首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The Geant4 toolkit was used to develop a Monte Carlo (MC)-based engine for accurate dose calculations in small radiation field sizes. The Geant4 toolkit (version 10.1.p02) was used to simulate 6-MV photon beam of a Varian2100C linear accelerator that is being used for stereotactic radiosurgery (SRS) treatment with small radiation fields. Geometric models of 3 in-house designed radiosurgical divergent cones, with the diameters of their projections at the isocenter being 10, 20, and 30?mm, were simulated. The accuracy of the MC simulation technique was examined by reproducing several different simulated dosimetric parameters of the primary beams with the experimental data. The dose distributions are first checked for single beams for each cone, then standard multiple field (SMF) techniques are applied. A sample set of DICOM files from computed tomography (CT) scan imaging of a patient's head was converted to the Geant4 geometry format to implement MC-based engine for a clinical test. To validate the accuracy of the MC-based calculations for SMF arrangements, the isodose lines from MC simulation in water phantom were compared with the measured isodose lines using EBT3 Gafchromic film in Solid Water phantoms. Agreements between measured and simulated depth dose values and beam profiles for SRS cones were generally within 2%/2?mm. For output factors, the largest discrepancy was observed for 10?mm SRS cone, which was 1.7%. For SMF techniques, in SRS cones, the MC simulation and EBT3 Gafchromic film dosimetry were in acceptable agreement (5%/5?mm). Excellent agreement between the results of the MC-based and measured dose values for both single and SMF techniques in SRS cones indicates the ability of the Geant4 toolkit to be applied as the platform for treatment planning of advanced radiotherapy techniques.  相似文献   

2.
The purpose of this study was to investigate the dosimetric effect of a titanium-rod spinal stabilization system on surrounding tissue, especially the spinal cord. Ion chamber dosimetry was performed for 6- and 18-MV photon beams in a water phantom containing a titanium-rod spinal stabilization system. Isodose curves were obtained in the phantom with and without rods. To assess the ability of a treatment planning system to reproduce the effects of the stabilization system on the radiation dose delivered to surrounding tissue, dose distributions were calculated after appropriate modifications were made in the computed tomography number-to-density conversion table to account for the increased density of the titanium rods. The resultant heterogeneity-corrected plans were compared with uncorrected plans. At a 7-cm depth in the water phantom, corresponding to the depth of the spinal cord, the beam was attenuated by 4% under the rods alone and by 13% rods under the rods with screws for the 6-MV photon beam as compared with curves generated in the absence of rods. The beam was attenuated by 3% and 11%, respectively, for the 18-MV beam. Using anteroposterior (18-MV) and posteroanterior (6-MV) photon beams, with and without heterogeneity correction for the rods, the corrected isodose plan showed an approximately 2% beam attenuation 4 cm anterior to the rods as compared with the uncorrected plan. No significant difference in the spinal cord dose was observed between the 2 plans, however. The titanium-rod spinal stabilization system tested in this study caused a decrease in the dose delivered distal to the rods but did not significantly affect the dose delivered to the spinal cord.  相似文献   

3.
4.
The purpose of this study was to determine the dosimetric impact of a neurosurgical titanium mesh in patients treated with 6- and 18-MV photon beams. The effects of a 0.4-mm-thick titanium mesh on the dose profile at 3 regions within a solid water phantom were measured using extended dose range-2 (EDR2) film for 6- and 18-MV photon beams. All measurements were performed with the titanium mesh placed at a depth of 1.5 cm in the phantom. Films were exposed immediately above the mesh, immediately below the mesh, and at a depth of 5 cm from the surface of the phantom. The films were scanned using a scanning densitometer. In the region directly above the titanium mesh, there was an increase in dose of 7.1% for 6-MV photons and 4.9% for 18-MV photons. Directly below the titanium mesh, there was an average decrease in dose of 1.5% for 6-MV photons and an increase of 1.0% for 18-MV photons. At 5-cm depth, for 6- and 18-MV photons, there was a decrease in dose of 2.2% and 0.6%, respectively. We concluded that for cranial irradiation with high-energy photons, the dosimetric impact of a 0.4-mm titanium mesh is small and does not require modification in treatment parameters.  相似文献   

