首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Starvation potentiates the hepatotoxicity of a variety of small molecules, including chlorinated hydrocarbons and nitrosamines, through the induction of CYP2E1. A change in CYP2E1 expression during starvation may also alter the pharmacokinetic profiles of xenobiotics. Northern blot and Western blot analyses revealed that hepatic CYP2E1 was not induced during starvation in rats placed in metabolic or wire-bottom cages in contrast to the induction of CYP2E1 in animals housed in solid-bottom cages. We studied the effect of coprophagy on the expression of hepatic CYP2E1 during starvation. The extent of coprophagy was 24% in fed rats. Fecal matter of starving rats was reduced to 14% of control and starving rats re-ingested ~1.6 g of feces per day. The effect of fecal matter on CYP2E1 expression (i.e., 1.6 g/kg/day for 3 days) was assessed in fed or starving rats. Starving rats gavaged with fecal matter for 3 days resulted in a 3.5-fold increase in the level of CYP2E1 mRNA, while fed rats gavaged with feces failed to show an increase in the mRNA. The increase in the CYP2E1 mRNA level accompanied the induction of CYP2E1. Starving rats gavaged with methanol extract of feces (500 mg/kg/day for 3 days) showed a 3.3-fold increase in CYP2E1 mRNA level in the liver. These results provide evidence that CYP2E1 is not induced by starvation without coprophagy, raising the contention that the mechanistic basis for CYP2E1 induction by starvation should be reevaluated.  相似文献   

2.
Chung HC  Kim SH  Lee MG  Cho CK  Kim TH  Lee DH  Kim SG 《Toxicology》2001,161(1-2):79-91
Multiple biological effects are induced by ionizing radiation through dysfunction of cellular organelles, direct interaction with nucleic acids and production of free radical species. The expression of cytochrome P450s was assessed in the livers of 60Co gamma-irradiated rats. Three gray (G) of gamma-irradiation caused CYP2E1 induction with a 3.6-fold increase in the mRNA at 24 h, whereas the expression of CYP1A2 and CYP3A was not changed. Pharmacokinetics of chlorzoxazone, a specific substrate of CYP2E1, was studied in 3 G-irradiated rats. The area under the plasma concentration-time curve from time zero to infinity of 6-hydroxychlorzoxazone and the amount of 6-hydroxychlorzoxazone excreted in 8 h urine were both significantly greater than those in control rats. Hepatic CYP2E1 was not induced in rats exposed to 0.5-1 G of gamma-rays. Rats irradiated at 6-9 G accumulated doses of gamma-rays exhibited smaller increases in the mRNA due to liver injury than those irradiated at a single dose of 3 G gamma-rays. The plasma glucose and insulin levels were not altered in rats with 3 G of gamma-irradiation. As the exposure level of gamma-irradiation increased, the activity of hepatic aconitase, a key enzyme in energy metabolism in mitochondria, was 30-90% decreased. The amount of mitochondrial DNA per gram of wet liver was 50% decreased in rats exposed to 3 G of gamma-rays. These results demonstrated that gamma-ray irradiation at the exposure level inducing organelle dysfunction induced CYP2E1 in the liver, which might be associated with mitochondrial damage, but not with alterations in glucose or insulin levels.  相似文献   

3.
4.
Previous experiments in vitro have suggested that cytochrome P450 2E1 (CYP2E1) is involved in acetone catabolism by converting acetone to acetol and then to methylglyoxal, both intermediates in the gluconeogenic pathway. In the present study, CYP2E1-null mice were used to demonstrate the role of CYP2E1 in acetone catabolism in vivo. The blood acetone level in male CYP2E1-null mice was 3.3 +/- 0.9 microg/mL, which was similar to levels of their sex- and age-matched parental lineage strains C57BL/6N (2.3 +/- 0.2 microg/mL) and 129/Sv (3.5 +/- 0.3 microg/mL) mice (both are CYP2E1 wild-type). After fasting for 48 hr, the blood acetone levels in the CYP2E1 wild-type mice were increased by 2.5- to 4.4-fold, but that in the CYP2E1-null mice increased 28-fold. These results clearly demonstrate that CYP2E1 plays a vital role in the catabolism of acetone under fasting conditions.  相似文献   

