首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
Modification of the natural phosphodiester backbone of deoxyribooligonucleotides can impart increased biostability via nuclease resistance. Further, uniform incorporation of phosphorothioate linkages renders oligonucleotides highly resistant to reagents traditionally used in sequencing reactions. As a consequence, analytical tests crucial for establishing the identity of such oligonucleotide drugs are less informative. To circumvent this problem, chemical oxidation has been employed for converting the phosphorothioate to the uniform phosphodiester, thereby facilitating enzymatic degradation. Following oxidation, exonucleases which sequentially cleave individual bases from the 3′ or 5′ terminus of the oligonucleotide or base-specific cleavage chemicals were used to facilitate sequence identification of the oligonucleotide. Matrix-assisted laser desorption ionization-time-of-flight/mass spectrometry (MALDI-TOF/MS), previously used to sequence natural phosphodiester DNA, was then used to sequence the chemically oxidized phosphorothioate. Sequential enzymatic cleavage of desulphurized phosphorothioates in combination with MALDI analysis not only provides a viable alternative to radiolabeling as used in conventional sequencing approaches (e.g. Maxam-Gilbert), but also enables rapid sequencing of phosphorothioate oligonucleotides, for routine drug analysis.  相似文献   

2.
Purpose. This study examined the pharmacokinetics and tissue distribution of an antisense oligonucleotide ISIS 2503, formulated in stealth (pegylated) liposomes (encapsulated) or in phosphate-buffered saline (unencapsulated). Methods. Encapsulated or unencapsulated ISIS 2503 was administered to rhesus monkeys by intravenous infusion. The concentrations of ISIS 2503 and metabolites in blood, plasma, and tissue samples were determined by capillary gel electrophoresis. Results. Plasma concentrations of encapsulated ISIS 2503 decreased mono-exponentially after infusion with a mean half-life of 57.8 hours. In contrast, the concentration of unencapsulated ISIS 2503 in plasma decreased rapidly with a mean half-life of 1.07 hours. Both encapsulated and unencapsulated ISIS 2503 distributed widely into tissues. Encapsulated ISIS 2503 distributed primarily to the reticulo-endothelial system and there were few metabolites observed. In contrast, unencapsulated ISIS 2503 distributed rapidly to tissue with highest concentration seen in kidney and liver. Nuclease-mediated metabolism was extensive for unencapsulated oligonucleotide in plasma and tissues. Conclusions. The data suggest that stealth liposomes protect ISIS 2503 from nucleases in blood and tissues, slow tissue uptake, and slow the rate of clearance from the systemic circulation. These attributes may make these formulations attractive for delivering oligonucleotides to sites with increased vasculature permeability such as tumors or sites of inflammation.  相似文献   

3.
4.
The purpose of this study was the investigation of cationic nanoparticles as drug delivery systems for antisense oligonucleotides. Cationic monomethylaminoethylmethacrylate (MMAEMA) copolymer nanoparticles were prepared from N-monomethylaminoethylmethacrylate hydrochloride and methylmethacrylate. Oligonucleotides were adsorbed onto MMAEMA nanoparticles. Cell penetration was investigated in vitro with fluorescently labeled oligonucleotides and nanoparticles. Antisense effects of oligonucleotides adsorbed to MMAEMA nanoparticles were evaluated by sequence specific inhibition of ecto-5'-nucleotidase expression. The amount of enzyme expressed in PC12 cells was detected and quantified by immunocytochemistry using fluorescein isothiocyanate-labeled antibodies. Oligonucleotides were adsorbed to MMAEMA nanoparticles by the formation of ion-pairs between the positively charged secondary amino groups located on the particle surface and the anionic phosphodiester or phosphorothioate backbones of the oligonucleotides. Adsorption to nanoparticles led to an increased cellular uptake of oligonucleotides and to a significantly enhanced antisense efficacy of unmodified phosphodiester oligonucleotides as well as phosphorothioates. The results of the cell penetration and the antisense assay demonstrated that MMAEMA nanoparticles are promising carriers for oligonucleotide administration.  相似文献   

