首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary This electron microscopic study, based on serial section analysis, describes the synaptic organization of the interstitial subnucleus of the nucleus of the solitary tract and identifies the terminals of the vagal primary afferents utilizing degeneration and HRP transport. The interstitial subnucleus contains sparsely scattered cell bodies, numerous dendrites and axon terminals, and bundles of unmyelinated and myelinated axons. The cell bodies which are small in diameter have an organelle poor cytoplasm and a large invaginated nucleus.Axon terminals can be classified into two main types according to their vesicular shape. The first type contains clear, round vesicles and can be further subdivided into two subgroups on the basis of their morphology and the size of their vesicles. In the first subgroup the terminals are small, contain a few mitochondria and their vesicles are densely packed with an homogeneous size. In the second subgroup the terminals which vary from small to large, contain many mitochondria and contain round vesicles which are heterogeneous in size. The second main terminal type consists of axon terminals containing pleomorphic vesicles which are associated with asymmetrical or symmetrical synaptic contacts on dendrites. Axo-axonic contacts are present in the interstitial subnucleus. In general, the presynaptic axon terminals contain pleomorphic vesicles and the postsynaptic elements contain round vesicles of varying size. In some dendrites, identified by the presence of ribosomes, groups of round and/or pleomorphic vesicles are found associated with synaptic contacts. These dendrites are presynaptic to conventional dendrites and postsynaptic to axon terminals. After removal of the nodose ganglion, degenerative alterations are seen only at the caudal and middle levels of the interstitial subnucleus. Degeneration occurs in a few myelinated axons and in axon terminals which usually contain a mixture of small and larger round, clear vesicles. After HRP injection into the vagus nerve, the HRP reaction product is visible in axon terminals filled with clear, round vesicles which are heterogeneous in size. The labelled axon terminals establish single or multiple synaptic contacts.This study demonstrates that terminals of vagal primary afferents consist principally of terminals of the second subgroup. The morphology of these terminals are compared to primary afferents in the brainstem and spinal cord.  相似文献   

2.
Synaptology of the hypoglossal nucleus in the rat   总被引:1,自引:0,他引:1  
Summary The purpose of this study was to define the types and distribution of synaptic terminals in the hypoglossal nucleus (XII) of the rat. Based on differences in bouton and vesicle size and shape, synaptic specializations and association with postsynaptic organelles, five types of terminals were identified in XII. In order of decreasing frequency they were: 1) S-boutons (spherical vesicles with an asymmetrical synapse); 2) F-boutons (flattened vesicles with a symmetrical synapse); 3) P-boutons (pleomorphic admixture of flattened and spherical vesicles with a symmetrical synapse); 4) C-boutons (pleomorphic vesicles with a subsynaptic cistern); and 5) Tboutons (spherical vesicles with an asymmetrical synapse and subsynaptic dense bodies). S-boutons were the predominant type found on dendrites, while boutons containing flattened vesicles were more prevalent on motoneuron somata. C-boutons were restricted exclusively to cell bodies and large dendrites, and T-boutons were seen primarily on smaller dendritic profiles. These results are, in general, comparable to those previously described in the ventral horn and cranial nerve motor nuclei in several species. However, differences were noted. Specifically, large M-boutons and axo-axonic synapses were not observed in the present study. The functional significance of these findings are discussed in relation to oro-lingual behaviour.  相似文献   

3.
Summary A light and electron microscopical investigation has been undertaken of the substantia nigra in the normal cat. The pars reticulata partly contains the arborization of dendrites whose cell bodies are located in the so-called pars compacta. There is a considerable overlap of the dendritic fields in the rostrocaudal direction, while the dendritic fields are very restricted in the mediolateral extension of the substantia nigra. The secondary and all subsequent branches of the dendrites of nigral cells are for considerable distances completely covered by boutons. Only few boutons contact the cell bodies. Three types of boutons are distinguished in the substantia nigra in the cat. Type I, about 90 % of the total, is of the terminal type, contains pleomorphic vesicles and establishes symmetrical synapses with nigral cell soma, dendritic trunks and spines. The type II bouton (about 10 % of the total number) is most commonly of the terminal type, contains spherical vesicles and establishes asymmetrical synapses with cell bodies and dendritic trunks of nigral cells. The type III bouton (about 2 % of the boutons) is always of the en passage type, contains pleomorphic vesicles and establishes symmetrical contacts with dendrites. All boutons in the cat's substantia nigra contain several large (700–1200 Å) dense core vesicles. Occasional axo-axonic contacts between type I and type III boutons are observed. Type I bouton is invariably presynaptic to the other.The findings are discussed in relation to some relevant problems.On leave of absence from the Anatomical Institute of the Medical Faculty, Charles' University in Prague, with an IBRO grant nr. E. 29.99-1.We gratefully acknowledge the valuable technical assistance of Mrs. J.L. Vaaland and the skilful help by Mrs. B.E. Branil in the preparation of the microphotographs.  相似文献   