5.
In this study, the possible potentiation of cisplatin-induced hepatotoxicity by cytochrome P450 2E1 (CYP2E1) was examined both in vitro and in vivo. Transfected HepG2 cells expressing CYP2E1 (E47 cells) and not expressing CYP2E1 (C34 cells) were used as an in vitro model, and mice drinking 2% acetone for 7 days to induce CYP2E1 were used as an in vivo model. Exposure of E47 cells to cisplatin caused a much greater loss of cell viability, more striking depletion of reduced glutathione (GSH), and higher reactive oxygen species (ROS) production as compared with C34 cells. The prooxidant L-buthionine-[R,S]-sulfoximine (BSO), which depletes GSH, enhanced cisplatin-induced loss of cell viability, whereas the antioxidant glutathione ethyl ester, or the iron chelator deferoxamine mesylate (DFO) protected against the cisplatin-induced loss of E47 cell viability. Diallyl sulfide (DAS), an inhibitor of CYP2E1, also protected against the cisplatin toxicity in the E47 cells. After being injected with cisplatin (ip, 45 mg/kg), mice drinking 2% acetone with increased CYP2E1 levels exhibited elevated levels of serum ALT and AST, liver caspase-3 activity and positive staining of TUNEL increased, and histopathology indicated the presence of necrotic foci in livers of acetone plus cisplatin-treated mice. Lipid peroxidation and protein oxidation as indicated by carbonyl formation, staining of 3-nitrotyrosine (3-NT) and iron were higher in the cisplatin plus acetone group, compared with cisplatin alone group. Both in vitro and in vivo results indicate that elevated CYP2E1 enhances cisplatin-induced hepatotoxicity, and the mechanism may involve increased production of ROS and oxidative stress.  相似文献   

6.
Phenothiazine tranquilizers have been associated with pharmacokinetic drug interactions in man. In this study the in vivo and in vitro effects of the clinically important phenothiazines promazine (PZ) and chlorpromazine (CPZ) on drug oxidations catalysed by specific cytochrome P450 (P450) enzymes were investigated in the rat. In vitro, the two drugs were relatively ineffective inhibitors of constitutive P450 activities, but were inhibitory toward the principal phenobarbital-inducible P450 2B1 and, to a lesser extent, P450 1A1. Administration of PZ and CPZ to male rats did not markedly influence the total microsomal P450 content of the liver. However, the quantitatively important male-specific P450 2C11 was down-regulated by CPZ and concomitant induction of P450 2B1 and associated 7-pentylresorufin O-depentylase activity were noted. A small increase in the activity of microsomal 7-ethylresorufin O-deethylase was also observed following administration of both drugs to rats, suggesting induction of P450 1A1/2. Considered together, it is apparent that the two phenothiazines are preferential inhibitors and inducers of P450 2B1 in rat liver. Drug interactions in humans involving phenothiazines may reflect a combined effect of induction and inhibition processes as well as down-regulation of other P450s, such as that produced by CPZ on P450 2C11.  相似文献   