5.
The pharmacokinetics of a 2'-O-(2-methoxyethyl)-ribose modified phosphorothioate oligonucleotide, ISIS 104838 (human tumor necrosis factor-alpha antisense), have been characterized in mouse, rat, dog, monkey, and human. Plasma pharmacokinetics after i.v. administration exhibited relatively rapid distribution from plasma to tissues with a distribution half-life estimated from approximately 15 to 45 min in all species. Absorption after s.c. injection was high (80-100%), and absorption after intrajejunal administration in proprietary formulations was as high as 10% bioavailability compared with i.v. administration. Urinary excretion of the parent drug was low, with less than 1% of the administered dose excreted in urine after i.v. infusion in monkeys at clinically relevant doses (< or = 5 mg/kg). ISIS 104838 is highly bound to plasma proteins, likely preventing renal filtration. However, shortened oligonucleotide metabolites of ISIS 104838 lose their affinity to bind plasma proteins. Thus, excretion of radiolabel (mostly as metabolites) in urine (75%) and feces (5-10%) was nearly complete by 90 days. Elimination of ISIS 104838 from tissue was slow (multiple days) for all species, depending on the tissue or organ. The highest concentrations of ISIS 104838 in tissues were seen in kidney, liver, lymph nodes, bone marrow, and spleen. In general, concentrations of ISIS 104838 were higher in monkey tissues than in rodents at body weight-equivalent doses. Plasma pharmacokinetics scale well across species as a function of body weight alone. This favorable pharmacokinetic profile for ISIS 104838 provides guidance for clinical development and appears to support infrequent and convenient dose administration.  相似文献   

6.
Antisense oligonucleotides may hybridise with high selectivity to mRNA sequences allowing monitoring of gene expression or inhibition of the manifestation of altered genes inducing diseases. As part of the development of positron emission tomography methods, 17-mer antisense phosphodiester (PO), phosphorothioate (PS) and 2'-O-methyl phosphodiester (OMe) oligonucleotides specific for point mutationally activated human K-ras oncogene were labelled with 68Ga radionuclide via a chelator coupled to the probe. Hybridisation in solution and non-denaturing polyacrylamide gel electrophoresis (PAGE) with a subsequent exposure of the gels was performed to verify the hybridisation ability after labelling. The biodistribution was studied in male Sprague-Dawley rats by injecting 2MBq of 68Ga-oligonucleotides via the tail vein and measuring the organ radioactivity concentration after 20, 60 and 120 min or using whole-body autoradiography with 10 MBq 68Ga-oligonucleotide and 20 min incubation time. Control experiments were performed with 68GaCl3 and 68Ga-chelator complex. The results revealed that 68Ga-labelling did not change the hybridisation abilities of the oligonucleotides. The biodistribution pattern depended on the nature of the oligonucleotide backbone. Bone marrow, kidney, liver, spleen and urinary bladder were the five organs of highest uptake with each oligonucleotide. The PO accumulated highly in the liver, whereas high kidney uptake dominated the PS and OMe patterns. Intact PS and OMe were detected in plasma samples taken 20 and 60 min after injection. This study supplies a base for the further development of 68Ga-labelled oligonucleotides as pharmacokinetic tools and a potential future use for in vivo imaging of gene expression.  相似文献   

7.
The plasma pharmacokinetics and tissue disposition of ISIS 2503 were studied in mice following single and multiple bolus intravenous (iv) injections of 1-50 mg/kg, and in monkeys following single and multiple 2-h iv infusions of 1-10 mg/kg and bolus iv injections of 1 mg/kg of ISIS 2503. ISIS 2503 and its metabolites were measured in plasma, urine, and tissues using solid-phase extraction followed by capillary gel electrophoresis (CGE). In both species, the plasma clearance of ISIS 2503 was characterized by rapid distribution to tissues, and to a lesser extent, metabolism. The plasma clearance in mice was at least two-fold more rapid than in monkeys at equivalent doses. The plasma disposition (t1/2) increased with dose. The highest concentrations of oligonucleotide were consistently observed in the kidney and liver in both species. At equivalent doses, tissue concentrations in monkeys were much higher than tissue concentrations in mice. Urinary excretion of total oligonucleotide was a minor elimination pathway in both species at doses < 10 mg/kg. However, urinary excretion of total oligonucleotide in mice was increased to 12-29% as dose increased from 20 to 50 mg/kg.  相似文献   

