence contribute to the progression of thyroid tumors. Cancer 2008.  相似文献   

6.

Introduction

Inhibitors of the phosphatidylinositol-3-kinase/protein kinase B/mammalian target of rapamycin (PI3K/AKT/mTOR) pathway can overcome endocrine resistance in estrogen receptor (ER) α-positive breast cancer, but companion diagnostics indicating PI3K/AKT/mTOR activation and consequently endocrine resistance are lacking. PIK3CA mutations frequently occur in ERα-positive breast cancer and result in PI3K/AKT/mTOR activation in vitro. Nevertheless, the prognostic and treatment-predictive value of these mutations in ERα-positive breast cancer is contradictive. We tested the clinical validity of PIK3CA mutations and other canonic pathway drivers to predict intrinsic resistance to adjuvant tamoxifen. In addition, we tested the association between these drivers and downstream activated proteins.

Methods

Primary tumors from 563 ERα-positive postmenopausal patients, randomized between adjuvant tamoxifen (1 to 3 years) versus observation were recollected. PIK3CA hotspot mutations in exon 9 and exon 20 were assessed with Sequenom Mass Spectometry. Immunohistochemistry was performed for human epidermal growth factor receptor 2 (HER2), phosphatase and tensin homolog (PTEN), and insulin-like growth factor 1 receptor (IGF-1R). We tested the association between these molecular alterations and downstream activated proteins (like phospho-protein kinase B (p-AKT), phospho-mammalian target of rapamycin (p-mTOR), p-ERK1/2, and p-p70S6K). Recurrence-free interval improvement with tamoxifen versus control was assessed according to the presence or absence of canonic pathway drivers, by using Cox proportional hazard models, including a test for interaction.

Results

PIK3CA mutations (both exon 9 and exon 20) were associated with low tumor grade. An enrichment of PIK3CA exon 20 mutations was observed in progesterone receptor- positive tumors. PIK3CA exon 20 mutations were not associated with downstream-activated proteins. No significant interaction between PIK3CA mutations or any of the other canonic pathway drivers and tamoxifen-treatment benefit was found.

Conclusion

PIK3CA mutations do not have clinical validity to predict intrinsic resistance to adjuvant tamoxifen and may therefore be unsuitable as companion diagnostic for PI3K/AKT/mTOR inhibitors in ERα- positive, postmenopausal, early breast cancer patients.  相似文献   

7.
The phosphatidylinositol 3-kinase (PI3K) pathway is a critical signal transduction pathway that regulates multiple cellular functions. Aberrant activation of this pathway has been identified in a wide range of cancers. Several pathway components including AKT, PI3K and mTOR represent potential therapeutic targets and many small molecule inhibitors are in development or early clinical trials. The complex regulation of the pathway, together with the multiple mechanisms by which it can be activated, make this a highly challenging pathway to target. For successful inhibition, detailed molecular information on individual tumours will be required and it is already clear that different tumour types show distinct combinations of alterations. Recent results have identified alterations in pathway components PIK3CA, PTEN, AKT1 and TSC1 in bladder cancer, some of which are significantly related to tumour phenotype and clinical behaviour. Co-existence of alterations to several PI3K pathway genes in some bladder tumours indicates that these proteins may have functions that are not related solely to the known canonical pathway.  相似文献   

8.
Epidemiologic and experimental studies support a key role of the phosphatidyl inositol 3-kinase/AKT/mammalian target of rapamycin (PI3K/AKT/mTOR) pathway in the biology of human cancers. Alterations resulting in activation of PI3K/Akt/mTOR signaling are perhaps the most frequent events observed in solid tumors, including breast cancer, and contribute to neoplastic transformation. The PI3K/mTOR pathway can be activated by overproduction of growth factors or chemokines, loss of phosphatase and tensin homolog (PTEN) expression, or by mutations in growth factor receptors Ras, PTEN, or PI3K itself. Activation of this pathway contributes to cell cycle proliferation, growth, cell cycle entry, survival, cell motility, protein synthesis, and glucose metabolism, all important aspects of tumorigenesis. The most common genetic aberrations in breast cancer are activating somatic missense mutations in the gene encoding the p110a (PIK3CA) subunit of PI3K. The PTEN gene is often hypermethylated or decreased in expression, through as yet unclear mechanisms, in breast cancer. Studies have shown that PI3K/PTEN/AKT pathway modulation is implicated in HER2/neu-tumorigenesis and in response to the HER2-targeting antibody trastuzumab. Components of the pathway are regulated by feed-back and cross-talk to other signaling cascades and appear to be implicated with drug resistance. Over the past few years, a number of components of this signaling cascade have been the subject of intense drug-discovery activities. Rapamycin analogs have already been shown to have antitumor efficacy in some tumor types. Newer-generation PI3K, AKT, and mTOR inhibitors have shown significant promise preclinically and are now in clinical trials. This article summarizes the progress made in the elucidation of the pathway, clinical implications in pathology of breast cancer, and reviews novel drugs targeting this pathway for cancer treatment, particularly inhibitors of PI3K, AKT, and mTOR, currently undergoing clinical trials. Potential combination strategies, safety concerns, and resistance mechanisms for this new generation of anticancer agents are also discussed.  相似文献   