7.
8.
Inactivation of cytochrome P450 2E1 by benzyl isothiocyanate.   总被引:3,自引:0,他引:3  
The cytochrome P450 enzymes constitute a family of phase I enzymes that play a prominent role in the metabolism of a great variety of endogenous and xenobiotic compounds. In this study, the kinetics for the inactivation of cytochrome P450 2E1 by benzyl isothiocyanate (BITC) were elucidated. BITC is a naturally occurring compound found in cruciferous vegetables such as broccoli. BITC inhibited the 7-ethoxy-4-(trifluoromethyl)coumarin (7-EFC) O-deethylation activity of purified and reconstituted P450 2E1 in a time- and concentration-dependent manner. The concentration of inactivator needed for half-maximal inactivation (K(I)) was 13 microM, and the maximum rate of inactivation at saturation (k(inact)) was 0.09 min-1. The partition ratio for the inactivation of P450 2E1 by BITC was found to have an approximate value of 27. Inactivation of P450 2E1 by BITC was dependent on the presence of NADPH. Following incubation for 5 min with BITC, a 65% loss in enzymatic activity was observed, while approximately 74% of the spectrally detectable enzyme remained. 7-Ethoxycoumarin (7-EC), a substrate of P450 2E1, protected P450 2E1 from BITC inactivation, reducing the loss in 7-EFC O-deethylation activity from 50 to 18% when a 1:20 molar ratio of BITC:7-EC was used. Inactivation of P450 2E1 by BITC was irreversible, and no activity was regained after extensive washes to remove BITC. Addition of cytochrome b(5) to the reconstituted system did not affect the rate of inactivation. Reductase activity was unaffected by BITC. The results reported here indicate that BITC is a mechanism-based inactivator of cytochrome P450 2E1 and that the inactivation was primarily due to a modification of the apoprotein by BITC.  相似文献   

9.
While almost anesthetics are metabolized by the cytochrome P450 (CYP) 3A4, some major volatile ones such as halothane and sevoflurane are metabolized by CYP2E1 in humans. To determine whether 2,6-diisopropylphenol (propofol), a widely used intravenous anesthetic agent, known to inhibit CYP3A4 and CYP1A2, also inhibits CYP2E1, 6-OH hydroxylation of chlorzoxazone, a prototypical CYP2E1 substrate, was estimated using two pools of human microsomes and one pool of porcine microsomes from seven livers. Basal human enzyme activities were characterized by a V(max) of 1426+/-230 and 288+/-29 pmol min(-1)mg(-1) protein and a K(m) of 122+/-47 and 149+/-42 microM, while the corresponding porcine activities were associated with a V(max) of 352+/-42 pmol min(-1)mg(-1) protein and a K(m) of 167+/-38 microM. A competitive inhibition of CYP2E1 by propofol was observed with low inhibition constants in the therapeutic range in both porcine (19 microM) and human (48 microM) liver microsomes. These in vitro results suggest that propofol could have a protective effect on toxic metabolite activation of compounds catalyzed by CYP2E1.  相似文献   

10.
To reduce the production of pollutants in motor vehicle exhaust, methyl tert-butyl ether (MTBE) and other ethers such as ethyl tert-butyl ether (ETBE) and tert-amyl methyl ether (TAME) are added to gasoline as oxygenates for more complete combustion. Metabolism of these gasoline ethers is catalyzed by cytochrome P450 (P450) enzymes. P450 2E1, which metabolizes diethyl ether, was suggested to be an enzyme involved. The present study used 2E1 knock-out mice (2E1-/-) to assess the contribution of 2E1 to the metabolism of MTBE, ETBE and TAME. Liver microsomes prepared from the 2E1 knock-out mice lacked 2E1 activity (assayed as N-nitrosodimethylamine demethylation), but were still active in metabolizing all three gasoline ethers. The levels of ether-metabolizing activity (nmol/min per mg) in the liver microsomes from 7 week old female 2E1 knock-out mice were 0.54+/-0.17 for MTBE, 0.51+/-0.24 for ETBE and 1.14+/-0.25 for TAME at a 1 mM substrate concentration. These activity levels were not significantly different from those of the sex- and age-matched C57BL/6N and 129/Sv mice, which are the parental lineage strains of the 2E1 knock-out mice and are both 2E1+/+. Our results clearly demonstrate that 2E1 plays a negligible role in the metabolism of MTBE, ETBE and TAME in mouse livers.  相似文献   

