首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
The avian pretectal and ventrothalamic nuclei, encompassing the griseum tectale (GT), n. lentiformis mesencephali (LM), and n. geniculatus lateralis pars ventralis (GLv), are prominent retinorecipient structures related to optic flow operations and visuomotor control. Hence, a close coordination of these neural circuits is to be expected. Yet the connectivity among these nuclei is poorly known. Here, using intracellular labeling and in situ hybridization, we investigated the detailed morphology, connectivity, and neurochemical identity of neurons in these nuclei. Two different cell types exist in the GT: one that generates an axonal projection to the optic tectum (TeO), LM, GLv, and n. intercalatus thalami (ICT), and a second population that only projects to the LM and GLv. In situ hybridization revealed that most neurons in the GT express the vesicular glutamate transporter (VGluT2) mRNA, indicating a glutamatergic identity. In the LM, three morphological cell types were defined, two of which project axons towards dorsal targets. The LM neurons showed strong VGluT2 expression. Finally, the cells located in the GLv project to the TeO, LM, GT, n. principalis precommisuralis (PPC), and ICT. All neurons in the GLv showed strong expression of the vesicular inhibitory amino acid transporter (VIAAT) mRNA, suggesting a GABAergic identity. Our results show that the pretectal and ventrothalamic nuclei are highly interconnected, especially by glutamatergic and GABAergic neurons from the GT and GLv, respectively. This complex morphology and connectivity might be required to organize orienting visuomotor behaviors and coordinate the specific optic flow patterns that they induce. J. Comp. Neurol. 524:2208–2229, 2016. © 2015 Wiley Periodicals, Inc.  相似文献   

2.
Connections of the ventral lateral geniculate complex (GLv) in the tree shrew were traced by anterograde and retrograde transport of WGA-HRP. The results buttress earlier findings that GLv in this species is composed of two main divisions, lateral and medial, each of which differs in its connections with the brainstem and cerebral cortex. The connections of the lateral division (GLv) suggest that it participates in visuosensory functions: it receives input from the retina, striate cortex, pretectum, and retino-recipient layers of the superior colliculus. These connections help clarify the identification of the internal and external subdivisions of GLv inasmuch as projections from both the superior colliculus and pretectum terminate in the external subdivision and each, in turn, receives a projection from the internal subdivision. Connections of the medial division suggest that this part of the nucleus is involved with visuomotor functions. Thus, the medio-caudal subdivision projects to the pontine nuclei, the prerubral field and the central lateral nucleus. The medio-caudal subdivision also receives projections from the lateral cerebellar nucleus, so that the GLv-ponto-cerebello-GLv loop involves mainly one subdivision of GLv. The medio-rostral subdivision receives projections from the pretectum and parietal cortex. Its output is directed primarily at the intermediate and deep layers of the superior colliculus. All of these targets of GLv, the pons, prerubral field, and deep layers of the superior colliculus, are known to play a role in the coordination of head and eye movements. Additional connections of GLv with the vestibular nuclei, intralaminar nuclei, hypothalamus, and facial motor nucleus are also described. © 1993 Wiley-Liss, Inc.  相似文献   

3.
The nucleus of the basal optic root (nBOR) of the accessory optic system is known to be involved in the analysis of the visual consequences of self-motion. Previous studies have shown that the nBOR in pigeons projects bilaterally to the vestibulocerebellum, the inferior olive, the interstitial nucleus of Cajal, and the oculomotor complex and projects unilaterally to the ipsilateral pretectal nucleus lentiformis mesencephali and the contralateral nBOR. By using the anterograde tracer biotinylated dextran amine, we confirmed these projections and found (previously unreported) projections to the nucleus Darkshewitsch, the nucleus ruber, the mesencephalic reticular formation, and the area ventralis of Tsai as well as ipsilateral projections to the central gray, the pontine nuclei, the cerebellar nuclei, the vestibular nuclei, the processus cerebellovestibularis, and the dorsolateral thalamus. In addition to previous studies, which showed a projection to the dorsomedial subdivision of the contralateral oculomotor complex, we found terminal labelling in the ventral and dorsolateral subdivisions. Individual fibers were reconstructed from serial sections, and collaterals to various nuclei were demonstrated. For example, collaterals of fibers projecting to the vestibulocerebellum terminated in the vestibular or cerebellar nuclei; collaterals of fibers to the inferior olive terminated in the pontine nuclei; many individual neurons projected to the interstitial nucleus of Cajal, the nucleus Darkshewitsch, and the central gray and also projected to the nucleus ruber and the mesencephalic reticular formation; collaterals of fibers to the contralateral nucleus of the basal optic root terminated in the mesencephalic reticular formation and/or the area ventralis of Tsai; neurons projecting to the nucleus lentiformis mesencephali also terminated in the dorsolateral thalamus. The consequences of these data for understanding the visual control of eye movements, neck movements, posture, locomotion, and visual perception are discussed. J. Comp. Neurol. 384:517–536, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