5.
The purpose of this study was to determine the dosimetric impact of a neurosurgical titanium mesh in patients treated with 6- and 18-MV photon beams. The effects of a 0.4-mm-thick titanium mesh on the dose profile at 3 regions within a solid water phantom were measured using extended dose range-2 (EDR2) film for 6- and 18-MV photon beams. All measurements were performed with the titanium mesh placed at a depth of 1.5 cm in the phantom. Films were exposed immediately above the mesh, immediately below the mesh, and at a depth of 5 cm from the surface of the phantom. The films were scanned using a scanning densitometer. In the region directly above the titanium mesh, there was an increase in dose of 7.1% for 6-MV photons and 4.9% for 18-MV photons. Directly below the titanium mesh, there was an average decrease in dose of 1.5% for 6-MV photons and an increase of 1.0% for 18-MV photons. At 5-cm depth, for 6- and 18-MV photons, there was a decrease in dose of 2.2% and 0.6%, respectively. We concluded that for cranial irradiation with high-energy photons, the dosimetric impact of a 0.4-mm titanium mesh is small and does not require modification in treatment parameters.  相似文献   

6.
A new personal thermoluminescence (TL) dosimeter for photon fields using LiF:Mg,Cu,Na,Si TL detector was developed by taking advantage of its dosimetric properties including energy dependencies. Solid pellet type LiF:Mg,Cu,Na,Si detector was developed and fabricated at Korea Atomic Energy Research Institute (KAERI) and has been studied on its dosimetric properties such as TL grow curve, dose response, energy response and reusability. Its dosimetric properties show the feasibility of application of LiF:Mg,Cu,Na,Si TL detector to personal dosimetry fields. A new dosimeter using LiF:Mg,Cu,Na,Si TL detector was designed and tested through irradiation experiments. This multi-element TL dosimeter allows the measurement of a personal dose equivalent Hp(d) in photon fields. Based on the experimental results of the proposed dosimeter, it was demonstrated that a personal TL dosimeter using sintered LiF:Mg,Cu,Na,Si TL detector is appropriate to estimate personal dose equivalent for wide range energy of photon fields.  相似文献   

7.
PURPOSE: To measure the scattered dose to ovaries and testes from radiotherapy for common pediatric malignancies and to assess the relevant risks for radiation-induced gonadal damage and hereditary disorders in future generations. MATERIAL AND METHODS: Radiotherapy for central nervous system tumors, acute leukemia, neuroblastoma, Hodgkin's disease, Wilms' tumor, and sarcoma was simulated on three humanoid phantoms representing patients of 5, 10, and 15 years of age. Ovarian and testicular dose measurements were performed using thermoluminescent dosimeters on a linear accelerator with multileaf collimator (MLC) producing 6-MV X-rays. The effect of lead block introduction into the primary beam on the gonadal dose was evaluated. Gonadal dose from radiotherapy for abdominal tumors was measured using an 18-MV photon beam. RESULTS: For a tumor dose range of 12-55 Gy, the scattered dose to ovaries was 0.5-62.4 cGy depending upon the patient's age (corresponding phantom) and treatment site. The corresponding dose to testes was 0.4-145.0 cGy. The use of blocks for field shaping can increase the gonadal dose up to a factor of 2.0 compared to that measured using MLC. Abdominal irradiation with 18-MV instead of 6-MV X-rays reduced the gonadal dose by more than 1.3 times. For female and male patients, the risk for induction of hereditary disorders was less than 81 x 10(-4) and 188 x 10(-4), respectively. CONCLUSION: The present dosimetric data suggest that pediatric radiotherapy is not associated with a risk for permanent damage to gonads excluded from the treatment volume. The risk for development of hereditary disorders in offspring conceived after exposure is low.  相似文献   

8.
This study explores the possibility of using a telecobalt unit for radiosurgery. A dosimetric study was performed for the narrow beam of Cobalt 60 (60Co) unit with circular radiation fields in diameters of 11, 17, 20, 27, 32, 35, 40, and 44 mm. Percentage depth dose and off-axis ratio were measured with ion chamber and radiographic film. The tissue air ratio values derived from measurements agreed well with the calculated values for all cone sizes and depths, ranging from the depth of maximum ionization of 24 cm in water. A quantitative evaluation of treatment plans with 60Co and 6-MV photon beams was carried out. The penumbra of the narrow beam of 60Co was larger than that of the 6-MV beam by 1.3 mm on average. This difference in penumbra can be attributed to the large source size of 60Co units. The feasibility of using narrow-beam 60Co for stereotactic radiosurgery/radiotherapy is discussed.  相似文献   