8.
BACKGROUND: Phosphorothioate oligonucleotides, in general, possess properties that could be utilized in the development of therapeutic heavy metal chelators. METHODS: Iron excretion was measured in 16 patients participating in studies to test the safety of OL(1)p53, a 20-mer phosphorothioate oligonucleotide complementary to p53 mRNA. Patients were given OL(1)p53 at doses of 0.05 to 0.25 mg/kg/h for 10 days by continuous intravenous infusion. Urine was collected during the study and analyzed for iron, copper, cadmium, and zinc. RESULTS: We found that phosphorothioate oligonucleotides have a high affinity for iron as well as several other clinically relevant toxic metals. Analysis of patient urine following administration of OL(1)p53 reveals a 7.5-fold increase in iron excretion at low doses (0.05 mg/kg/h). CONCLUSIONS: Phosphorothioate oligonucleotides may have therapeutic potential as heavy metal chelators. Low doses of phosphorothioate oligonucleotide facilitated the excretion of iron. Renal clearance of iron-phosphorothioate oligonucleotide complexes most likely involves secretion into proximal tubules.  相似文献   

9.
10.
The objective of this study was to define the role of complement activation in the acute and transient toxicities associated with administration of phosphorothioate oligonucleotides in monkeys. In the absence of complement inhibitor, complement activation blocker-2 (CAB-2), i.v. infusion of 20 mg/kg ISIS 2302 produced increases in the concentrations of the complement split products Bb and C5a (100- and 7-fold, respectively). Monkeys also experienced marked changes in bloodpressure (hypertension and hypotension), clinical signs of toxicity (lethargy and periorbital edema), fluctuations in circulating neutrophil counts, and elevations in serum cytokine levels (45-, 12-, and 4-fold increases in IL-6, MCP-1, and IL-12, respectively). Changes occurred at or near the end of infusion and returned to normal over time. One of the three animals died approximately 4 h following infusion of 20 mg/kg ISIS 2302 alone. In contrast, prior treatment with CAB-2 effectively blocked complement activation, as well as the ISIS 2302-induced hemodynamic and clinical responses. Importantly, plasma concentration of ISIS 2302 were unaffected by CAB-2 pretreatment. Thus, the protection afforded by CAB-2 was due to its inhibition of complement activation rather than to any impact on the disposition of ISIS 2302. These results clearly demonstrate the causal relationship between activation of the alternative complement pathway and the hemodynamic and clinical responses associated with rapid infusion of phosphorothioate oligonucleotides. Demonstration of this relationship underscores the importance of avoiding complement activation in patients to ensure the continued safe use of phosphorothioate oligodeoxynucleotides.  相似文献   

11.
Presystemic degradation in the gastrointestinal tract is one of the major problems contributing to the poor oral absorption of antisense oligonucleotides. Complexes between the antisense phosphorothioate oligodeoxynucleotide ISIS 2302 and the polycationic carriers protamine sulfate grade X, protamine chloride grade V, protamine phosphate grade X, poly-L-lysine hydrobromide (PLL), spermidine phosphate salt, spermine diphosphate salt, and Protasan G113 and CL113 were formulated in order to increase stability against intestinal nucleolytic degradation. Specific conductivity measurements were carried out to determine the charge ratio of the complex systems. Nuclease stability assays were performed in a rat small intestine homogenate model, which displayed significant exo- and endonuclease activity. Full-length oligonucleotide and metabolites were analyzed by capillary gel electrophoresis with UV detection at 260 nm. Most of the complexes of ISIS 2302 and the polycationic materials, except PLL-based systems, showed a better protection against enzymatic metabolism than free oligonucleotide. Protamine sulfate and protamine chloride considerably enhanced the nuclease stability of the phosphorothioate antisense oligonucleotide. The association of oligonucleotides with several polycationic substances proved to be an alternative to chemical modification in order to stabilize oligonucleotides in the gastrointestinal tract against nucleolytic degradation.  相似文献   