4.
In birds, the nucleus of the basal optic root (nBOR) and the nucleus lentiformis mesencephali (LM) are retinal‐recipient nuclei involved in the analysis of optic flow and the generation of the optokinetic response. The nBOR receives retinal input from displaced ganglion cells (DGCs), which are found at the margin of the inner nuclear and inner plexiform layers, rather than the ganglion cell layer. The LM receives afferents from retinal ganglion cells, but whether DGCs also project to LM remains unclear. To resolve this issue, we made small injections of retrograde tracer into LM and examined horizontal sections through the retina. For comparison, we also had cases with injections in nBOR, the optic tectum, and the anterior dorsolateral thalamus (the equivalent to the mammalian lateral geniculate nucleus). From all LM injections both retinal ganglion cells and DGCs were labeled. The percentage of DGCs, as a proportion of all labeled cells, varied from 2–28%, and these were not different in morphology or size compared to those labeled from nBOR, in which the proportion of DGCs was much higher (84–93%). DGCs were also labeled after injections into the anterior dorsolateral thalamus. The proportion was small (2–3%), and these DGCs were smaller in size than those projecting to the nBOR and LM. No DGCs were labeled from an injection in the optic tectum. Based on an analysis of size, we suggest that different populations of retinal ganglion cells are involved in the projections to LM, nBOR, the optic tectum, and the anterior dorsolateral thalamus. J. Comp. Neurol. 522:3928–3942, 2014. © 2014 Wiley Periodicals, Inc.  相似文献   

5.
We have analysed the pathways through which somatosensory information from the face reaches the inferior olive and the cerebellum in rabbits. We used wheatgerm agglutinin - horseradish peroxidase (WGA-HRP) to trace projections from all parts of the somatosensory trigeminal system to the olive, cerebellar cortex, the cerebellar deep nuclei and the pontine nuclei. Projections to the cerebellar cortex and inferior olive were verified using retrograde transport of WGA-HRP. Two regions of the inferior olive–the medial dorsal accessory olive and the ventral leaf of the principal olive–receive inputs from pars interpolaris (Vi) and rostral pars caudalis (Vc) of the spinal trigeminal nucleus and from the principal trigeminal nucleus (Vp). Another area in the caudal medial accessory olive receives inputs from rostral Vo (pars oralis of the spinal trigeminal nucleus), caudal Vi and Vc. There are trigemino-olivo-cortical inputs to lobule HVI via all these olivary areas and to the paramedian lobe via the principal olive only. Cerebellar cortex–lobules HVI, crus I and II, paramedian lobe and IX–receives direct mossy fibre inputs from Vp, Vo and rostral Vi. The pontine nuclei receive an input only from rostral Vi. We saw no trigeminal projections to other precerebellar nuclei or to the deep cerebellar nuclei. The concentration of face somatosensory cortical inputs, via several pathways, upon lobule HVI may underlie its important role in the regulation of learned and unlearned eyeblinks.  相似文献   

6.
The organization of the wing component of the dorsal column–medial lemniscal pathway, and somatosensory projections from the thalamus to the Wulst, are described for an oscine member of the major group of birds, the Passeriformes. Wing primary afferents terminate throughout the cervical spinal cord, but between the brachial enlargement and the spino-medullary junction, they are confined to medial lamina V. Within the medulla, terminations extend rostrally and laterally to occupy the cuneate (Cu) and external cuneate nuclei (CuE). Ascending projections from Cu and CuE form the contralateral medial lemniscus, which has extensive projections to the midbrain and to the thalamus. In the midbrain the projections surround the central auditory nucleus densely, and terminate more sparsely within it. In the thalamus, specific terminations were observed in nucleus uvaeformis and in the nucleus dorsalis intermedius ventralis anterior (DIVA). DIVA projects to the ipsilateral rostral Wulst where it terminates in the intercalated hyperstriatum accessorium, in a distinct, regular patchy fashion. The somatosensory projections to the telencephalon in green finch are similar to those in pigeon, but dissimilar to those in budgerigar.  相似文献   