11.
The oxidative and reductive cytochrome P450 (P450)-mediated chloroform bioactivation has been investigated in human liver microsomes (HLM), and the role of human P450s have been defined by integrating results from several experimental approaches: cDNA-expressed P450s, selective chemical inhibitors and specific antibodies, correlation studies in a panel of phenotyped HLM. HLM bioactivated CHCl(3) both oxidatively and reductively. Oxidative reaction was characterized by two components, suggesting multiple P450 involvement. The high affinity process was catalyzed by CYP2E1, as clearly indicated by kinetic studies, correlation with chlorzoxazone 6-hydroxylation (r = 0.837; p < 0.001), and inhibition by monoclonal antihuman CYP2E1 and 4-methylpyrazole. The low affinity phase of oxidative metabolism was essentially catalyzed by CYP2A6. This conclusion was supported by the correlation with coumarin 7-hydroxylase (r = 0.777; p < 0.01), inhibition by coumarin and by the specific antibody, in addition to results with heterologously expressed P450s. Chloroform oxidation was poorly dependent on pO(2), whereas the reductive metabolism was highly inhibited by O(2). The production of dichloromethyl radical was significant only at CHCl(3) concentration > or =1 mM, increasing linearly with substrate concentration. CYP2E1 was the primary enzyme involved in the reductive reaction, as univocally indicated by all the different approaches. The reductive pathway seems to be scarcely relevant in the human liver, since it is active only at high substrate concentrations, and in strictly anaerobic conditions. The role of human CYP2E1 in CHCl(3) metabolism at low levels, typical of actual human exposure, provides insight into the molecular basis for eventual difference in susceptibility to chloroform-induced effects due to either genetic, pathophysiological, or environmental factors.  相似文献   

12.
Sheweita SA 《Toxicology》2003,191(2-3):133-142
Drug-metabolizing enzymes play a great role in the bioactivation and also detoxification of zenobiotics and carcinogens such as N-nitrosamines and polycyclic aromatic hydrocarbons (PAHs). Therefore, the present study was undertaken to investigate the effect of narcotic drugs such as cannabis (hashish) and diacetylmorphine (heroin) on the activity of N-nitrosodimethylamine N-demethylase I [NDMA-dI], arylhydrocarbon [benzo(a)pyerne] hydroxylase [AHH], cytochrome P450 (CYP), cytochrome b(5), NADPH-cytochrome c reductase, glutathione-S-transferase, and levels of glutathione and thiobarbituric acid-reactive substances (TBARS). In addition, the present study showed the influence of hashish and heroin after single (24 h) and repeated-dose treatments (4 consecutive days) on the expression of cytochrome P450 2E1 (CYP 2E1) and cytochrome P450 2C6 (CYP 2C6). The expression of CYP 2E1 was slightly induced after single-dose and markedly induced after repeated dose-treatments of mice with hashish (10 mg kg(-1) body weight). Contrarily, heroin markedly induced the expression of CYP 2C6 after single-dose and potentially reduced this expression after repeated-dose treatments. It is believed that N-nitrosamines are activated principally by CYP 2E1 and in support of this, the activity of NDMA-dI was found to be increased after single- and repeated-dose treatments of mice with hashish by 23 and 41%, respectively. In addition, single- and repeated-dose treatments of mice with hashish increased: (1) the total hepatic content of CYP by 112 and 206%, respectively; (2) AHH activity by 110 and 165%, respectively; (3) NADPH-cytochrome c reductase activity by 21 and 98%, respectively; (4) and glutathione level by 81 and 173%, respectively. Also, single-dose treatments of mice with heroin increased the total hepatic content of CYP, AHH, NADPH-cytochrome c reductase, and glutathione level by 126, 72, 39, 205%, respectively. However, repeated dose-treatments of mice with heroin did not change such activities except cytochrome c reductase activity increased by 20%. Interestingly, the level of free radicals, TBARS, was potentially decreased after single or repeated-dose treatments with either hashish or heroin. It is clear from this study that the effects of hashish are different from those of heroin on the above mentioned enzymes particularly after repeated dose treatments. It is concluded that hashish induced the expression of CYP 2E1 and other carcinogen-metabolizing enzymes activities, and this induction could potentiate the deleterious effects of N-nitrosamines and aromatic hydrocarbons, e.g. benzo(a)pyrene, upon the liver and probably other organs. Such alterations may also change the therapeutic actions of other drugs, which are primarily metabolized by the P450 system, when administered to peoples using hashish or heroin.  相似文献   