12.
Depending on base sequence, DNA displays immunological activities relevant to the design of novel therapeutic agents. To determine the influence of backbone structure on these activities, we tested a series of synthetic phosphodiester and phosphorothioate oligonucleotides in in vitro cultures of murine spleen cells. These compounds were 30 bases long and consisted of either a single base or an immunostimulatory sequence (AACGTT) flanked on 5' and 3' ends by 12 nucleotides of each base. Cell activation was assessed by both thymidine incorporation and expression of cell surface CD69; production of interleukin-6 and interleukin-12 was used as a measure of cytokine stimulation. In these assays, phosphorothioate oligonucleotides induced much higher levels of proliferation, CD69 expression, and cytokine production than the comparable phosphodiester compounds and had activity at lower concentrations. The sequence for optimal stimulation by phosphorothioates varied among responses, however. For example, whereas compounds containing an immunostimulatory sequence all induced similar levels of proliferation and CD69 expression, cytokine production was greatest with compounds with dA and dT flanks. Furthermore, while single base dG oligonucleotides stimulated proliferation as both phosphodiesters and phosphorothioates, they failed to stimulate cytokine production. Together, these findings indicate that base sequence as well as backbone chemistry influence immune activation by synthetic oligonucleotides, with the effects varying among responses. While suggesting differences in the structure-function relationships of nucleic acids in their immune activities, these findings also raise the possibility of the design of agents with specific patterns of immune modulation.  相似文献   

13.
Oligonucleotide analogues containing nitrogen replacing either 3′- or 5′-oxygen atoms have been attracting attention of the scientific community for a long time. Originally, it was suggested that these compounds might be used as a functional mimetic of DNA molecules, which could be easier to prepare, due to a higher nucleophilicity of amino vis-a-vie hydroxyl group. Recent advances in development of oligonucleotide-based therapeutic and diagnostic agents significantly increased interest in these compounds as potential antisense and antigene compounds. Among numerous synthesised molecules the N3′→P5′ phosphoramidate oligonucleotides attract particular attention. Uniformly modified oligonucleotide N3′→P5′ phosphoramidates, containing 3′-amino replacing 3′-hydroxyl nucleosides, form very stable duplexes with complementary native phosphodiester DNA, and particularly with RNA strands. The phosphoramidate compounds form extremely stable triple-stranded complexes with single or double-stranded DNA targets and 2′-deoxyoligonucleotide N3′→P5′ phosphoramidates and their duplexes are structurally and functionally similar to those formed by native RNA molecules. This property allowed for application of these compounds as RNA decoys. Further duplex stabilisation was observed for 2′-deoxyoligonucleotide N3′→P5′ oligonucleotides. N3′→P5′ phosphoramidates oligonucleotides are highly resistant to enzymatic digestion by cellular nucleases and their duplexes with complementary RNA strands that are not substrates for RNase H-catalysed hydrolysis in vitro. However, they still exert sequence specific activity in various cellular systems and in vivo in mice, comparable or superior to RNase H-inducing phosphorothioate oligonucleotides. Fluorescently labelled phosphoramidates have also been used as FISH probes for telomeric DNA-directed diagnostic applications.  相似文献   