7.
Efferent projections of the visual Wulst upon the nucleus of the basal optic root (nBOR) were investigated using various neuroanatomical approaches: optical and EM orthograde degeneration methods (following visual Wulst ablation), radioautographic and HRP techniques (following injection of various tracers within the visual Wulst). The radioautographic and electron microscope degeneration experiments clearly demonstrated a visual Wulst projection upon the ipsilateral nBORl and the lateral portions of nBORd and nBORp. The pigeon's hyperstriato-nBOR projection is compared to a similar descending visual cortico-accessory optic pathway in mammals and its possible role in the control of oculomotor function is discussed.  相似文献   

8.
We have used anterograde autoradiographic and retrograde HRP techniques to investigate the efferent connections of the retinorecipient pretectal nuclei in the pigeon. In the accompanying paper we identified these nuclei in the pigeon as the nucleus lentiformis mesencephali--pars lateralis and pars medialis, the tectal gray, the area pretectalis, and pretectalis diffusus. Although there are reports of a few of the projections of these nuclei, they had not previously been the subject of a detailed study. We found that different cell types in the lentiformis mesencephali, pars medialis and the lentiformis mesencephali, pars lateralis have descending projections to different targets. These targets include the inferior olive, the cerebellum, the lateral pontine nucleus, the nucleus papillioformis, the nucleus of the basal optic root, the nucleus mesencephalicus profundus, pars ventralis, the nucleus principalis precommissuralis, and the stratum cellulare externum. We found that a few cells in the lentiformis mesencephali project to the medial pontine nucleus, but that a much heavier projection arises from the nucleus laminaris precommissuralis, which is medial to the nucleus lentiformis mesencephali, pars medialis. The tectal gray has predominantly ascending projections to the diencephalon. The nuclei that it projects to are the nucleus intercalatus thalami, the nucleus of the ventral supraoptic decussation, the nucleus posteroventralis, the ventral lateral geniculate nucleus, the nucleus dorsolateralis medialis, and the nucleus dorsolateralis anterior. The tectal gray also projects topographically to layers 4 and 8-13 of the optic tectum. Area pretectalis has both ascending and descending projections. It has ipsilateral ascending projections to the nucleus dorsolateralis anterior, pars magnocellularis, the nucleus lateralis anterior, and the nucleus ventrolateralis thalami. It has ipsilateral descending projections to the central gray, the nucleus of the basal optic root, pars dorsalis, the lateral pontine nucleus, and the deep layers of the optic tectum. It has contralateral projections to the area pretectalis, the nucleus Campi Foreli, the interstitial nucleus of Cajal, the nucleus of Darkschewitsch, the cerebellum, and the Edinger-Westphal nucleus. The efferent projections of pretectalis diffusus are limited. It projects contralaterally to the pretectalis diffusus, and ipsilaterally to the nucleus of the ventral supraoptic decussation, the lateral pons, and the cerebellum.4  相似文献   

9.
In birds, optic flow is processed by a retinal-recipient nucleus in the pretectum, the nucleus lentiformis mesencephali (LM), which then projects to the cerebellum, a key site for sensorimotor integration. Previous studies have shown that the LM is hypertrophied in hummingbirds, and that LM cell response properties differ between hummingbirds and other birds. Given these differences in anatomy and physiology, we ask here if there are also species differences in the connectivity of the LM. The LM is separated into lateral and medial subdivisions, which project to the oculomotor cerebellum and the vestibulocerebellum. In pigeons, the projection to the vestibulocerebellum largely arises from the lateral LM; the projection to the oculomotor cerebellum largely arises from the medial LM. Here, using retrograde tracing, we demonstrate differences in the distribution of projections in these pathways between Anna's hummingbirds (Calypte anna), zebra finches (Taeniopygia guttata), and pigeons (Columba livia). In all three species, the projections to the vestibulocerebellum were largely from lateral LM. In contrast, projections to the oculomotor cerebellum in hummingbirds and zebra finches do not originate in the medial LM (as in pigeons) but instead largely arise from pretectal structures just medial, the nucleus laminaris precommissuralis and nucleus principalis precommissuralis. These species differences in projection patterns provide further evidence that optic flow circuits differ among bird species with distinct modes of flight.  相似文献   