4.
The synaptic organization between and among the insular cortex (IC) axons, central amygdaloid nucleus (ACe) axons and posterolateral hypothalamus (PLH) neurons was investigated in the rat using double anterograde tracing and anterograde tracing combined with postembedding immunogold analysis. After ipsilateral injections of biotinylated dextran amine (BDA) into the IC and Phaseolus vulgaris-leucoagglutinin (PHA-L) into the ACe, the conspicuous overlapping distribution of BDA-labeled axon terminals and PHA-L-labeled axon terminals was found in the PLH region just medial to the subthalamic nucleus ipsilateral to the injection sites. At the electron microscopic level, approximately two-thirds of the IC terminals made synapses with small-sized dendrites and the rest did with dendritic spines of the PLH neurons, whereas about 79%, 16% and 5% of the ACe terminals established synapses with small- to medium-sized dendrites, somata, and dendritic spines, respectively, of the PLH neurons. In addition, the IC axon terminals contained densely packed round clear vesicles and their synapses were of asymmetrical type. On the other hand, most of the ACe terminals contained not only pleomorphic clear vesicles but also dense-cored vesicles and their synapses were of symmetrical type although some ACe terminals contained densely packed round clear vesicles and formed asymmetrical synapses. Most of the postsynaptic elements received synaptic inputs from the IC or ACe terminals, and some of single postsynaptic elements received convergent synaptic inputs from both sets of terminals. Furthermore, almost all the ACe terminals were revealed to be immunoreactive for gamma-aminobutyric acid (GABA), by using the anterograde BDA tracing technique combined with immunohistochemistry for GABA. The present data suggest that single PLH neurons are under the excitatory influence of the IC and/or inhibitory influence of the ACe in the circuitry involved in the regulation of cardiovascular functions.  相似文献   

5.
Vasoactive intestinal polypeptide (VIP) neurons within the central nucleus of the rat amygdala were examined using light and electron microscopic immunocytochemical techniques. Vasoactive intestinal polypeptide-immunoreactive neurons were located in the ventral part and less frequently in the central part of the central nucleus. Vasoactive intestinal polypeptide positive terminals were distributed throughout the medial part of a cytoarchitectonically distinct central zone of the central nucleus. Three types of terminals formed synaptic contacts on VIP-immunoreactive neurons: type A containing round vesicles, type B containing many pleomorphic vesicles and type C containing fewer pleomorphic vesicles. All VIP-immunoreactive boutons observed were of type A variety, and made asymmetrical and symmetrical synaptic contacts on both VIP-immunoreactive and nonreactive neurons within the central nucleus.  相似文献   