14.
Beck  G. F.  Irwin  W. J.  Nicklin  P. L.  Akhtar  S. 《Pharmaceutical research》1996,13(7):1028-1037
Purpose. Oral bioavailability for antisense oligonucleotides has recently been reported but the mechanistic details are not known. The proposed oral delivery of nucleic acids will, therefore, require an understanding of the membrane binding interactions, cell uptake and transport of oligonucleotides across the human gastro-intestinal epithelium. In this initial study, we report on the cell-surface interactions of oligonucleotides with human intestinal cells. Methods. We have used the Caco-2 cell line as an in vitro model of the human intestinal epithelium to investigate the membrane binding interactions of 20-mer phosphodiester (PO) and phosphorothioate (PS) oligonucleotides. Results. The cellular association of both an internally [3H]-labelled and a 5end [32P]-labelled PS oligonucleotide (3.0% at 0.4 µM extracellular concentration) was similar and was an order of magnitude greater than that of the 5end [32P]-labelled PO oligonucleotide (0.2%) after 15 minutes incubation in these intestinal cells. The cellular association of PS was highly saturable with association being reduced to 0.9% at 5 µM whereas that of PO was less susceptible to competition (0.2% at 5 µM, 0.1% at 200 µM). Differential temperature-dependence was demonstrated; PS interactions were temperature-independent whereas the cellular association of PO decreased by 75% from 37°C to 17°C. Cell association of oligonucleotides was length and pH-dependent. A decrease in pH from 7.2 to 5.0 resulted in a 2- to 3-fold increase in cell-association for both backbone types. This enhanced association was not due to changes in lipophilicity as the octanol:aqueous buffer distribution coefficients remained constant over this pH range. The ability of NaCl washes to remove surface-bound PS oligonucleotides in a concentration-dependent manner suggests their binding may involve ionic interactions at the cell surface. Cell-surface washing with the proteolytic enzyme, Pronase®, removed approximately 50% of the cell-associated oligonucleotide for both backbone types. Conclusions. Binding to surface proteins seems a major pathway for binding and internalization for both oligonucleotide chemistries and appear consistent with receptor (binding protein)-mediated endocytosis. Whether this binding protein-mediated entry of oligonucleotides can result in efficient transepithelial transport, however, requires further study.  相似文献   

15.
Skin electroporation has great potential for topical delivery of oligonucleotides. Controled therapeutic levels of an intact phosphorothioate oligonucleotide (PS) can be reached in the viable tissue of the skin. The aim of this work was to investigate the transport mechanisms of a PS in hairless rat skin by electroporation, and hence to allow optimization of oligonucleotides (ONs) topical delivery. The pulsing condition used was five exponentially-decaying pulses of 100 V and 500 ms pulse time. The main mechanism of PS transport in the skin viable tissues during pulsing was electrophoresis. The electroosmosis contribution was negligible. Electrophoresis created within minutes a reservoir of PS in the skin viable tissues, which persisted within a therapeutic range of hours. A strong PS/stratum corneum interaction occurred.  相似文献   

16.
17.
Phosphorothioate oligonucleotides which contain 35S at each internucleoside linkage have been prepared and employed to evaluate the in vivo pharmacokinetics in mice, rats and rabbits. A single administration of a 27-mer complementary to the rev gene of HIV into adult male rats by either the intravenous or intraperitoneal route reveals a biphasic plasma elimination. An initial half-life of 15-25 min represents distribution out of the plasma compartment and a second half-life of 20-40 h represents elimination from the body. The second half-life is significantly longer than a variety of nucleic acids such as poly-IC and Ampligen and suggests therapy with phosphorothioate oligonucleotides should be possible and practical. Repeated daily injections of the 27-mer provides steady-state concentrations in 6-9 days, confirming the estimated long half-life from single injection studies. Finally, chronic treatment studies indicate that the phosphorothioate oligonucleotides are relatively non-toxic. Hence, pharmacokinetic considerations are not likely to be limiting factors in anti-cancer drug design with phosphorothioate oligonucleotides.  相似文献   