10.
The connections of the lateral terminal nucleus (LTN) of the accessory optic system (AOS) of the marmoset monkey were studied with anterograde 3H-amino acid light autoradiography and horseradish peroxidase retrograde labeling techniques. Results show a first and largest LTN projection to the pretectal and AOS nuclei including the ipsilateral nucleus of the optic tract, dorsal terminal nucleus, and interstitial nucleus of the superior fasciculus (posterior fibers); smaller contralateral projections are to the olivary pretectal nucleus, dorsal terminal nucleus, and LTN. A second, mejor bundle produces moderate-to-heavy labeling in all ipsilateral, accessory oculornotor nuclei (nucleus of posterior commissure, interstitial nucleus of Cajal, nucleus of Darkschewitsch) and nucleus of Bechterew; some of the fibers are distributed above the caudal oculomotor complex within the supraoculornotor periaqueductal gray. A third projection is ipsilateral to the pontine and mesencephalic reticular formations, nucleus reticularis tegmenti pontis and basilar pontine complex (dorsolateral nucleus only), dorsal parts of the medial terminal accessory optic nucleus, ventral tegmental area of Tsai, and rostral interstitial nucleus of the medial longitudinal fasciculus. Lastly, there are two long descending bundles: (1) one travels within the medial longitudinal fasciculus to terminate in the dorsal cap (ipsilateral > > contralateral) and medial accessory olive (ipsilateral only) of the inferior olivary complex. (2) The second soon splits, sending axons within the ipsilateral and contralateral brachium conjunctivum and is distributed to the superior and medial vestibular nuclei. The present findings are in general agreement with the documented connections of LTN with brainstem oculomotor centers in other species. In addition, there are unique connections in marmoset monkey that may have developed to serve the more complex oculomotor behavior of nonhuman primates. © 1995 Wiley-Liss, Inc.  相似文献   

11.
Neural activity within the cortical premotor nucleus HVC (acronym is name) encodes the learned songs of adult male zebra finches (Taeniopygia guttata). HVC activity is driven and/or modulated by a group of five afferent nuclei (the Medial Magnocellular nucleus of the Anterior Nidopallium, MMAN; Nucleus Interface, NIf; nucleus Avalanche, Av; the Robust nucleus of the Arcopallium, RA; the Uvaeform nucleus, Uva). While earlier evidence suggested that HVC receives a uniformly distributed and nontopographic pattern of afferent input, recent evidence suggests this view is incorrect (Basista et al., 2014 ). Here, we used a double‐labeling strategy (varying both the distance between and the axial orientation of dual tracer injections into HVC) to reveal a massively parallel and in some cases topographic pattern of afferent input. Afferent neurons target only one rostral or caudal location within medial or lateral HVC, and each HVC location receives convergent input from each afferent nucleus in parallel. Quantifying the distributions of single‐labeled cells revealed an orthogonal topography in the organization of afferent input from MMAN and NIf, two cortical nuclei necessary for song learning. MMAN input is organized across the lateral‐medial axis whereas NIf input is organized across the rostral‐caudal axis. To the extent that HVC activity is influenced by afferent input during the learning, perception, or production of song, functional models of HVC activity may need revision to account for the parallel input architecture of HVC, along with the orthogonal input topography of MMAN and NIf.  相似文献   

12.
The nucleus geniculatus lateralis pars ventralis (GLv) is a prominent retinal target in all amniotes. In birds, it is in receipt of a dense and topographically organized retinal projection. The GLv is also the target of substantial and topographically organized projections from the optic tectum and the visual wulst (hyperpallium). Tectal and retinal afferents terminate homotopically within the external GLv‐neuropil. Efferents from the GLv follow a descending course through the tegmentum and can be traced into the medial pontine nucleus. At present, the cells of origin of the Tecto‐GLv projection are only partially described. Here we characterized the laminar location, morphology, projection pattern, and neurochemical identity of these cells by means of neural tracer injections and intracellular fillings in slice preparations and extracellular tracer injections in vivo. The Tecto‐GLv projection arises from a distinct subset of layer 10 bipolar neurons, whose apical dendrites show a complex transverse arborization at the level of layer 7. Axons of these bipolar cells arise from the apical dendrites and follow a course through the optic tract to finally form very fine and restricted terminal endings inside the GLv‐neuropil. Double‐label experiments showed that these bipolar cells were choline acetyltransferase (ChAT)‐immunoreactive. Our results strongly suggest that Tecto‐GLv neurons form a pathway by which integrated tectal activity rapidly feeds back to the GLv and exerts a focal cholinergic modulation of incoming retinal inputs. J. Comp. Neurol. 522:2377–2396, 2014. © 2014 Wiley Periodicals, Inc.  相似文献   