13.
1. Caucasian liver samples were used in this study. N-demethylation of trimethadione (TMO) to dimethadione (DMO) was monitored in the presence of chemical inhibitors of CYPs, such as fluconazole, quinidine, dimethyl-nitrosamine, acetaminophen, phenacetin, chlorzoxazone and mephenytoin. Trimethadione N-demethylation was selectively inhibited by dimethylnitrosamine and chlorzoxazone (> 50%) and weakly inhibited by tolbutamide (12%) and fluconazole (22%), whereas other inhibitors showed no effect. This result suggested that TMO metabolism to DMO is mainly mediated by CYP2E1 and marginally by CYP2C and CYP3A4. 2. Fifteen human livers were screened and interindividual variability of TMO N-demethylation activity was 3-fold. Chlorzoxazone 6-hydroxylation activity was also measured and both activities were significantly correlated (r=0.735, p < 0.01). 3. DMO production by human cDNA expressed CYP enzymes was observed mainly for CYP2E1 (10.8 nmol/tube), marginally for CYP2C8 (0.22 nmol tube) and not detectable for other CYP enzymes. 4. These results indicate that TMO metabolism is primarily catalysed by CYP2E1 and that trimethadione would be a suitable selective probe drug for the estimation of human CYP2E1 activity in vivo.  相似文献   

14.
Evidence for involvement of cytochrome P450 2E1 in the MPTP-induced mouse model of PD has been reported [Vaglini, F., Pardini, C., Viaggi, C., Bartoli, C., Dinucci, D., Corsini, G.U., 2004. Involvement of cytochrome P450 2E1 in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced mouse model of Parkinson's disease. J. Neurochem. 91, 285–298]. We studied the sensitivity of Cyp2e1(/) mice to the acute administration of MPTP in comparison with their wild-type counterparts. In Cyp2e1(/) mice, the reduction of striatal DA content was less pronounced 7 days after MPTP treatment compared to treated wild-type mice. Similarly, TH immunoreactivity analysis of the substantia nigra of Cyp2e1(/) mice did not show any neuronal lesions after MPTP treatment. In contrast to this, wild-type animals showed a minimal but significant lesioning by the toxin as evaluated also by means of non-stereologic computerized assisted analysis of this brain area. Striatal levels of DA metabolites after 7 days were variably affected by the toxin, but consistent differences between the two animal strains were not observed.We evaluated short-term changes in the levels of striatal DA and its metabolites, and we monitored striatal MPP+ levels. Striatal MPP+ was cleared more rapidly in Cyp2e1(/) mice than in wild-type animals and, consistently, striatal DA content decreased faster in Cyp2e1(/) mice than in wild-type animals, and 3-methoxytyramine and HVA levels showed an early and sharp rise. Our findings suggest that Cyp2e1(/) mice are weakly sensitive to MPTP-induced brain lesions, markedly in contrast with a protective role of the enzyme as suggested previously. The differences observed between the knockout mice and their wild-type counterparts are modest and may be due to an efficient compensatory mechanism or genetic drift in the colonies.  相似文献   