9.
Mutations in genes functioning in different pathways frequently occur together in the same cancer, whereas mutations in the same pathway tend to be mutually exclusive. However, the majority of colon, breast, and endometrial cancers that possess mutations in PIK3CA, the catalytic subunit p110alpha of phosphatidylinositol 3'-kinase (PI3K), also possess mutations or alterations in genes upstream of PI3K such as Ras, ERBB2/ERBB3, or PTEN. PIK3CA mutations occur almost exclusively in invasive tumors, whereas upstream mutations occur as frequently in early-stage and late-stage tumors, suggesting that PIK3CA mutation is a late-stage event that may augment earlier activation of the PI3K pathway. Consistent with this, we find that levels of p-AKT (Ser(473)) induced by mutant Ras or knockdown of PTEN were dramatically increased by addition of mutant PIK3CA. Soft agar assays revealed that anchorage-independent growth induced by mutant Ras was greatly increased in the presence of mutant PIK3CA. In breast, colon, and endometrial cancers in which the PI3K pathway is activated by a combination of mutant PIK3CA and alterations in Ras, ERBB2/3, or PTEN, signaling to downstream elements such as Akt was mediated exclusively by the p110alpha isoform, rather than a combination of different PI3K isoforms. Our data therefore suggest that in tumors with co-occurring mutations in multiple components of the PI3K pathway, selective inhibition of the alpha isoform of p110 is an attractive therapeutic strategy, especially for late-stage tumors.  相似文献   

10.
Breast cancer is the most common type of cancer in women. A substantial fraction of breast cancers have acquired mutations that lead to activation of the phosphoinositide 3-kinase (PI3K) signaling pathway, which plays a central role in cellular processes that are essential in cancer, such as cell survival, growth, division and motility. Oncogenic mutations in the PI3K pathway generally involve either activating mutation of the gene encoding PI3K (PIK3CA) or AKT (AKT1), or loss or reduced expression of PTEN. Several kinases involved in PI3K signaling are being explored as a therapeutic targets for pharmacological inhibition. Despite the availability of a range of inhibitors, acquired resistance may limit the efficacy of single-agent therapy. In this review we discuss the role of PI3K pathway mutations in human breast cancer and relevant genetically engineered mouse models (GEMMs), with special attention to the role of PI3K signaling in oncogenesis, in therapeutic response, and in resistance to therapy. Several sophisticated GEMMs have revealed the cause-and-effect relationships between PI3K pathway mutations and mammary oncogenesis. These GEMMs enable us to study the biology of tumors induced by activated PI3K signaling, as well as preclinical response and resistance to PI3K pathway inhibitors.  相似文献   

11.
The phosphatidylinositol 3-kinase (PI3K)/Akt signaling pathway is one of the most commonly deregulated pathways in human cancers. PI3K comprises a catalytic (p110α) and regulatory subunit (p85), and p110α is encoded by the PIK3CA gene. Here, we summarize the known genetic alterations, including amplifications and mutations, of the PIK3CA oncogene in oral cancer. We discuss in detail PIK3CA mutations and their mutual exclusivity with pathway genes in addition to the incidence of PIK3CA mutations in relation to ethnicity. We describe the constitutive activation of PI3K signaling, oncogenicity, and the genetic deregulation of the PIK3CA gene and its association with oral cancer disease stage. We emphasize the importance of therapeutically targeting the genetically deregulated PIK3CA oncogene and its signaling. We also discuss the implications of targeting Akt and/or mTOR, which are the downstream effectors of PI3K that may possibly pave the way for molecular therapeutic targets for PIK3CA-driven oral carcinogenesis. Furthermore, this critical review provides a complete picture of the PIK3CA oncogene and its deregulation in oral cancer, which may facilitate early diagnosis and improve prognosis through personalized molecular targeted therapy in oral cancer.  相似文献   