18.
In vitro toxicology and pharmacokinetics of antisense oligonucleotides.   总被引:10,自引:0,他引:10  
The ability to rationally design antisense drugs and the theoretical selectivity of these compounds for specific genomic and viral mRNA targets make their use as therapeutic agents extremely attractive. Pharmacologic data emerging from our and other laboratories indicate that some unmodified and backbone modified oligonucleotides may be cytotoxic. In general, cytotoxicity was usually seen at concentrations higher than those required for specific antisense effects. Factors that may modulate the toxicity of phosphorothioates include cell type, various media components including serum, length and method of preparation. Pharmacokinetic experiments using phosphodiester, phosphorothioate and methylphosphonate oligonucleotides suggest that these compounds may be taken up and distributed within some cells. Uptake was generally time, temperature, concentration dependent, and required cellular energy. The mechanism of uptake varied according to oligonucleotide type. The in vitro data as well as preliminary in vivo studies demonstrating the safety, antiviral activity and bioavailability of a number of oligonucleotides suggest that these compounds represent a novel therapeutic modality.  相似文献   

19.
Purpose. To determine the pharmacokinetics of GS-522, an oligodeoxynucleotide (GGTTGGTGTGGTTGG) inhibitor of thrombin, after constant infusion and bolus administration in the cynomolgus monkey. Methods. Using a stability indicating HPLC method, the GS-522 plasma concentration versus time data were obtained after constant infusion (0.1, 0.3, 0.5 mg/kg/min) and bolus administration (11.25 and 22.5 mg/kg). Plasma data after bolus administration was fit to a three-compartment model. Results. The half-lives for the and phases were 1.4 and 5.4 min, respectively. Steady state GS-522 concentrations were reached within 10 minutes after initiation of constant infusions. Termination of infusions resulted in a rapid elimination of GS-522 with an average elimination half-life equal to 1.5 min. The Vss calculated from both the constant infusion and bolus data approximated the blood volume of the monkey. Substitution of the phosphodiester backbone at the 3 end of GS-522 with two phosphorothioate linkages did not substantially effect the elimination half-life upon termination of infusion. Conclusions. These data in conjunction with published biodistribution data suggest that oligodeoxynucleotides are rapidly cleared from plasma by tissue uptake and that little efflux back into blood takes place. Additionally, strategies designed to increase oligodeoxynucleotide resistance to exonucleases will not dramatically increase plasma half-lives.  相似文献   

20.
The pharmacokinetics of a 2'-O-(2-methoxyethyl)-modified oligonucleotide, ISIS 301012 [targeting human apolipoprotein B-100 (apoB-100)], was characterized in mouse, rat, monkey, and human. Plasma pharmacokinetics following parental administration was similar across species, exhibiting a rapid distribution phase with t(1/2alpha) of several hours and a prolonged elimination phase with t(1/2beta) of days. The prolonged elimination phase represents equilibrium between tissues and circulating drug due to slow elimination from tissues. Absorption was nearly complete following s.c. injection, with bioavailability ranging from 80 to 100% in monkeys. Plasma clearance scaled well across species as a function of body weight alone, and this correlation was improved when corrected for plasma protein binding. In all of the animal models studied, the highest tissue concentrations of ISIS 301012 were observed in kidney and liver. Urinary excretion was less than 3% in monkeys and human in the first 24 h. ISIS 301012 is highly bound to plasma proteins, probably preventing rapid removal by renal filtration. However, following 25 mg/kg s.c. administration in mouse and 5-mg/kg i.v. bolus administration in rat, plasma concentrations of ISIS 301012 exceeded their respective protein binding capacity. Thus, urinary excretion increased to 16% or greater within the first 24 h. Albeit slow, urinary excretion of ISIS 301012 and its shortened metabolites is the ultimate elimination pathway of this compound, as demonstrated by 32% of dose recovered in total excreta by 14 days in a rat mass balance study. The pharmacokinetics of ISIS 301012 in human is predictable from the pharmacokinetics measured in animals. The pharmacokinetic properties of ISIS 301012 provide guidance for clinical development and support infrequent dose administration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号