9.
Total Skin Electron Therapy (TSET) was carried out using an electron beam with a nominal energy of 6 MeV. The beam was adequately filtered and angled in order to create dual fields. The uniformity of the dose distribution to the patient was 10%. The relative dosimetry of the dual beam was performed using a silicon diode and an ionization chamber in a standard water phantom. X-Omat V films were irradiated in a cylindrical PMMA phantom in order to obtain the dose distribution for the six TSET dual fields used in the treatment. Absolute dosimetry was carried out with a calibrated ionization chamber placed in a cylindrical water phantom. The dose contribution per monitor unit of the single dual beams was determined with this method.  相似文献   

10.
The prototype of a stereotactic collimator set developed in our department is evaluated for clinical use. This set consists of three cylindrical blocks mounted on a tray which slides in the wedge insert of a Siemens Primus accelerator. Each block has a collimating hole along its long axis to produce radiation fields of circular cross-section at the isocentre plane with diameters of 15 mm, 20 mm and 25 mm. Different geometric and dosimetric quality assurance tests were performed and results are found within the limits set for stereotactic radiotherapy. Dosimetry results measured using Kodak EDR-2 radiographic film and a pinpoint ion chamber also show good agreement with corresponding results calculated by Monte Carlo simulation of the linear accelerator head and the collimators. Measured dosimetry data were used to adapt a conventional PLATO treatment planning system for stereotactic radiotherapy using the prototype collimator set. Treatment planning system calculations and film measurements for treatment of an intracranial lesion in an anthropomorphic head phantom using coplanar 180 degrees arcs are compared and found to agree within 2 mm. This supports the accuracy of dose delivery using the prototype stereotactic collimators. Despite their increased penumbra (2.5-3.5 mm relative to 2-2.5 mm for commercially available collimators) the ease of construction makes the proposed stereotactic collimators an interesting alternative for accomplishing cost effective stereotactic treatments.  相似文献   

11.
Purpose The dosimetric features of an unflattened 6-MV photon beam of an Elekta SL-25 linac was calculated by the Monte Carlo (MC) method. Material and methods The head of the Elekta SL-25 linac was simulated using the MCNP4C MC code. The accuracy of the model was evaluated using measured dosimetric features, including depth dose values and dose profiles in a water phantom. The flattening filter was then removed, and beam dosimetric properties were calculated by the MC method and compared with those of the flattened photon beam. Results Our results showed a significant (twofold) increase in the dose rate for all field sizes. Also, the photon beam spectra for an unflattened beam were softer, which led to a steeper reduction in depth doses. The decrease in the out-of-field dose and increase in the contamination electrons and a buildup region dose were the other consequences of removing the flattening filter. Conclusion Our study revealed that, for recent radiotherapy techniques, the use of multileaf collimators for beam shaping removing the flattening filter could offer some advantages, including an increased dose rate and decreased out-of-field dose.  相似文献   

12.
To develop a quality assurance (QA) of XVI cone beam system (XVIcbs) for its optimal imaging-guided radiotherapy (IGRT) implementation, and to construe prostate tumor margin required for intensity-modulated radiation therapy (IMRT) if IGRT is unavailable. XVIcbs spatial accuracy was explored with a humanoid phantom; isodose conformity to lesion target with a rice phantom housing a soap as target; image resolution with a diagnostic phantom; and exposure validation with a Radcal ion chamber. To optimize XVIcbs, rotation flexmap on coincidency between gantry rotational axis and that of XVI cone beam scan was investigated. Theoretic correlation to image quality of XVIcbs rotational axis stability was elaborately studied. Comprehensive QA of IGRT using XVIcbs has initially been explored and then implemented on our general IMRT treatments, and on special IMRT radiotherapies such as head and neck (H and N), stereotactic radiation therapy (SRT), stereotactic radiosurgery (SRS), and stereotactic body radiotherapy (SBRT). Fifteen examples of prostate setup accounted for 350 IGRT cone beam system were analyzed. IGRT accuracy results were in agreement ± 1 mm. Flexmap 0.25 mm met the manufacturer's specification. Films confirmed isodose coincidence with target (soap) via XVIcbs, otherwise not. Superficial doses were measured from 7.2–2.5 cGy for anatomic diameters 15–33 cm, respectively. Image quality was susceptible to rotational stability or patient movement. IGRT using XVIcbs on general IMRT treatments such as prostate, SRT, SRS, and SBRT for setup accuracy were verified; and subsequently coordinate shifts corrections were recorded. The 350 prostate IGRT coordinate shifts modeled to Gaussian distributions show central peaks deviated off the isocenter by 0.6 ± 3.0 mm, 0.5 ± 4.5 mm in the X(RL)- and Z(SI)-coordinates, respectively; and 2.0 ± 3.0 mm in the Y(AP)-coordinate as a result of belly and bladder capacity variations. Sixty-eight percent of confidence was within ± 4.5 mm coordinates shifting. IGRT using XVIcbs is critical to IMRT for prostate and H and N, especially SRT, SRS, and SBRT. To optimize this modality of IGRT, a vigilant QA program is indispensable. Prostate IGRT reveals treatment accuracy as subject to coordinates' adjustments; otherwise a 4.5-mm margin is required to allow for full dose coverage of the clinical target volume, notwithstanding toxicity to normal tissues.  相似文献   