6.
The fine structure of the periaqueductal gray (PAG) of the rabbit was examined using the transmission electron microscope. On the basis of synaptic polarity, vesicle size, and the nature of the pre- and postsynaptic elements, 10 essentially different synaptic types could be discerned (6 axo-dendritic, 2 axo-somatic, 1 axo-axonic, and 1 dendro-dendritic). Synaptic contact on the soma of PAG neurons were small and covered, on average, only 1.6% of the soma surface. The most striking feature of the synaptic structure of the PAG was that more than 94.1% of all synapses were axo-dendritic. Of these, 83.5% were of the symmetrical type. Most of these contacts occurred on buttons of small to medium size, and contained either round vesicles of medium size or pleomorphic vesicles of medium size. Boutons containing only flattened vesicles were quite rare. Boutons contacting larger dendrites were generally small-to-medium in size, made asymmetric-type synaptic contacts, and contained pleomorphic vesicles of medium-to-large size. Medium-sized dendrites were contacted principally by small boutons exhibiting either symmetrical or asymmetrical junctions containing medium-sized pleomorphic vesicles, and in addition a few of these boutons contained both large, and small, round vesicles. Dendritic spines were generally provided with only one synaptic contact, stretching the entire width of the spinous process. Boutons and the spines on dendrites were approximately the same size. Synapses between two vesicle-containing structures (axo-axonic or dendro-dendritic synapses) were rare (1.4%). They were generally asymmetric and contained round vesicles of medium size. Complex synapses, where a glial sheet enclosed the synapse, were occasionally observed. Also seen were multiple synapses, with up to 11 contacts on a single dendritic profile. Large dense-core vesicle were seen in approximately 40% of all synapses, whereas small dense-core vesicles were only found in about 3%. Data is provided on how different synaptic features relate to ventral, lateral, dorsal, and medial PAG. Principally this is in relation to neuron size, glia cell content, axonal characterization, and vesicular type. © 1993 Wiley-Liss, Inc.  相似文献   

7.
The morphology and distribution of somatostatin-immunoreactive synaptic boutons was studied in the rat trigeminal subnucleus caudalis using pre-embedding electron microscopic techniques. Immunoreactive terminals were found in lamina I and throughout lamina II but were more concentrated in outer lamina II. All immunoreactive terminals contained many round or pleomorphic agranular small synaptic vesicles and some large dense-cored vesicles. Lamina I terminals were all simple dome-shaped and relatively small. They established one asymmetric or slightly asymmetric synapse over a dendritic spine or a small, medium or large dendritic shaft. The large dendrites are probably derived from Waldeyer neurons. Many lamina II immunoreactive terminals were also simple dome-shaped terminals and established asymmetric synaptic contacts with one postsynaptic structure, usually a dendritic spine or a small to medium-sized dendritic shaft. However, other lamina II immunoreactive terminals were larger and displayed more complex morphology and synaptology. Complex immunoreactive terminals had scalloped or smooth contours and made synaptic contacts with more than one postsynaptic profile. In outer lamina II they sometimes constituted the central terminals of typical glomerular synaptic complexes. We conclude that many of the immunoreactive simple terminals probably originate from intrinsic somatostatin-immunoreactive interneurons while some of the more complex ones and the central glomerular terminals are likely to originate from primary afferents. These results are consistent with our accompanying light microscopic study (Alvarez and Priestley, Neuroscience 38, 343-357, 1990) which indicates that somatostatin-immunoreactive primary afferents project preferentially to outer lamina II while the lamina I somatostatin-immunoreactive plexus is likely to originate largely from laminae I and II interneurons. In addition somatostatin-immunoreactive cell bodies were found in lamina II. The heaviest immunoreactivity in these cells was in the Golgi apparatus. Also some vesicles containing dendrites were immunostained, and these were most abundant in inner lamina II. Thus, in trigeminal subnucleus caudalis, somatostatin may be derived from primary afferent synaptic boutons, interneuron synaptic boutons and interneuron dendrites. However, each of these sites probably makes a proportionately different contribution to the total amount of somatostatin released in each lamina or sublamina.  相似文献   

