首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A safe and effective adjuvant is necessary to enhance mucosal immune responses for the development of an inactivated intranasal influenza vaccine. The present study demonstrated the effectiveness of surf clam microparticles (SMP) derived from natural surf clams as an adjuvant for an intranasal influenza vaccine. The adjuvant effect of SMP was examined when co-administered intranasally with inactivated A/PR8 (H1N1) influenza virus hemagglutinin vaccine in BALB/c mice. Administration of the vaccine with SMP induced a high anti-PR8 haemagglutinin (HA)-specific immunoglobulin A (IgA) response in the nasal wash and immunoglobulin G (IgG) response in the serum, resulting in protection against both nasal-restricted infection and lethal lung infection by A/PR8 virus. In addition, administration of SMP with A/Yamagata (H1N1), A/Beijing (H1N1), or A/Guizhou (H3N2) vaccine conferred complete protection against A/PR8 virus challenge in the nasal infection model, suggesting that SMP adjuvanted vaccine can confer cross-protection against variant influenza viruses. The use of SMP is suggested as a new safe and effective mucosal adjuvant for nasal vaccination against influenza virus infection.  相似文献   

2.
Vaccination is a cost-effective way to control the influenza epidemic. Vaccines based on highly conserved antigens can provide protection against different influenza A strains and subtypes. In this study, the recombinant nucleoprotein (rNP) of the A/PR/8/34 (H1N1) influenza virus strain was effectively expressed using a prokaryotic expression system and then purified with a nickel-charged Sepharose affinity column as a candidate component for an influenza vaccine. The rNP was administered intranasally three times at 3-week intervals to female BALB/c mice in combination with an adjuvant (cholera toxin B subunit containing 0.2% of the whole toxin). Twenty-one days after the last immunization, the mice were challenged with homologous or heterologous influenza viruses at a lethal dose. The results showed that intranasal immunization of 10 μg rNP with adjuvant completely protected the immunized mice against the homologous influenza virus, and immunization with 100 μg rNP in combination with adjuvant provided good cross-protection against heterologous H5N1 and H9N2 avian influenza viruses. The results indicate that such a vaccine administered intranasally can induce mucosal and cell-mediated immunity, thus having the potential to control epidemics caused by new emerging influenza viruses.  相似文献   

3.
In 2009, a global epidemic of influenza A(H1N1) virus caused the death of tens of thousands of people. Vaccination is the most effective means of controlling an epidemic of influenza and reducing the mortality rate. In this study, the long-term immunogenicity of influenza A/California/7/2009 (H1N1) split vaccine was observed as long as 15 months (450 days) after immunization in a mouse model. Female BALB/c mice were immunized intraperitoneally with different doses of aluminum-adjuvanted vaccine. The mice were challenged with a lethal dose (10× 50% lethal dose [LD50]) of homologous virus 450 days after immunization. The results showed that the supplemented aluminum adjuvant not only effectively enhanced the protective effect of the vaccine but also reduced the immunizing dose of the vaccine. In addition, the aluminum adjuvant enhanced the IgG antibody level of mice immunized with the H1N1 split vaccine. The IgG level was correlated to the survival rate of the mice. Aluminum-adjuvanted inactivated split-virion 2009 pandemic influenza A H1N1 vaccine has good immunogenicity and provided long-term protection against lethal influenza virus challenge in mice.  相似文献   

4.
Chitin in the form of microparticles (chitin microparticles, CMP) has been demonstrated to be a potent stimulator of macrophages, promoting T-helper-1 (Th1) activation and cytokine response. In order to examine the mucosal adjuvant effect of CMP co-administered with influenza hemagglutinin (HA) vaccine against influenza infection, CMP were intranasally co-administered with influenza HA vaccine prepared from PR8 (H1N1) virus. Inoculation of the vaccine with CMP induced primary and secondary anti-HA IgA responses in the nasal wash and anti-HA IgG responses in the serum, which were significantly higher than those of nasal vaccination without CMP, and provided a complete protection against a homologous influenza virus challenge in the nasal infection influenza model. In addition, CMP-based immunization using A/Yamagata (H1N1) and A/Guizhou (H3N2) induced PR8 HA-reactive IgA in the nasal washes and specific-IgG in the serum. The immunization with A/Yamagata and CMP resulted in complete protection against a PR8 (H1N1) challenge in A/Yamagata (H1N1)-vaccinated mice, while that with A/Guizhou (H3N2) and CMP exhibited a 100-fold reduction of nasal virus titer, demonstrating the cross-protective effect of CMP and influenza vaccine. It is suggested that CMP provide a safe and effective adjuvant for nasal vaccination with inactivated influenza vaccine.  相似文献   