13.
The thalamocortical connections of the superior temporal sulcus (STS) were studied by means of the WGA-HRP retrograde tracing technique. The results indicate that the distribution of thalamic projections varies along the rostral-caudal dimension of the STS. Thus the rostral portion of the upper bank receives input primarily from the medialmost portion of the medial pulvinar (PM) nucleus. The middle region of the upper bank receives projections from medial and central portions of the PM nucleus, and also from the oral pulvinar, limitans, suprageniculate, medial geniculate, and dorsomedial nuclei. The cortex of the caudal portion of the upper bank has basically similar thalamic input; however, the projections from the PM nucleus originate in central and lateral portions. Additionally, there are projections from the lateral pulvinar (PL), ventroposterolateral, central lateral, parafascicular, and paracentral nuclei. In contrast to the dorsal bank, the cortex of the ventral bank of the STS receives somewhat different and less extensive thalamic input. The rostral portion of the lower bank receives projections only from the ventromedial sector of the PM nucleus, whereas the middle portion of the lower bank receives projections from the PL and the inferior pulvinar nuclei as well as from the PM nucleus. The upper bank of the STS, on the basis of physiological and anatomical studies (Jones and Powell, '70; Seltzer and Pandya, '78; Gross et al., '81; Baylis et al., '87), has been shown to contain multimodal areas. The present data indicate that the multimodal region of the STS has a preferential relationship with the central sector of the PM nucleus.  相似文献   

14.
To clarify the role of the pretectal nucleus of the optic tract (NOT) in ocular following, we traced NOT efferents with tritiated leucine in the monkey and identified the cell groups they targeted. Strong local projections from the NOT were demonstrated to the superior colliculus and the dorsal terminal nucleus bilaterally and to the contralateral NOT. The contralateral oculomotor complex, including motoneurons (C-group) and subdivisions of the Edinger-Westphal complex, also received inputs. NOT efferents terminated in all accessory optic nuclei (AON) ipsilaterally; contralateral AON projections arose from the pretectal olivary nucleus embedded in the NOT. Descending pathways contacted precerebellar nuclei: the dorsolateral and dorsomedial pontine nuclei, the nucleus reticularis tegmenti pontis, and the inferior olive. Direct projections from NOT to the ipsilateral nucleus prepositus hypoglossi (ppH) appeared to be weak, but retrograde tracer injections into rostral ppH verified this projection; furthermore, the injections demonstrated that AON efferents also enter this area. Efferents from the NOT also targeted ascending reticular networks from the pedunculopontine tegmental nucleus and the locus coeruleus. Rostrally, NOT projections included the magnocellular layers of the lateral geniculate nucleus (lgn); the pregeniculate, peripeduncular, and thalamic reticular nuclei; and the pulvinar, the zona incerta, the mesencephalic reticular formation, the intralaminar thalamic nuclei, and the hypothalamus. The NOT could generate optokinetic nystagmus through projections to the AON, the ppH, and the precerebellar nuclei. However, NOT also projects to structures controlling saccades, ocular pursuit, the near response, lgn motion sensitivity, visual attention, vigilance, and gain modification of the vestibulo-ocular reflex. Any hypothesis on the function of NOT must take into account its connectivity to all of these visuomotor structures. © 1996 Wiley-Liss, Inc.  相似文献   

15.
Injections of a retrograde tracer into the accessory optic nucleus of the basal optic root (nBOR) of the pigeon, combined with 5-HT immunohistochemistry, revealed that serotonergic projections to the nBOR appeared to originate mainly from the median (MR) and paramedian (PMR) raphe nuclei. These projections were confirmed by the significant decrease in 5-HT immunoreactivity observed in nBOR after lesions in MR and PMR. These data characterize distinct sources of 5-HT innervation to the pigeon nBOR and suggest that those afferents could represent part of a modulatory system that contributes to the role of the nBOR in optokinetic mechanisms.  相似文献   