8.
The ultrastructural characteristics of non-degenerating GABAergic neurons in rostrolateral medial vestibular nucleus were identified in monkeys following midline transection of vestibular commissural fibers. In the previous papers, we reported that most degenerated cells and terminals in this tissue were located in rostrolateral medial vestibular nucleus, and that many of these neurons were GABA-immunoreactive. In the present study, we examined the ultrastructural features of the remaining neuronal elements in this medial vestibular nucleus region, in order to identify and characterize the GABAergic cells that are not directly involved in the vestibular commissural pathway related to the velocity storage mechanism. Such cells are primarily small, with centrally-placed nuclei. Axosomatic synapses are concentrated on polar regions of the somata. The proximal dendrites of GABAergic cells are surrounded by boutons, although distal dendrites receive only occasional synaptic contacts. Two types of non-degenerated GABAergic boutons are distinguished. Type A terminals are large, with very densely-packed spherical synaptic vesicles and clusters of large, irregularly-shaped mitochondria with wide matrix spaces. Such boutons form symmetric synapses, primarily with small GABAergic and non-GABAergic dendrites. Type B terminals are smaller and contain a moderate density of round/pleomorphic vesicles, numerous small round or tubular mitochondria, cisterns and vacuoles. These boutons serve both pre- and postsynaptic roles in symmetric contacts with non-GABAergic axon terminals. On the basis of ultrastructural observations of immunostained tissue, we conclude that at least two types of GABAergic neurons are present in the rostrolateral portion of the monkey medial vestibular nucleus: neurons related to the velocity storage pathway, and a class of vestibular interneurons. A multiplicity of GABAergic bouton types are also observed, and categorized on the basis of subcellular morphology. We hypothesize that "Type A" boutons correspond to Purkinje cell afferents in rostrolateral medial vestibular nucleus, "Type B" terminals represent the axons of GABAergic medial vestibular nucleus interneurons, and "Type C" boutons take origin from vestibular commissural neurons of the velocity storage pathway.  相似文献   

9.
10.
P Panula  L Rechardt  H Hervonen 《Neuroscience》1979,4(10):1441-1451
Four different types of neurons were identified in cultures of newborn rat neostriatum. Small and medium-sized neurons were most numerous. A few large neurons and some very small ‘microneurons’ were observed. The morphology of medium-sized neurons varied, and this group may contain more than one functional subgroup. Axosomatic synapses were associated with all types of neurons, but most of them made contacts with medium-sized neurons. All axodendritic synapses made symmetrical contacts, with or without synaptic membrane thickenings. A great majority of terminal boutons contained small, round, clear vesicles. A few terminals with large pleomorphic clear vesicles were seen. Large granular vesicles were found in the peripheral cytoplasm of some medium-sized neurons, dendrites and axon terminals. No terminals contained exclusively large granular vesicles, but in some terminals they were more numerous than the small clear vesicles. The dense core of the large granular vesicles was resistant to reserpine treatment. Kainic acid did not cause specific degenerative changes. The presence of several morphologically distinct populations of neurons renders it possible to study the nature of these cells in different experimental conditions. Intrinsic neostriatal synaptic contacts appeared to be symmetrical, although it is possible that some of them have the capacity to develop asymmetrical contacts. The lack of effect of kainic acid may be explained by the early maturational stage of the cells or by the lack of extrinsic contacts. More functional studies are necessary before the usefulness of these cultures for investigating neostriatal function can be assessed.  相似文献   

11.
Light and electron microscopic tracing studies were conducted to assess the synaptic organization in the laterodorsal thalamic nucleus (LD) of the rat and the laminar origins of corticothalamic terminals from the retrosplenial and visual association cortices to LD. A survey of the general ultrastructure of LD revealed at least three types of presynaptic terminals identified on the basis of size, synaptic vesicle morphology, and synaptic membrane specializations: (1) small axon terminals with round synaptic vesicles (SR), which accounted for the majority of terminal profiles and made asymmetric synaptic contacts predominantly with small dendritic shafts and spines; (2) large axon terminals with round synaptic vesicles (LR), which formed asymmetric synaptic contacts mainly with large dendritic shafts; and (3) small to medium-size axon terminals with pleomorphic synaptic vesicles (SMP), which symmetrically synapsed with a wide range of postsynaptic structures from cell bodies to small dendrites. Synaptic glomeruli were identified, whereas no presynaptic dendrites were found. To characterize and identify corticothalamic terminals arising from the retrosplenial and visual association cortices that project to LD, wheat germ agglutinin conjugated to horseradish peroxidase (WGA–HRP) was injected into these cortices. Axons anterogradely labeled with WGA–HRP ended in both SR and LR terminals. On the other hand, dextran-tetramethylrhodamine injected into LD as a retrograde fluorescent tracer labeled large pyramidal cells of layer V as well as small round or multiform cells of layer VI in the retrosplenial and visual association cortices. These findings provide the possibility that corticothalamic terminations from cortical neurons in layer V end as LR terminals, while those from neurons in layer VI end as SR boutons.  相似文献   