5.
The identification of a safe and effective adjuvant that is able to enhance mucosal immune responses is necessary for the development of an efficient inactivated intranasal influenza vaccine. The present study demonstrated the effectiveness of extracts of mycelia derived from edible mushrooms as adjuvants for intranasal influenza vaccine. The adjuvant effect of extracts of mycelia was examined by intranasal co‐administration of the extracts and inactivated A/PR8 (H1N1) influenza virus hemagglutinin (HA) vaccine in BALB/c mice. The inactivated vaccine in combination with mycelial extracts induced a high anti‐A/PR8 HA‐specific IgA and IgG response in nasal washings and serum, respectively. Virus‐specific cytotoxic T‐lymphocyte responses were also induced by administration of the vaccine with extract of mycelia, resulting in protection against lethal lung infection with influenza virus A/PR8. In addition, intranasal administration of NIBRG14 vaccine derived from the influenza A/Vietnam/1194/2004 (H5N1) virus strain administered in conjunction with mycelial extracts from Phellinus linteus conferred cross‐protection against heterologous influenza A/Indonesia/6/2005 virus challenge in the nasal infection model. In addition, mycelial extracts induced proinflammatory cytokines and CD40 expression in bone marrow‐derived dendritic cells. These results suggest that mycelial extract‐adjuvanted vaccines can confer cross‐protection against variant H5N1 influenza viruses. The use of extracts of mycelia derived from edible mushrooms is proposed as a new safe and effective mucosal adjuvant for use for nasal vaccination against influenza virus infection. J. Med. Virol. 82:128–137, 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

6.
Influenza vaccines based on conserved antigens could provide cross-protection against infections by multiple subtypes of influenza A virus. Influenza matrix protein 2 (M2) is highly conserved in all influenza A strains. In this study, we deleted the transmembrane domain of the M2 of the avian influenza virus (AIV) A/Chicken/Jiangsu/7/2002 (H9N2) strain to create an M2 without a transmembrane domain, named sM2, which was efficiently expressed in Escherichia coli. The sM2 protein was administered intranasally to mice in combination with chitosan adjuvant three times at an interval of 3 weeks. Three weeks after the last immunization, the mice were challenged with a lethal dose (5 × LD50) of A/Chicken/Jiangsu/7/2002 (H9N2) virus, PR8 (H1N1) virus and A/Chicken/Henan/12/2004 (H5N1) virus. The protective immunity of the vaccine was evaluated by determining the survival rates, residual lung virus titers, body weight, and the serum antibody titers of the mice. Nasal administration of 15 μg sM2 in combination with chitosan completely protected mice against the homologous virus and protected 90 and 30% of the mice against the heterologous H1N1 and H5N1 viruses, respectively. The study indicated that the sM2 protein was a candidate antigen for a broad-spectrum influenza virus vaccine and that the adjuvant chitosan improved the efficacy of the sM2 vaccine.  相似文献   

7.
We investigated whether a vaccine derived from an apathogenic reassortant type A H5N1 influenza strain could induce immune responses in vivo that mediated protection from highly pathogenic avian influenza virus infection in mice. After two subcutaneous immunizations with formalin-inactivated H5N1 whole virus particles (whole particle vaccine), significant killing specific for cells presenting a nucleoprotein peptide from the vaccine strain of the virus was observed. Similar vaccination with viruses treated with ether and formalin, which are commonly used for humans as ether-split vaccines, induced little or no cytotoxic T-cell response. Furthermore, whole particle vaccines of the apathogenic H5N1 strain were more effective than ether-split vaccines at inducing antibody production able to neutralize a highly pathogenic H5N1 strain. Finally, whole particle vaccines of H5N1 protected mice against infection by an H5N1 highly pathogenic avian influenza virus more effectively than did ether-split vaccines. These results suggest that formalin-inactivated virus particles of apathogenic strains are effective for induction of both cytotoxic T-lymphocyte and antibody responses against highly pathogenic avian influenza viruses in vivo, resulting in protection from infection by a highly pathogenic H5N1 virus.  相似文献   