16.
By means of a double-labeling technique, we have investigated the organization of the bilateral thalamo-Wulst and tecto-rotundal projections in 2-day old chicks. After injecting fluorogold (FG) into one side of the visual Wulst and rhodamine B isothiocyanate (RITC) into the other side of the visual Wulst, the labeled neurons in the nucleus geniculatus lateralis pars dorsalis (GLd) were examined. Although the distribution areas of ipsilaterally and contralaterally labeled neurons overlap partly, very few double-labeled neurons were found (only 0.01% double-labeled neurons). This suggests that the ipsilateral and contralateral projections to the Wulst come from different neuronal populations of the thalamus. The FG and RITC were also injected into the rotundal nuclei (Rt) on each side of the thalamus and the labeled neurons in the optic tectum (TeO) were examined. In the TeO, the distribution areas of the neurons labeled ipsilaterally and contralaterally to Rt overlap completely and we found that up to 45% of the tectal cells were double-labeled by both FG and RITC. Therefore, many tectal neurons have axon collaterals so that they project to the Rt on both sides of the thalamus and must send information simultaneously to both sides of the brain. The differences in the structural organization of the two visual pathways are discussed with reference to the transmission of information to higher centers on both sides of the brain.  相似文献   

17.
The freshwater butterfly fish, Pantodon buchholzi, is a member of the most primitive radiation of teleosts. The retinofugal projections were studied in this fish with autoradiographic and horseradish peroxidase (HRP) methods, and the cytoarchitecture of the retinorecipient regions in the diencephalon and pretectum was analyzed with Bodian-, cresylecht-violet- and acetylcholinesterase-reacted sections. The rostral diencephalon of Pantodon contains a large retinorecipient nucleus, not previously identified in any other fish, i.e. nucleus rostrolateralis. Other nuclei that are described correspond to those previously recognized in other species. The majority of retinorecipient nuclei are positive for acetylcholinesterase, particularly those in the pretectum, as has been found in other species of teleosts. Most of the retinofugal fibers decussate in the optic chiasm. Some fibers project via the axial optic tract to preoptic nuclei and a region in the rostral hypothalamus. Fibers leave the medial optic tract to terminate in nucleus rostrolateralis and in dorsal and ventral thalamic nuclei, accessory optic and tubercular nuclei, periventricular and central pretectal nuclei, and sparsely in the deep tectal fascicle and terminal field. Dorsal optic tract fibers project to the dorsal accessory optic nucleus, superficial and central pretectal nuclei, and superficial and deep tectal layers. Ventral optic tract fibers project to the superficial pretectum, accessory optic nuclei, posterior tuberculum, nucleus corticalis in the central pretectum, and superficial tectal layer. Fibers that remain in the ipsilateral optic tract project to most of the targets reached by contralaterally projecting fibers. A few fibers in the contralateral medial optic tract redecussate via the posterior commissure to reach the ipsilateral periventricular pretectum. No labeled retinopetal cells caudal to the olfactory bulb were identified in any of the HRP cases.  相似文献   

18.
The efferent projections of the pigeon visual Wulst upon the diencephalon and mesencephalon were investigated using the autoradiographic technique following the combined injection of [3H] proline and [3H] leucine into the rostral hyperstriatum accessorium. Repeated measures of silver grain densities were performed bilaterally in different brain structures using a computer-assisted system of image analysis. The density values were compared (Mann-Whitney U-Test) with those recorded in three homolateral control structures (tractus opticus, n. rotundus, n. pretectalis principalis) and in corresponding contralateral areas and nuclei. The data showed ipsilateral projections from the visual Wulst and via the tractus septomesencephalicus upon the dorsal thalamus (n.: dorsolateralis anterior superficialis parvocellularis), ventral thalamus (n.: intercalatus, ventrolateralis, geniculatus lateralis pars ventralis--GLv), pretectum (n.: superficialis synencephali, geniculatus pretectalis, griseus tectalis, pretectalis: diffusus, pars lateralis and pars medialis, area pretectalis) as well as to the nucleus of the basal optic root, n. spiriformis medialis and optic tectum (layer 2-4, 6, 7, 12 and 13). Crossed projections were observed to pass through the supraoptic decussation and the posterior commissure, however only the contralateral n. GLv was found to be significantly labeled. Interspecies variations in the organization of descending visual Wulst projections, related to the terminal distribution and relative size of the crossed components may be linked to differences in the degree of overlap of the binocular fields. Correspondingly, this may reflect the degree of bilateralization upon the Wulst of direct input from the visual thalamus.  相似文献   