12.
Summary Dendritic arborization pattern, spatial and synaptic relations of various neuron types and the terminal distribution of afferent axons of various origin were studied in the medial superior olivary nucleus of the cat using Golgi, degeneration, electron microscope and horseradish peroxidase techniques. Three types of neurons clearly different in morphological features, distribution, neighbourhood relations, input and output characteristics were distinguished: (1) fusiform cells having specific dendritic orientations and arborization patterns and synaptic relations to various types of terminal axon arborizations (2) multipolar neurons with wavy dendrites bearing spine-like appendages, receiving relatively few synaptic contacts and having a locally arborizing axon, and (3) elongated marginal cells, largely restricted to the fibrous capsule of the nucleus. The fusiform and marginal neurons were identified by retrograde peroxidase labeling as the olivo-collicular projection cells.Ultrastructural analysis of normal and experimental material revealed the presence of four distinct kinds of axon terminals differing in size, synaptic vesicles type, relation to postsynaptic targets and in origin: (i) large terminals with multiple extended asymmetric synaptic membrane specializations and containing round, clear vesicles arise from the spherical cells of the ipsilateral anteroventral cochlear nucleus, (ii) most of the small axon terminal profiles — engaged in asymmetric synaptic contacts — originated from the trapezoid nucleus, (iii) terminal boutons containing pleomorphic vesicles belong to fibers descending from the ipsilateral multipolar neurons in the central nucleus of the inferior colliculus and from the nuclei of the lateral lemniscus while (iv) boutons containing exclusively ovoid vesicles and remaining intact after complete deafferentation of the nucleus were considered to be of local origin.  相似文献   

13.
Summary The ultrastructure of the centromedian nucleus of the monkey thalamus was analysed qualitatively and quantitatively and projection neurons, local circuit neurons, and synaptic bouton populations identified. Projection neurons were mostly medium-sized, with oval-fusiform or polygonal perikarya, few primary dendrites, and frequent somatic spines; local circuit neurons were smaller. Four basic types of synaptic boutons were distinguished: (1) Small- to medium-sized boutons containing round vesicles (SR) and forming asymmetric contacts, identified as corticothalamic terminals. (2) Heterogeneous medium-sized boutons with asymmetric contacts and round vesicles, similar to the so-called large round (LR) boutons, which were in part of cortical origin. (3) Heterogeneous GAD-positive small- to medium-sized boutons, containing pleomorphic vesicles and forming symmetric contacts (F1 type), which included pallidothalamic terminals. (4) Presynaptic profiles represented by GAD-positive vesicle-containing dendrites of local circuit neurons. Complex synaptic arrangements, serial synapses and triads with LR and SR boutons engaging all parts of projection neuron dendrites and somata, were seen consistently, whereas classical glomeruli were infrequent. LR and SR boutons also established synapses on dendrites of local circuit neurons. F1 boutons established synapses on projection neuron somata, dendrites and initial axon segments. Compared to other previously studied motor-related thalamic nuclei, differences in synaptic coverage between proximal and distal projection neuron dendrites were less pronounced, and the density of synapses formed by local circuit dendrites on projection neuron dendrites was lower. Thus, compared to other thalamic nuclei, the overlap of different inputs was higher on monkey centromedian cells, and centromedian inhibitory circuits displayed a different organization.  相似文献   

14.
Presynaptic dendrites (PSDs) which participate in the serial synapses have frequently been found in the intermediate and deep layers of the cat superior colliculus. The PSDs are presynaptic to small dendritic shafts or spines with symmetrical membrane thikening, and postsynaptic to axon terminals with asymmetrical synaptic contact. Two types of the axon terminals are observed, both of which contain pleomorphic vesicles.  相似文献   