8.
H5N1 influenza virus is one of the viruses that can potentially cause an influenza pandemic. Protection of newborns against influenza virus infection could be effectively provided by maternal immunization. In this study, female mice were immunized with H5N1 HA DNA vaccine or inactivated whole-virion vaccine, and the protection provided by maternal antibodies in their offspring against a lethal homologous influenza virus challenge was compared. The results showed that maternal antibodies, whether induced by a DNA vaccine or an inactivated vaccine, could completely protect offspring aged 1-4 weeks from a lethal influenza virus challenge. Breast-feeding was the major route of transfer for maternal antibodies. Milk-derived antibodies were able to effectively protect the offspring aged 1-4 weeks from lethal influenza virus infection, whereas maternal antibodies transferred through the placenta only partially protected the offspring 1-2 weeks of age. The milk- and placenta-transferred IgG2a antibody levels in offspring from their mothers, whether vaccinated with DNA vaccine or inactivated vaccine, were higher than the IgG1 levels. Our results indicated that maternal vaccination with HA DNA, as well as with whole-virion inactivated vaccine, could offer effective protection to offspring against H5N1 influenza virus infection.  相似文献   

9.
10.
Mucosal immunization by inactivated viruses often fails to evoke a sufficient immune response. Intensive efforts have been made to enhance the response by suitable adjuvants. We used the G+ nonpathogenic delipidated bacterium Bacillus firmus with pronounced immunostimulatory properties as an adjuvant for immunizing mice with inactivated influenza virus type A. BALB/c mice were immunized intratracheally with inactivated influenza A H1N1 and H3N2 viruses. The production of antibodies in sera and secretions was determined by the ELISA. The local situation in the lungs was assessed histologically and by testing the cytokine expression. The protective and cross-protective effect against infection was tested in in vivo experiments after infection with influenza virus A H1N1. B. firmus as adjuvant increased both systemic and mucosal antibody responses, improved protection against homologous virus and induced cross-protection against virus H1N1 after immunization with virus H3N2.  相似文献   

11.
Addition of chitosan as an adjuvant to subunit vaccine from the swine origin influenza virus A/California/7/09 (H1N1) increases vaccine immunogenicity by 8-16 times and significantly enhances its protective potency. Single immunization with chitosan adjuvanted vaccine induced similar antibody titers as two immunizations with unadjuvanted vaccine. Chitosan stabilized the immunogenicity of subunit vaccine when stored at 4 degrees C. The antigenic specificity of the A/California/7/09 (H1N1) virus strain did not resemble substantially that of the human influenza strains A/Brisbane/59/07 (H1N1) and A/Solomon Isles/3/06 (H1N1), which are among the 2008/2009 and 2007/2008 seasonal influenza vaccines, respectively, as well as that of the human influenza H1N1 virus strains that circulated about 30 years ago.  相似文献   

12.
Swine influenza is a highly contagious viral infection in pigs that significantly impacts the pork industry due to weight loss and secondary infections. There is also the potential of a significant threat to public health, as was seen in 2009 when the pandemic H1N1 influenza virus strain emerged from reassortment events among avian, swine, and human influenza viruses within pigs. As classic and pandemic H1N1 strains now circulate in swine, an effective vaccine may be the best strategy to protect the pork industry and public health. Current inactivated-virus vaccines available for swine influenza protect only against viral strains closely related to the vaccine strain, and egg-based production of these vaccines is insufficient to respond to large outbreaks. DNA vaccines are a promising alternative since they can potentially induce broad-based protection with more efficient production methods. In this study we evaluated the potentials of monovalent and trivalent DNA vaccine constructs to (i) elicit both humoral and gamma interferon (IFN-γ) responses and (ii) protect pigs against viral shedding and lung disease after challenge with pandemic H1N1 or classic swine H1N1 influenza virus. We also compared the efficiency of a needle-free vaccine delivery method to that of a conventional needle/syringe injection. We report that DNA vaccination elicits robust serum antibody and cellular responses after three immunizations and confers significant protection against influenza virus challenge. Needle-free delivery elicited improved antibody responses with the same efficiency as conventional injection and should be considered for development as a practical alternative for vaccine administration.  相似文献   