12.
A high frequency of somatic mutations has been found in breast cancers within the gene encoding the catalytic p110α subunit of PI3K, PIK3CA. Using isogenic human breast epithelial cells, we have previously demonstrated that oncogenic PIK3CA "hotspot" mutations predict for response to the toxic effects of lithium. However, other somatic genetic alterations occur within this pathway in breast cancers, and it is possible that these changes may also predict for lithium sensitivity. We overexpressed the epidermal growth factor receptor (EGFR) into the non-tumorigenic human breast epithelial cell line MCF-10A, and compared these cells to isogenic cell lines previously created via somatic cell gene targeting to model Pten loss, PIK3CA mutations, and the invariant AKT1 mutation, E17K. EGFR overexpressing clones were capable of cellular proliferation in the absence of EGF and were sensitive to lithium similar to the results previously seen with cells harboring PIK3CA mutations. In contrast, AKT1 E17K cells and PTEN -/- cells displayed resistance or partial sensitivity to lithium, respectively. Western blot analysis demonstrated that lithium sensitivity correlated with significant decreases in both PI3K and MAPK signaling that were observed only in EGFR overexpressing and mutant PIK3CA cell lines. These studies demonstrate that EGFR overexpression and PIK3CA mutations are predictors of response to lithium, whereas Pten loss and AKT1 E17K mutations do not predict for lithium sensitivity. Our findings may have important implications for the use of these genetic lesions in breast cancer patients as predictive markers of response to emerging PI3K pathway inhibitors.  相似文献   

13.
Oda K  Stokoe D  Taketani Y  McCormick F 《Cancer research》2005,65(23):10669-10673
The phosphatidylinositol 3'-kinase (PI3K) pathway is activated in many human cancers. In addition to inactivation of the PTEN tumor suppressor gene, mutations or amplifications of the catalytic subunit alpha of PI3K (PIK3CA) have been reported. However, the coexistence of mutations in these two genes seems exceedingly rare. As PTEN mutations occur at high frequency in endometrial carcinoma, we screened 66 primary endometrial carcinomas for mutations in the helical and catalytic domains of PIK3CA. We identified a total of 24 (36%) mutations in this gene and coexistence of PIK3CA/PTEN mutations at high frequency (26%). PIK3CA mutations were more common in tumors with PTEN mutations (17 of 37, 46%) compared with those without PTEN mutations (7 of 29, 24%). Array comparative genomic hybridization detected 3q24-qter amplification, which covers the PIK3CA gene (3q26.3), in one of nine tumors. Knocking down PTEN expression in the HEC-1B cell line, which possesses both K-Ras and PIK3CA mutations, further enhances phosphorylation of Akt (Ser473), indicating that double mutation of PIK3CA and PTEN has an additive effect on PI3K activation. Our data suggest that the PI3K pathway is extensively activated in endometrial carcinomas, and that combination of PIK3CA/PTEN alterations might play an important role in development of these tumors.  相似文献   

14.
Hepatocyte growth factor receptor (MET) tyrosine kinase inhibitors (MET TKIs) have been found to have efficacy against advanced NSCLC with mutations causing MET exon 14 skipping (METex14 mutations), but primary resistance seems frequent, as response rates are lower than those for targeted TKIs of other oncogene-addicted NSCLCs. Given the known interplay between MET and phosphoinositide 3-kinases (PI3K), we hypothesized that in METex14 NSCLC, PI3K pathway alterations might contribute to primary resistance to MET TKIs. We reviewed clinical data from 65 patients with METex14 NSCLC, assessing PI3K pathway alterations by targeted next-generation sequencing (mutations) and immunohistochemistry (loss of phosphatase and tensin homolog [PTEN]). Using a cell line derived from a patient with primary resistance to a MET TKI and cell lines harboring both a METex14 mutation and a PI3K pathway alteration, we assessed sensitivity to MET TKIs used alone or with a PI3K inhibitor and investigated relevant signaling pathways. We found a phosphatidylinositol 3-kinase catalytic subunit alpha (PIK3CA) mutation in two of 65 samples (3%) and loss of PTEN in six of 26 samples (23%). All three of the MET TKI–treated patients with a PI3K pathway alteration had been found to have progressive disease at first assessment. Likewise, MET TKIs had no effect on the proliferation of METex14-mutated cell lines with a PI3K pathway alteration, including the PTEN-lacking patient-derived cell line. Treatment combining a MET TKI with a PI3K inhibitor caused inhibition of both PI3K and MAPK signaling and restored sensitivity to MET TKIs. PI3K pathway alterations are common in METex14 NSCLC and may confer primary resistance to MET TKIs. In preclinical models, PI3K inhibition restores sensitivity to MET TKIs.  相似文献   