13.
14.
Radiation complications are often related to the dose inhomogeneity (hot spot) in breast tissue treated with conservative therapy, especially for large patients. The effect of photon energy on radiation dose distribution is analyzed to provide guidelines for the selection of beam energy when tangential fields and limited slices are used to treat women with large breasts. Forty-eight patients with chest wall separation > 22 cm were selected for dosimetric analysis. We compared the maximum dose in the central axis (CAX) plane (2D) using 6-, 10-, and 18-MV photon beams in all patients and 3D data set for 16 patients. Correlation between hot spot dose (HSD), separation, breast cup size, breast volume, and body weight was derived with beam energy. Among the 48 patients in this study, HSD > 10% in the CAX plane was noted in 98%, 46%, and 4% of the population when 2D dosimetry was performed; however, with 3D study, it was in 50%, 19%, and 6% of the patients with 6-MV, 10-MV and 18-MV beams, respectively. The chest wall separation, body weight, and breast volume were correlated with the HSD in both the 2D and 3D plans. Patient's bra size was not correlated with the hot spot. The chest wall separation was found to be the most important parameter to correlate with hot spot in tangential breast treatment. Simple guidelines are provided for dose uniformity in breast with respect to chest wall separation, body weight, bra size, and breast volume with tangential field irradiations.  相似文献   

15.
Dependences of mucosal dose in the oral or nasal cavity on the beam energy, beam angle, multibeam configuration, and mucosal thickness were studied for small photon fields using Monte Carlo simulations (EGSnrc-based code), which were validated by measurements. Cylindrical mucosa phantoms (mucosal thickness = 1, 2, and 3 mm) with and without the bone and air inhomogeneities were irradiated by the 6- and 18-MV photon beams (field size = 1 × 1 cm2) with gantry angles equal to 0°, 90°, and 180°, and multibeam configurations using 2, 4, and 8 photon beams in different orientations around the phantom. Doses along the central beam axis in the mucosal tissue were calculated. The mucosal surface doses were found to decrease slightly (1% for the 6-MV photon beam and 3% for the 18-MV beam) with an increase of mucosal thickness from 1–3 mm, when the beam angle is 0°. The variation of mucosal surface dose with its thickness became insignificant when the beam angle was changed to 180°, but the dose at the bone-mucosa interface was found to increase (28% for the 6-MV photon beam and 20% for the 18-MV beam) with the mucosal thickness. For different multibeam configurations, the dependence of mucosal dose on its thickness became insignificant when the number of photon beams around the mucosal tissue was increased. The mucosal dose with bone was varied with the beam energy, beam angle, multibeam configuration and mucosal thickness for a small segmental photon field. These dosimetric variations are important to consider improving the treatment strategy, so the mucosal complications in head-and-neck intensity-modulated radiation therapy can be minimized.  相似文献   