13.
The conventional hemagglutinin (HA)- and neuraminidase (NA)-based influenza vaccines need to be updated most years and are ineffective if the glycoprotein HA of the vaccine strains is a mismatch with that of the epidemic strain. Universal vaccines targeting conserved viral components might provide cross-protection and thus complement and improve conventional vaccines. In this study, we generated DNA plasmids and recombinant vaccinia viruses expressing the conserved proteins nucleoprotein (NP), polymerase basic 1 (PB1), and matrix 1 (M1) from influenza virus strain A/Beijing/30/95 (H3N2). BALB/c mice were immunized intramuscularly with a single vaccine based on NP, PB1, or M1 alone or a combination vaccine based on all three antigens and were then challenged with lethal doses of the heterologous influenza virus strain A/PR/8/34 (H1N1). Vaccines based on NP, PB1, and M1 provided complete or partial protection against challenge with 1.7 50% lethal dose (LD50) of PR8 in mice. Of the three antigens, NP-based vaccines induced protection against 5 LD50 and 10 LD50 and thus exhibited the greatest protective effect. Universal influenza vaccines based on the combination of NP, PB1, and M1 induced a strong immune response and thus might be an alternative approach to addressing future influenza virus pandemics.  相似文献   

14.
A vaccine against the novel pandemic influenza virus (2009 H1N1) is available, but several problems in preparation of vaccines against the new emerging influenza viruses need to be overcome. DNA vaccines represent a novel and powerful alternative to conventional vaccine approaches. To evaluate the ability of a DNA vaccine encoding the hemagglutinin (HA) of 2009 H1N1 to generate humoral responses and protective immunity, BALB/c mice were immunized with various doses of 2009 H1N1 HA-encoding plasmid and anti-HA total IgG, hemagglutination inhibition antibodies and neutralizing antibodies were assayed. The total IgG titers against HA correlated positively with the doses of DNA vaccine, but immunization with either a low dose (10 μg) or a higher dose (25-200 μg) of HA plasmid resulted in similar titers of hemagglutination inhibition and neutralizing antibodies, following a single booster. Further, 10 μg plasmid conferred effective protection against lethal virus challenge. These results suggested that the DNA vaccine encoding the HA of 2009 H1N1 virus is highly effective for inducing neutralizing antibodies and protective immunity. DNA vaccines are a promising new strategy for the rapid development of efficient vaccines to control new emerging pandemic influenza viruses.  相似文献   

15.
Skin vaccination with influenza virus-like particles (VLPs) using microneedles has been shown to induce protection similar to or better than that induced by intramuscular immunization. In this study, we examined the long-term protective efficacy of influenza (H1N1 A/PR/8/34) VLPs after skin vaccination using microneedle patches coated with the vaccine. Microneedle vaccination of mice in the skin induced 100% protection against lethal challenge infection with influenza A/PR/8/34 virus 14 months after a single vaccine dose. Influenza virus-specific total IgG response and hemagglutination inhibition (HAI) titers were maintained at high levels for over 1 year after microneedle vaccination. Microneedle vaccination also induced substantial levels of lung IgG and IgA antibody responses, and antibody-secreting plasma cells from spleen and bone marrow, as well as conferring effective control of lung viral loads, resulting in complete protection 14 months after vaccination. These strong and long-lasting immune responses were enabled in part by stabilization of the vaccine by formulation with trehalose during microneedle patch fabrication. Administration of the stabilized vaccine using microneedles was especially effective at enabling strong recall responses measured 4 days after lethal virus challenge, including increased HAI and antibody-secreting cells in the spleen and reduced viral titer and inflammatory response in the lung. The results in this study indicate that skin vaccination with VLP vaccine using a microneedle patch provides long-term protection against influenza in mice.  相似文献   