15.
We investigated the status of the PI 3-kinase/AKT/PTEN signaling pathway in a series of 117 head and neck squamous cell carcinomas (HNSCC) in a search for molecular alterations in genes/proteins with potential prognostic value. For this purpose, PIK3CA and AKT2 gene amplification was assessed by multiplex and Quantitative Real-Time PCR. Protein expression of AKT, p-AKT, p110alpha and PTEN was determined by Western blot. PTEN allelic loss was evaluated by microsatellite analysis. PTEN-exon 5 was screened for point mutations by PCR-SSCP. Homozygous deletions were determined by multiplex PCR. PIK3CA gene was amplified in 43/117 (37%) fresh tumor samples, a frequency that did not differ from that found in archival premalignant tissues: 15/38 (39%); 12/40 (30%) fresh tumors harbored AKT2 gene amplification. AKT was found activated in 6/36 (17%) fresh tumor samples, when compared to their normal tissue counterparts. Of these 6 cases, 1 showed p110alpha overexpression and 5 displayed PTEN protein downregulation. Neither allelic loss (found in 11/77 informative cases) nor point mutations or homozygous deletions accounted for the reduced PTEN protein expression observed in our tumor series. The histologically normal mucosa of 4 patients displayed some of the molecular alterations analyzed. Dysregulation of the PI 3-K/AKT/PTEN pathway might contribute to early HNSCC tumorigenesis and might constitute a potential clinical target. Overall, 17/36 (47%) cases showed at least 1 of the molecular alterations studied here, which makes the PI 3-kinase-initiated signaling pathway one of the most frequently altered in HNSCC.  相似文献   

16.
The phosphatidylinositol 3-kinases-AKT-mammalian target of rapamycin pathway (PI3K/AKT/mTOR) is central in colorectal tumors. Data on its role in hereditary cancers are, however, scarce and we therefore characterized mutations in PIK3CA and KRAS, and expression of PIK3CA, phosphorylated AKT, and PTEN in colorectal cancers linked to hereditary nonpolyposis colorectal cancer (HNPCC). Sequencing was used to identify mutations in PIK3CA, a real-time PCR-based method to identify KRAS mutations, and immunohistochemical staining was used to evaluate the expression of PIK3CA, phosphorylated AKT and PTEN in 58 HNPCC-associated colorectal cancers. Derangements of at least one of the PI3K/AKT/mTOR components analyzed were found in 51/58 (88%) tumors. Mutations in PIK3CA and KRAS were identified in 14 and 31% of the tumors respectively. Overexpression of PIK3CA and phosphorylated AKT occurred in 59 and 75% and were strongly associated (P = 0.005). Reduced/lost PTEN expression was found in 63% of the tumors. Though HNPCC-associated colorectal cancers show simple genetic profiles with few chromosomal alterations, we demonstrate frequent and repeated targeting of the PI3K/AKT/mTOR pathway, which suggests that therapeutic strategies directed at this pathway are likely to be beneficial also in HNPCC.  相似文献   

17.
Despite the impressive results obtained in the preclinical setting, all the inhibitors targeting two central cascades in cancer, the PI3K/akt/mTOR and the KRAS/MEK/ERK pathways, have shown, apart from very few exceptions, disappointing efficacy when translated to the clinic. One of the main reasons of their clinical failure seems to be the lack of a clear molecular determinant of response to these drugs. In this study, we tried to address this point by evaluating the cytotoxic activity of different inhibitors targeting the two pathways at different levels in a panel of ten NSCLC cell lines harboring alterations in PI3K, KRAS or both. We were not able to highlight a correlation between the presence of KRAS and PI3K mutations and a specific sensitivity to the different drugs used. Molecular analyses performed after equimolar treatments showed that, independently from the entity of the response, the drugs are able to modulate the activation of their targets. Interestingly, we found that p53 mutational status separates the cell lines according to their sensitivity to PI3K pathway inhibitors treatments. The alterations considered in the PI3K/akt/mTOR and in the KRAS/MEK/ERK pathways in the different NSCLC cell lines are not sufficient to drive treatment choice but rather p53 status is a potential biomarker for the activity of this class of drugs.  相似文献   