19.
The nucleus prethalamicus (PTh) receives fibers from the optic tectum and then projects to the dorsal telencephalon in the yellowfin goby Acanthogobius flavimanus. However, it remained unclear whether the PTh is a visual relay nucleus, because the optic tectum receives not only visual but also other sensory modalities. Furthermore, precise telencephalic regions receiving prethalamic input remained unknown in the goby. We therefore investigated the full set of afferent and efferent connections of the PTh by direct tracer injections into the nucleus. Injections into the PTh labeled cells in the optic tectum, ventromedial thalamic nucleus, central and medial parts of the dorsal telencephalon, and caudal lobe of the cerebellum. We found that the somata of most tecto‐prethalamic neurons are present in the stratum periventriculare. Their dendrites ascend to reach the major retinorecipient layers of the tectum. The PTh is composed of two subnuclei (medial and lateral) and topographic organization was appreciated only for tectal projections to the lateral subnucleus (PTh‐l), which also receives sparse retinal projections. In contrast, the medial subnucleus receives fibers only from the medial tectum. We found that the PTh projects to nine subregions in the dorsal telencephalon and four in the ventral telencephalon. Furthermore, cerebellar injections revealed that cerebello‐prethalamic fibers cross the midline twice to innervate the PTh‐l on both sides. The present study is the first detailed report on the full set of the connections of PTh, which suggests that the PTh relays visual information from the optic tectum to the telencephalon.  相似文献   

20.
The subcortical nuclear groups projecting to the nucleus reticularis tegmenti pontis (NRTP) were studied in pigmented rats with the aid of the retrograde horseradish peroxidase (HRP) technique. Small iontophoretic injections of HRP were placed in the medial regions of the NRTP, an area that has been shown in several species to be involved in eye movements. Other large injections in the NRTP or small injections placed just outside the nucleus were used to clarify the projections to the NRTP. Results indicate that the NRTP receives afferents from visual relay nuclei, including the nucleus of optic tract, the superior colliculus, and the ventral lateral geniculate nucleus; oculomotor-associated structures including the zona incerta, the H1 and H2 fields of Forel, the nucleus subparafasciculus, the interstitial nucleus of Cajal, the visual tegmental relay zone of the ventral tegmental area of Tsai, the mesencephalic, pontine, and medullary reticular formations, the nucleus of the posterior commissure, and a portion of the periaqueductal gray termed the supra-oculomotor periaqueductal gray; cerebellar and pontomedullary nuclei, including the superior, lateral, and medial vestibular nuclei, the deep cerebellar nuclei, and NRTP interneurons, and nuclei related to limbic functions including the lateral habenula, the mammillary nuclei, the hypothalamic nuclei, the preoptic nuclei, and the nucleus of diagonal band of Broca. A surprisingly large number of afferents to the medial regions of the NRTP arise from visual- or eye-movement-related nuclei. The projection from the nucleus of the optic tract (NOT) confirms previous anatomical and physiological studies on the pathways involved in horizontal optokinetic nystagmus, but the number of NOT afferents is small in relation to other areas potentially related to visuomotor pathways such as the zona incerta, ventral lateral geniculate nucleus, fields of Forel, perirubral area, and subparafasciculus. The NRTP may also relay information related to vertical visuomotor reflexes (e.g., vertical optokinetic nystagmus) given the strong projections from the medial terminal nucleus of the accessory optic system, visual tegmental relay zone, supra-oculomotor periaqueductal gray, interstitial n. of Cajal, and midbrain reticular formation. The presence of significant NRTP projections from the superior colliculus and the mesencephalic and pontine reticular formations suggests that these nuclei may provide the pathways for the noted saccade-related activity of NRTP neurons. In addition, projections from the vestibular nuclei were found that provide the anatomical basis for head velocity signals recorded in NRTP neurons.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号