16.
PURPOSE: Several studies on the dosimetric properties of unflattened photon beams have shown some advantages for radiotherapy. In this study, the effect of removing the flattening filter from an 18-MV photon beam was investigated using the Monte Carlo method. MATERIALS AND METHODS: The 18-MV photon beam of an Elekta SL25 linear accelerator was simulated using the MCNP4C Monte Carlo (MC) code. Beam dosimetric features, including central axis absorbed doses, beam profiles, and photon energy spectra, were calculated for flattened and unflattened 18-MV photon beams. RESULTS: A 4.24-fold increase in the dose rate was seen for the unflattened beam with a field size of 10 x 10 cm(2). A decrease in the out-of-field dose up to 30% was seen for the unflattened beam. For the unflattened beam, photon energy spectra were softer, and the mean energies of the spectra were higher for a smaller field size. CONCLUSION: Our study showed that the increase in dose rate and lower out-of-field dose can be possible advantages for an unflattened 18-MV beam.  相似文献   

17.
Commissioning of a Radionics miniature multi-leaf collimator (MMLC) for stereotactic radiosurgery (SRS) and stereotactic radiotherapy (SRT) is reported. With single isocenter and multi static fields, the MMLC can provide better conformity of dose distributions to the target and/or irregularly shaped target volumes than standard arc (circular) field beams with multiple isocenters. Advantages offered by the MMLC over traditional LINAC based SRS and SRT includes greatly improved dose homogeneity to the target, reduced patient positioning time and reduced treatment time. In this work, the MMLC is attached to a Varian 2300 C/D with Varian 80-leaf multi-leaf collimator. The MMLC has 62 leaves, each measured to a width of 3.53 mm at isocenter, with fields range from 1x1 cm to less than 10 × 12 cm. Beam parameters required by the Radionics treatment planning system (XPlan version 2) for evaluating the dose include tissue maximum ratio (TMR), scatter factors (SF), off-axis ratios (OAR), output factors, penumbra function (P) and transmission factors (TF) are performed in this work. Beam data are acquired with a small stereotactic diode, standard ion chambers and radiographic films. Measured profiles of dose distribution are compared to those calculated by the software and absolute dosimetry is performed.  相似文献   

18.
目的 研究和比较水、固体水及有机玻璃3种模体的术中放疗吸收剂量的测算方法。方法 对于3种模体,使用固定在水模体中的电离室对加速器的电子速术中放疗限光筒进行吸收剂量的测算,首先选定参考限光筒对所有能量的电子束在源皮距SSD=100cm,水模内射束中心轴上特定深度,通过调整加速器使1cGy=1MU,然后使用术中放疗及参考限光筒在相同的辐照条件下进行测量,即测量术中放疗限光筒的输出因数,对于水模体,计算出各限光筒的吸收剂量cGy对应的加速器输出MU数值,并据此计算出固体水模体和有机玻璃模体的各限光筒吸收剂量cGy对应的加速器输出的MU数值,结果 相对于水模体,有机玻璃模体的测量误差为0.27%,固体水为0.45%。结论 对没有专用测量水箱和固体水的医院使用有机玻璃模体进行吸收剂量的测量不失为一种切实可行的方法。  相似文献   

19.
20.
Quality assurance measurements of a-Si EPID performance.   总被引:1,自引:0,他引:1  
The performance stability of a Varian aS500 amorphous silicon (a-Si) electronic portal imaging device (EPID) was monitored over an 18-month period using a variety of standard quality assurance (QA) tests. The tests were selected to provide ongoing information about image quality and dose response from the time of EPID acceptance into clinical service. To evaluate imaging performance, we made spatial resolution and contrast measurements using both PortalVision and QC-3V phantoms for 6- and 15-MV photon beams at repetition rates of 100, 300, and 400 MU/min in standard scanning mode. To assess operational stability for dosimetry applications, we measured central axis radiation response and beam pulse variability for the same image acquisition modes. Using the QC-3V phantom, values for the critical frequency of 0.435 +/- 0.005 lp/mm for 6 MV and 0.382 +/- 0.003 lp/mm for 15 MV were obtained. The contrast-to-noise ratio was found to be approximately 20% higher for the lower photon energy. Beam pulse variability remained within the tolerance of 3% set by the manufacturer. The central axis pixel response of the EPID remained constant within +/-1% over a 5-month period for the 6-MV beam, but fell approximately 4% over the same period for the 15-MV beam. The Varian aS500 EPID studied exhibited consistent image quality and a stable radiation response. These characteristics render it suitable for quantitative applications such as clinical dose measurement.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号