15.
Summary A systematic study of the normal synaptic patterns within the lateral reticular nucleus (LRN) of the rat revealed various synaptic relationships. Two types of axon terminals were identified according to the morphology of the synaptic vesicles contained within them. Axon terminals with round vesicles established asymmetrical synaptic contacts with the somata and all areas of the dendritic trees including somatic and dendritic appendages. Pleomorphic-vesicle terminals established symmetrical synaptic contacts on somata and their appendages and on all sizes of dendrites and their appendages. Both round and pleomorphicvesicle terminals were infrequently seen to synapse upon the somata and proximal dendrites. The round-vesicle terminals outnumbered the pleomorphic-vesicle terminals on the dendritic trees. Terminals of the en passant type were also common throughout the LRN. Both round and pleomorphic-vesicle terminals were observed simultaneously contacting the soma and one or more dendritic profiles, or two different dendritic profiles. Synaptic configurations (glomeruli) were also observed in all three divisions of the nucleus. They consisted of a large, central, round-vesicle terminal contacting a number of small-calibre dendritic processes. This arrangement was surrounded by one or more sheets of glial lamellae. Puncta adherentia were observed on the apposed membranes of adjacent cells, adjacent dendrites and adjacent axon terminals.  相似文献   

16.
Antisera to GABA conjugates and postembedding techniques were used to identify GABA-containing axonal endings at the electron microscopic level in the inferior colliculus. Over 90% of the GABA-labeled axonal endings had a similar morphology. They contained pleomorphic synaptic vesicles and made symmetrical synapses. The exceptional endings contained round vesicles and made symmetrical synaptic contacts or had pleomorphic vesicles with asymmetrical contacts. The majority of GABA-labeled axonal endings synapsed on dendrites; however, a few labeled axosomatic synapses were also found. Potential sources for these GABAergic synapses are neurons intrinsic to the inferior colliculus or from the dorsal nucleus of the lateral lemniscus. These findings suggest a basic similarity for most GABAergic endings in the inferior colliculus despite their possible origin from different cell types.  相似文献   

17.
Summary Axon terminals in the neuropil of the lateral nucleus can be divided into six classes, each with a specific constellation of characteristics that consistently occur together. Two of these classes have synaptic varicosities with elliptical synaptic vesicles, one in a dense, the other in a sparse matrix, and both make axosomatic and axodendritic synapses. The remaining four classes all have round synaptic vesicles and do not make axosomatic synapses. In the first of these four, the vesicles are tightly packed in a dense matrix, in another they are loosely dispersed, and in the third they are clustered. In the fourth, large granular vesicles predominate. Of these six classes, the most numerous belong to the axons of the Purkinje cell terminal arborization. These boutons resemble their counterparts in the cerebellar cortex, the recurrent collaterals of the Purkinje axon. They have elliptical and flat synaptic vesicles in a dark matrix. The varicosities terminate on somata and dendrites of large and small neurons and constitute the majority of their input. Purkinje axons constitute 86% of the total population of terminals on large neuronal perikarya and 50% of those on their dendrites, but only 78% on the somata of small neurons and 31% on their dendrites. The terminals of climbing fiber collaterals are recognized by their resemblance in electron micrographs to the terminals of the climbing fiber arborization in the cerebellar cortex. They bear round synaptic vesicles packed into a dense axoplasmic matrix and make Gray's type 1 axodendritic synapses with large and small neurons. These axons are restricted to the lateral and ventral aspects of the nucleus and constitute 5% of the terminals on large cell dendrites and 6% of those on small neurons. The axons tentatively identified as collaterals of mossy fibers are myelinated fibers with a light axoplasm containing round synaptic vesicles, dispersed throughout their varicosities. They make Gray's type 1 synapses and constitute a fair percentage of the total axodendritic contacts in the neuropil, 22% on large neurons and 28% on small neurons. The bases for these tentative identifications are discussed in detail, as are the various synaptic relationships undertaken by each class of axon. The remaining 4 classes of axons of the neuropil will be described in subsequent papers.Supported in part by U.S. Public Health Service grants NS 10536 and NS 03659, Training grant NS 05591 from the National Institute of Neurological Diseases and Stroke, and a William F. Milton Fund Award from Harvard University.  相似文献   