15.
Male and female Holtzman rats were exposed to ethylbenzene, and the effect on liver microsomal activities was studied. Hydrocarbon- and sex-dependent effects on P450-dependent metabolism of drugs and aromatic hydrocarbons were investigated. Hydrocarbon treatment produced two patterns of induction in cytochrome P450-dependent activities: (1) induction common to both sexes; and (2) induction exclusively in females. Benzphetamine N-demethylation, 7-ethoxycoumarin O-deethylation, p-nitroanisole O-demethylation and aromatic hydroxylation of toluene were induced in both sexes after rats were exposed to ethylbenzene. The rate of benzphetamine N-demethylation increased 4-fold in females and nearly doubled in males. The increase in O-deethylation of 7-ethoxycoumarin was 3-fold in females and doubled in males, while p-nitroanisole O-demethylation increased 4-fold in both sexes after exposure to ethylbenzene. Ethylbenzene had its greatest effect upon the formation of aromatic hydroxylated metabolites of toluene. Ethylbenzene exposure increased the rate of o-cresol formation by 4- and 9-fold in female and male rats, respectively. The formation rate of p-cresol was undetectable in either sex prior to hydrocarbon exposure; however, after the rats were given ethylbenzene, rates increased to 0.4 nmol/min/mg protein in females and to 0.9 nmol/min/mg protein in the males. Ethylbenzene exposure selectively induced aminopyrine demethylation, aniline hydroxylation, N,N-dimethylnitrosamine N-demethylation (DMNA) and aliphatic hydroxylation of toluene in females. Rates for aminopyrine, aniline, and DMNA were increased 50% over controls, while formation of benzyl alcohol from toluene was enhanced to 260% of control. Western immunoblotting indicated that ethylbenzene treatment induced cytochrome P450 2B1/2B2 to a greater extent in male rats and cytochrome P450 2E1 only in females. Ethylbenzene exposure did not affect significantly the level of cytochrome P450 1A1.  相似文献   

16.
Acrylonitrile (AN) and acrylamide (AM) are commonly used in the synthesis of plastics and polymers. In rodents, AM and AN are metabolized to the epoxides glycidamide and cyanoethylene oxide, respectively. The aim of this study was to determine the role of cytochrome P450 in the metabolism of AM and AN in vivo. Wild-type (WT) mice, WT mice pretreated with aminobenzotriazole (ABT, 50 mg/kg ip, 2 h pre-exposure), and mice devoid of cytochrome P450 2E1 (P450 2E1-null) were treated with 50 mg/kg [(13)C]AM po. WT mice and P450 2E1-null mice were treated with 2.5 or 10 mg/kg [(13)C]AN po. Urine was collected for 24 h, and metabolites were characterized using (13)C NMR. WT mice excreted metabolites derived from the epoxides and from direct GSH conjugation with AM or AN. Only metabolites derived from direct GSH conjugation with AM or AN were observed in the urine from ABT-pretreated WT mice and P450 2E1-null mice. On the basis of evaluation of urinary metabolites at these doses, these data suggest that P450 2E1 is possibly the only cytochrome P450 enzyme involved in the metabolism of AM and AN in mice, that inhibiting total P450 activity does not result in new pathways of non-P450 metabolism of AM, and that mice devoid of P450 2E1 do not excrete metabolites of AM or AN that would be produced by oxidation by other cytochrome P450s. P450 2E1-null mice may be an appropriate model for the investigation of the role of oxidative metabolism in the toxicity or carcinogenicity of these compounds.  相似文献   

17.
A number of xenobiotics and certain pathophysiological situations cause the induction of CYP2E1. The present study was designed to establish the role of plasma urea nitrogen and L-arginine on hepatic CYP2E1 expression in rats or rats with acute renal failure. Exposure of rats to a single intravenous dose of 5 mg/kg uranyl nitrate caused renal failure in 5 days (ARF), as evidenced by increases in plasma urea nitrogen level and kidney to body weight ratio. Northern and Western blot analyses revealed that hepatic CYP2E1 was 2- to 4-fold induced by ARF. Treatment of rats with either 10% glucose in drinking water for 5 days following a single injection of uranyl nitrate or two injections of recombinant growth hormone (5 units/kg, s.c., twice a day) on the 4th day after uranyl nitrate injection reduced both the rise in plasma urea nitrogen and the induction of CYP2E1. Exposure of rats to urea (approximately 225 mg/kg/day) in drinking water for 1 to 3 day(s) resulted in significant increases in CYP2E1 mRNA and protein. Furthermore, perfusion of the liver with 25 mM urea for 24 h resulted in CYP2E1 induction with an increase in the mRNA. The levels of CYP2E1 protein and mRNA were increased in rats perfused with 25 mM L-arginine for 24 h (i.e., a 4-fold increase). Hence, L-arginine, which is irreversibly hydrolyzed to urea and ornithine by arginase, also induced hepatic CYP2E1. The results of the present study provided evidence that increases in plasma urea in conjunction with L-arginine metabolism lead to the induction of CYP2E1 in the liver.  相似文献   

