首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
目的观察蛇葡萄素与苯并芘合用对♂SD大鼠肝组织内CYP(cytochrome P450,CYP)和GST(glutathione S-transferase,GST)基因表达的影响。方法♂SD大鼠,蛇葡萄素(二氢杨梅素)250、500mg·kg-1,每日1次连续灌胃15d,d15模型组和2个给药组分别腹腔注射(ip)苯并芘100mg·kg-1。用逆转录-实时荧光定量PCR法检测肝组织内的CYP基因CYP1A1、CYP1A2、CYP1B1和GST基因GST-m1、GST-pi的表达情况。结果与空白组相比,苯并芘组(模型组)可明显诱导肝组织内的CYP1A1、CYP1A2、CYP1B1基因表达(P<0.01),分别是空白对照组的121倍、11倍、684倍,对谷胱甘肽-S转移酶基因GST-m1和GST-pi的表达有抑制趋势,分别是空白对照组的0.79倍和0.82倍;蛇葡萄素(二氢杨梅素)组+苯并芘组可明显诱导肝组织内的CYP1A1、CYP1A2、CYP1B1基因表达(P<0.01),分别是空白对照组的189和289倍、16.9和44.5倍、914和804倍,蛇葡萄素500mg.kg-1+苯并芘组明显诱导谷胱甘肽-S转移酶基因GST-m1和GST-pi的表达,分别是空白对照组的2.18倍(P<0.01)和2.12倍(P<0.05)。与苯并芘组(模型组)相比,蛇葡萄素250mg·kg-1+苯并芘组和蛇葡萄素500mg·kg-1+苯并芘组不影响CYP1B1的基因表达,但明显诱导CYP1A1的基因表达,分别是苯并芘组(模型组)的1.56倍(P>0.05)和2.39倍(P<0.05);明显诱导CYP1A2的基因表达,分别是苯并芘组(模型组)的1.53倍(P<0.05)和4.04倍(P<0.05);蛇葡萄素500mg.kg-1+苯并芘组明显诱导谷胱甘肽-S转移酶基因GST-m1和GST-pi的表达,分别是苯并芘组(模型组)的2.78倍(P<0.01)和2.57倍(P<0.05)。结论与苯并芘合用,蛇葡萄素(二氢杨梅素)可明显诱导CYP1A1、CYP1A2基因和谷胱甘肽-S转移酶基因GST-m1和GST-pi的表达。对CYP1B1基因无影响。表明蛇葡萄素与苯并芘合用可加速苯并芘代谢形成非致癌物而解毒和加速排泄。提示蛇葡萄素可对抗苯并芘的致癌作用。  相似文献   

2.
Cancer Stem Cells (CSCs) from tumors of different phenotypes possess a marked capacity for proliferation, self-renewal, and differentiation. They also play a critical role in cancer recurrence. Although CSC has been regarded as a new target for cancer therapy, the fundamental questions in the CSC study have not been resolved mainly due to the lack of proper CSC markers. To find new CSC markers for oral squamous cell carcinoma (OSCC), we cultured the primary tumor cells from OSCC patients the regular culture condition and the sphere-forming culture condition to enrich primary tumor cells and potential CSCs. We compared gene expression profiles between sphere-forming and non-forming cells, thus identifying that 23 membrane protein-coding genes were over-expressed in the sphere-forming cells. Among them, 8 belonged to the solute carrier (SLC) protein family. H?-myo-inositol transporter SLC2A13 and monocarbohydrate transporter SLC16A6 genes that were consistently increased in the sphere-forming cells in the primary cultures of OSCC samples. Confocal microscopy revealed that SLC2A13-expressing cells were embedded in the limited areas of tumor tissue as a cluster, while SLC16A6 was uniformly detected in hyperplastic epithelium. Moreover, SLC2A13 an expression was induced in human breast adenocarcinoma MCF7 cells after serum starvation. Taken together, our results suggest that SLC2A13 can be a potential markers for CSC in various tumors.  相似文献   