16.
BACKGROUND: DNA vaccines have been shown to induce protective immunity against viral infections in different animal models. We have recently demonstrated that DNA vaccine induced protective immunity against influenza A virus and La Crosse virus (LACV) is primarily mediated by humoral immune response. OBJECTIVE: The goal of this study was to investigate whether administration of DNA coding for cytokines such as interleukin 12 (IL-12) and granulocyte-macrophage colony-stimulating factor (GM-CSF) could increase the protective immune response induced by vaccination with DNA coding for viral antigens. STUDY DESIGN: For the influenza A virus or LACV model, C57BL/6 or interferon-alpha/beta receptor (IFNAR-1)-deficient mice, respectively, were vaccinated once or twice with 100 micrograms of DNA encoding viral antigens. At the same time plasmid DNAs (100 micrograms) coding either for mouse GM-CSF or mouse IL-12 were administered. The mice were subsequently challenged with a lethal dose of influenza A virus or LACV and monitored for clinical symptoms (weight loss) and survival. RESULTS: To achieve a high degree of protection (70% survival) two injections of DNA encoding the influenza A virus surface protein hemagglutinin (HA) were required. Intriguingly, administration of DNA coding for IL-12 alone also led to a pronounced protective effect against virus challenge. Co-administration of DNAs encoding IL-12 and HA significantly increased the protective immunity against influenza A virus, while IL-12 expression did not improve protection upon vaccination with DNA coding for the internal nucleocapsid protein N of LACV. Co-injection of DNA coding for mouse GM-CSF and HA also showed an adjuvant effect. CONCLUSIONS: The data clearly indicate that co-administration of DNA encoding cytokines such as IL-12 and GM-CSF with DNA coding for viral antigens has adjuvant effects on the protective immune response against different viral pathogens.  相似文献   

17.
Luo M  Tao P  Li J  Zhou S  Guo D  Pan Z 《Journal of virological methods》2008,154(1-2):121-127
DNA vaccination is an effective means of eliciting both humoral and cellular immunity. Most of influenza vaccines targeted at hemagglutinin (HA) show efficient immunogenicity for protecting subjects against influenza virus infection. However, major antigenic variations of HA may facilitate the virus in developing resistance against such vaccines. DNA vaccines encoding conserved antigens protect animals against diverse viral subtypes, but their potency requires further improvement. In the present study, a DNA vaccine encoding the conserved nucleoprotein (NP) with a tissue plasminogen activator (tPA) signal sequence (ptPAs/NP) was generated, and immune responses were examined in vaccinated mice. A higher level of NP expression and secretion was observed in lysates and supernatants of the cells transfected with ptPAs/NP when compared to a plasmid encoding the wild-type full-length NP (pflNP). Immunofluorescence studies showed the cytoplasmic localization of the NP protein expressed from ptPAs/NP, but not from pflNP. In mice, the ptPAs/NP vaccine elicited higher levels of the NP-specific IgG and CD8(+) T cell-stimulating responses than that of pflNP. Vaccination with ptPAs/NP efficiently cleared the homologous H5N1 influenza virus in the infected lungs and induced partial cross-protection against heterologous, highly pathogenic H5N1 strains in mice. Our results may contribute to the development of protective immunity against diverse, highly pathogenic H5N1 virus subtypes.  相似文献   