18.
The central subnucleus of the nucleus tractus solitarii (ceNTS) receives afferent projections from the esophageal wall and projects to the nucleus ambiguus, thus serving as a relay nucleus for peristalsis of the esophagus. Here we examine the synaptic organization of the ceNTS, and its esophageal afferents by using transganglionic anterograde transport of cholera toxin-conjugated horseradish peroxidase (CT-HRP). When CT-HRP was injected into the subdiaphragmatic esophagus, many anterogradely labeled terminals were found only in the ceNTS. The ceNTS was composed of round or oval-shaped, small neurons (14.7x8.7 micro m) containing sparse organelles and an irregularly shaped nucleus. The average number of axosomatic terminals was only 1.3 per section cut through the nucleolus. Most of them (92%) contained round vesicles and formed asymmetric synaptic contacts (Gray's type I), and a few (8%) contained pleomorphic vesicles and formed symmetric synaptic contacts (Gray's type II). All anterogradely labeled terminals contacted dendrites but not the neuronal somata. The labeled terminals were large (2.55+/-0.07 micro m) and exclusively Gray's type I. More than half of them (60%) contacted small dendrites (less than 1 micro m in diameter), and contained dense-cored vesicles. More than 40% of the labeled terminals contacted two to four dendrites, thus forming a synaptic glomerulus. Sometimes a labeled terminal that contacted an unlabeled terminal by an adherent junction was found within the glomerulus. The large terminals and these complex synaptic relations appeared to characterize the esophageal afferent projections in the ceNTS.  相似文献   

19.
Summary A light and electron microscopical investigation of the nucleus ventralis lateralis (VL) and nucleus ventralis anterior (VA) of the cat's thalamus was made. Light microscopical examination of Golgi impregnated material revealed the existence of two types of cells based on differences in their dendritic arborization and branching of the axon. One of the cells is considered to be the thalamocortical relay cell, whereas the other is tentatively considered to be a Golgi type II neuron. Electron microscopical investigations of the two nuclei revealed the existence of a high number of profiles containing pleomorphic vesicles, and which have been identified as dendrites. Based on correlation with the Golgi material as well as on cytological features of the parent cell bodies, the dendrites containing vesicles are believed to belong to Golgi type II neurons. In addition to the vesicle-filled dendritic profiles, five different types of boutons have been identified. Two of these boutons, type LR and type SR, contain ovoid vesicles and establish asymmetrical synaptic contacts with dendrites of both types of neurons. Type F1, F2 and F3 boutons contain pleomorphic vesicles, but can be distinguished from dendritic profiles containing pleomorphic vesicles. Type F2 and F3 boutons establish symmetrical contacts with dendrites of both thalamocortical relay cells and Golgi type II neurons. Type F1 boutons establish symmetrical synaptic contact with the proximal dendrites or soma of the thalamocortical relay neurons only.Dendrites of both thalamocortical relay cells and Golgi type II neurons, as well as type LR, SR, F2 and F3 boutons, are engaged in glomeruli. Dendro-dendritic synapses between Golgi type II dendrites and relay cell dendrites are frequently seen, whereas no evidence of axo-axonic synapses have been found.Differences and similarities in the ultrastructural organization of VL and VA are described in some detail.Some of the observations reported in this and the following two papers were presented at the 6th Symposium of the International Society for Research in Stereoencephalotomy, Tokyo, October 12th & 13th, 1973.  相似文献   

20.
Substance P (SP)-immunoreactive (IR) elements were studied in laminae I and II of the chicken spinal cord in conjunction with an anti-SP monoclonal antibody at light- and electron-microscopic levels by means of the indirect antibody peroxidase-antiperoxidase technique. At the light-microscopic level, SP-IR elements were most intensely observed in the dorsolateral portion of the dorsal horn, laminae I and II. Electron-microscopically, SP-IR boutons contained large spherical dense-cored vesicles (diameter range: 60-125 nm) and spherical clear vesicles. They were subdivided into two groups: large SP-IR boutons, which were the central terminals in synaptic glomeruli, and small SP-IR boutons. In the synaptic glomerulus, two kinds of non-IR presynaptic profiles made axo-axonic synapses with the SP-IR central terminal: one was the presynaptic profile containing pleomorphic clear vesicles and the other was the presynaptic profile containing large dense-cored vesicles. A 'septate junction'-like structure was observed between large SP-IR boutons in synaptic glomeruli. The present results suggest that SP-containing primary afferents are modulated presynaptically by two different neurotransmitter or modulator systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号