18.
It is well established that following a toxic dose of acetaminophen (APAP), nitrotyrosine protein adducts (3-NT), a hallmark of peroxynitrite production, were colocalized with necrotic hepatic centrilobular regions where cytochrome P450 2E1 (CYP2E1) is highly expressed, suggesting that 3-NT formation may be essential in APAP-mediated toxicity. This study was aimed at investigating the relationship between CYP2E1 and nitration (3-NT formation) followed by ubiquitin-mediated degradation of proteins in wild-type and Cyp2e1-null mice exposed to APAP (200 and 400 mg/kg) for 4 and 24 h. Markedly increased centrilobular liver necrosis and 3-NT formation were only observed in APAP-exposed wild-type mice in a dose- and time-dependent manner, confirming an important role for CYP2E1 in APAP biotransformation and toxicity. However, the pattern of 3-NT protein adducts, not accompanied by concurrent activation of nitric oxide synthase (NOS), was similar to that of protein ubiquitination. Immunoblot analysis further revealed that immunoprecipitated nitrated proteins were ubiquitinated in APAP-exposed wild-type mice, confirming the fact that nitrated proteins are more susceptible than the native proteins for ubiquitin-dependent degradation, resulting in shorter half-lives. For instance, cytosolic superoxide dismutase (SOD1) levels were clearly decreased and immunoprecipitated SOD1 was nitrated and ubiquitinated, likely leading to its accelerated degradation in APAP-exposed wild-type mice. These data suggest that CYP2E1 appears to play a key role in 3-NT formation, protein degradation, and liver damage, which is independent of NOS, and that decreased levels of many proteins in the wild-type mice (compared with Cyp2e1-null mice) likely contribute to APAP-related toxicity.  相似文献   

19.
Freshly prepared human hepatocytes are considered as the 'gold standard' for in vitro testing of drug candidates. However, several disadvantages are associated with the use of this model system. The availability of hepatocytes is often low and consequently the planning of the experiments rendered difficult. In addition, the quality of the available cells is in some cases poor. As an alternative, cryopreserved human hepatocytes were validated as a model to study cytochrome P450 1A2 (CYP1A2) and cytochrome P450 3A4 (CYP3A4) induction. In a single blinded experiment, hepatocytes from three separate lots were incubated with three concentrations of different compounds, and compared to non-treated cells and cells incubated with omeprazole or rifampicin. CYP1A2 and CYP3A4 induction was determined by measuring 7-ethoxyresorufin-O-deethylation activity and 6beta-hydroxytestosterone formation, respectively. CYP1A2 and CYP3A4 mRNA and protein expression were analyzed by TaqMan QRT-PCR and immunodetection. Cells responded well to the prototypical inducers with a mean 38.8- and 6.2-fold induction of CYP1A2 and CYP3A4 activity, respectively. Similar as with fresh human hepatocytes, high batch-to-batch variation of CYP1A2 and CYP3A4 induction was observed. Except for 1 and 10 microM rosiglitazone, the glitazones did not significantly affect CYP1A2. A similar result was observed for CYP3A4 activity although CYP3A4 mRNA and protein expression were dose-dependently upregulated. In conclusion, cryopreserved human hepatocytes may be a good alternative to fresh hepatocytes to study CYP1A and 3A induction.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号