18.
We have previously demonstrated the formation and release of influenza virus-like particles (VLPs) from the surface of Sf9 cells infected with either a quadruple baculovirus recombinant that simultaneously expresses the influenza structural proteins hemagglutinin (HA), neuraminidase (NA), matrix 1 (M1) and M2, or a combination of single recombinants that include the M1 protein. In this work, we present data on the immunogenicity and protective efficacy afforded by VLPs (formed by M1 and HA) following immunization of mice. VLP vaccine (approximately 1 microg HA) were formulated with or without IL-12 as adjuvant and administered twice, at two weeks intervals, by either intranasal instillation or intramuscular injection. All VLP-vaccinated and influenza-immunized control mice demonstrated high antibody titers to the HA protein; however, intranasal instillation of VLPs elicited antibody titers that were higher than those induced by either intramuscular inoculation of VLPs or intranasal inoculation with two sub-lethal doses of the challenge influenza virus (control group). Antibody responses were enhanced when VLP vaccine was formulated with IL12 as adjuvant. All mice were challenged with 5 LD50 of a mouse-adapted influenza A/Hong Kong/68 (H3N2) virus. Intramuscular administration of VLP vaccine formulated with or without IL-12 afforded 100% protection against a lethal influenza virus challenge. Similarly, intranasal instillation of VLP vaccine alone protected 100% of the mice, whereas VLP formulated with IL-12 protected 90% of the vaccinated mice. Not only do these results suggest a novel approach to the development of VLP vaccines for diverse influenza virus strains, but also the creation of multivalent vaccines by decoration of the surface of the VLPs with antigens from other pathogens.  相似文献   

19.
We have previously demonstrated the formation and release of influenza virus-like particles (VLPs) from the surface of Sf9 cells infected with either a quadruple baculovirus recombinant that simultaneously expresses the influenza structural proteins hemagglutinin (HA), neuraminidase (NA), matrix 1 (M1), and matrix 2 (M2), or a combination of single recombinants that include the M1 protein. In this work, we present data on the immunogenicity and protective efficacy afforded by VLPs (formed by M1 and HA) after immunization of mice. VLP vaccine ( approximately 1 microg HA) were formulated with or without IL-12 as adjuvant and administered twice, at 2-week intervals, by either intranasal instillation or intramuscular injection. All VLP-vaccinated and influenza-immunized control mice demonstrated high antibody titers to the HA protein; however, intranasal instillation of VLPs elicited antibody titers that were higher than those induced by either intramuscular inoculation of VLPs or intranasal inoculation with two sub-lethal doses of the challenge influenza virus (control group). Antibody responses were enhanced when VLP vaccine was formulated with IL12 as adjuvant. All mice were challenged with 5 LD50 of a mouse-adapted influenza A/Hong Kong/68 (H3N2) virus. Intramuscular administration of VLP vaccine formulated with or without IL-12 afforded 100% protection against a lethal influenza virus challenge. Similarly, intranasal instillation of VLP vaccine alone protected 100% of the mice, whereas VLP formulated with IL-12 protected 90% of the vaccinated mice. Not only do these results suggest a novel approach to the development of VLP vaccines for diverse influenza virus strains, but also the creation of multivalent vaccines by decoration of the surface of the VLPs with antigens from other pathogens.  相似文献   

20.
The ability of influenza vaccination to provide cross-protection against heterovariant influenza strains was evaluated in a double-blind, randomized, trial in north-east Italy during the winter of 2005-2006. Of 238 adult subjects with underlying chronic diseases, 120 received MF59-adjuvanted subunit vaccine (Sub/MF59) and 118 received a conventional subunit vaccine (Subunit). Immunogenicity was measured for A/H3N2 and B influenza strains against both the homologous vaccine strains (A/New York/55/2004 and B/Jiangsu/10/2003), and the heterovariant strains recommended for the 2006-2007 season (A/Wisconsin/67/2005 and B/Malaysia/2506/2004). Although both vaccines conferred serological protection against the homologous vaccine strains and the 2006-2007 heterovariant A/H3N2 strain for a majority of subjects, the antibody response was highest in the Sub/MF59 vaccine group. For example, MF59-adjuvanted vaccination conferred significantly greater (P = 0.002) protection against the heterovariant A/H3N2 strain than the conventional subunit vaccine (79.2% vs. 61.0% of subjects, respectively). In conclusion, these results demonstrate that protection provided by influenza vaccination in adults affected by chronic diseases is lower against heterovariant strains than for homologous strains. However, addition of MF59 adjuvant to a subunit vaccine enhances immunogenicity against the A/H3N2 heterovariant strain, conferring broader protection than a conventional subunit vaccine in this population, who are at higher risk of influenza-related complications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号