18.
Malignant mesothelioma (MM) is a tumor with poor prognosis associated with asbestos exposure. While it remains to be clarified how asbestos fibers confer genetic/epigenetic alterations and induce cellular transformation in normal mesothelial cells, the understanding of key molecular mechanisms of MM cell development, proliferation, and invasion has progressed. MM shows frequent genetic inactivation of tumor suppressor genes of p16 INK4a / p14 ARF and neurofibromatosis type 2 ( NF2 ) which encodes Merlin, and epigenetic inactivation of RASSF1A . However, no frequent mutations of well-known oncogenes such as K-RAS and PIK3CA have been identified. Activation of multiple receptor tyrosine kinases including the epidermal growth factor receptor (EGFR) family and MET, and subsequent deregulations of mitogen-activated protein kinase (MAPK) and phosphatidylinositol-3-kinase (PI3K)–AKT signaling cascades are frequently observed in most MM cells. The tumor suppressive function of Merlin in MM cells is also being investigated by dissecting its possible downstream signaling cascade called the Hippo pathway. Further comprehensive delineation of dysregulated signaling cascades in MM cells will lead to identification of key addiction pathways for cell survival and proliferation of MM cells, which strongly promote establishment of a new molecular target therapy for MM. ( Cancer Sci 2009)  相似文献   

19.
The Ras-PI3K (phosphatidylinositol-3-kinase)/mTOR (mammalian Target of Rapamycin) pathway is frequently activated in various types of cancers. A number of inhibitors targeting the PI3K/mTOR pathway and MAPK pathway (another Ras effector pathway) are under development. PI3K/AKT activating mutations, including mutations in PTEN (50%), PIK3CA (30%), and K-Ras (20%), are frequently observed in endometrial cancer. A coexistence of these mutations is also commonly observed. We classified 13 endometrial cancer cell lines into three groups according to their mutational status in these genes: Group A (n=9); K-Ras wild-type and PTEN mutant, Group B (n=2); K-Ras mutant, and Group C (n=2) without any mutations in K-Ras, PTEN or PIK3CA. We determined the effects a dual PI3K/mTOR inhibitor (Inhibitor P) on these cell lines. MTT assay revealed that all the nine cell lines in Group A were sensitive to the inhibitor P (IC50<100 nM), whereas the other four cell lines in Group B or C were less sensitive to it(IC50>100 nM). Daily oral administration of inhibitor P showed anti-tumor effects in the mice bearing Group A tumors. Our data suggest that dual inhibition of the PI3K/mTOR is a promising molecular-targeted therapeutic for certain endometrial cancers, and that the mutational status of K-Ras and PI3K pathway-related genes, like PTEN and PIK3CA, could be useful for predicting sensitivities to such agents.  相似文献   

20.
While the phosphatidylinositol 3-kinase (PI3K)/AKT signaling pathway is known to be activated in multiple sporadic cancers, the role of this pathway in familial tumors is mostly unknown. We searched for alterations in the catalytic domain of PI3K (PIK3CA), PTEN and KRAS, all of which may contribute to PI3K/AKT pathway activation, in a total of 160-familial colorectal (CRC) and endometrial carcinomas (EC), stratified by the presence vs. absence of germline mutations in DNA mismatch repair (MMR) genes. PIK3CA alterations (consisting of point mutations or low-level amplification, which were mutually exclusive with 1 exception) occurred in 10/70 (14%) of CRCs and 19/90 (21%) of ECs. Within ECs, amplification was significantly associated with the subgroup lacking germline mutations in MMR genes (familial site-specific endometrial cancer) (p = 0.015). Decreased or lost PTEN expression was characteristic of endometrial tumourigenesis (51/81, 63%, in EC compared with 24/62, 39%, in CRC, p = 0.004) and KRAS mutations of colorectal tumourigenesis (19/70, 27% in CRC vs. 9/89, 10%, in EC, p = 0.006) regardless of the MMR gene mutation status. PIK3CA alterations frequently coexisted with PTEN or KRAS changes. Combined with published studies on sporadic tumors, our data broaden the understanding of the role for PI3K pathway genes in human tumorigenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号