3.
AKR1A1 or aldehyde reductase is a member of the aldo-keto reductases superfamily that is evolutionarily conserved among species. AKR1A1 is one of the five AKRs (AKR1A1 and 1C1-1C4) implicated in the metabolic benzo(a)pyrene (BaP) activation to reactive BaP 7,8-dione. BaP is a polycyclic aromatic hydrocarbon (PAH) widely distributed in aquatic ecosystems and its metabolic activation is necessary to produce its toxic effects. Although the presence of AKR1A1 in fish has been reported, its tissue distribution in tilapia (Oreochromis niloticus) and AKR1A1 inducibility by BaP are not known yet. Moreover, cytochrome P4501A (CYP1A) mRNA expression in fish has been used as a PAH biomarker of effect. Therefore, BaP effects on AKR1A1 and CYP1A gene expressions in tilapia, a species of commercial interest, were investigated by real-time RT-PCR. A partial AKR1A1 cDNA was identified, sequenced and compared with AKR1A1 reported sequences in the GenBank DNA database. Constitutive AKR1A1 mRNA expression was detected mainly in liver, similarly to that of CYP1A. BaP exposure resulted in statistically significant AKR1A1 and CYP1A mRNA induction in liver (20- and 120-fold, respectively) at 24 h. On the other hand, ethoxyquin (EQ) was used as control inducer for AKR1A1 mRNA. Interestingly, EQ also induced CYP1A mRNA levels in tilapia liver. Our results suggest that teleost AKR1A1, in addition to CYP1A, are inducible by BaP. The mechanism of AKR1A1 induction by BaP and its role in fish susceptibility to BaP toxic effects remains to be elucidated.  相似文献   

4.
AKR1A1 or aldehyde reductase is a member of the aldo-keto reductases superfamily that is evolutionarily conserved among species. AKR1A1 is one of the five AKRs (AKR1A1 and 1C1-1C4) implicated in the metabolic benzo(a)pyrene (BaP) activation to reactive BaP 7,8-dione. BaP is a polycyclic aromatic hydrocarbon (PAH) widely distributed in aquatic ecosystems and its metabolic activation is necessary to produce its toxic effects. Although the presence of AKR1A1 in fish has been reported, its tissue distribution in tilapia (Oreochromis niloticus) and AKR1A1 inducibility by BaP are not known yet. Moreover, cytochrome P4501A (CYP1A) mRNA expression in fish has been used as a PAH biomarker of effect. Therefore, BaP effects on AKR1A1 and CYP1A gene expressions in tilapia, a species of commercial interest, were investigated by real-time RT-PCR. A partial AKR1A1 cDNA was identified, sequenced and compared with AKR1A1 reported sequences in the GenBank DNA database. Constitutive AKR1A1 mRNA expression was detected mainly in liver, similarly to that of CYP1A. BaP exposure resulted in statistically significant AKR1A1 and CYP1A mRNA induction in liver (20- and 120-fold, respectively) at 24 h. On the other hand, ethoxyquin (EQ) was used as control inducer for AKR1A1 mRNA. Interestingly, EQ also induced CYP1A mRNA levels in tilapia liver. Our results suggest that teleost AKR1A1, in addition to CYP1A, are inducible by BaP. The mechanism of AKR1A1 induction by BaP and its role in fish susceptibility to BaP toxic effects remains to be elucidated.  相似文献   

5.
The rainbow trout CYP1A1 and CYP1A3 genes share 96% amino acid identity and have similar enzymatic activity. The expression of CYP1A1 and 1A3 genes was investigated in 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD)-treated rainbow trout tissues, sac fry and cell lines. Both CYP1A1 and CYP1A3 were induced by TCDD in all the tissues examined. While CYP1A3 gene was expressed constitutively at higher levels than CYP1A1 in trout intestine, preferential expression of CYP1A1 occurred in trout liver, heart, kidney and trout sac fry. In rainbow trout gonad (RTG)-2 and rainbow trout hepatoma (RTH)-149 cell lines, CYP1A1 was constitutively expressed and induced by exposure to TCDD, but CYP1A3 message was not detected, even after TCDD treatment. Quantitative analysis of CYP1A genes expression in rainbow trout liver revealed that TCDD induced CYP1A1 expression more than 50-fold and CYP1A3 RNA levels increased at least 100-fold over untreated fish. The cell- and tissue-specific expression indicates that these closely related CYP1A genes are independently regulated and that negative regulation may play a role in CYP1A3 gene expression.  相似文献   

6.
The expression of the CAR gene and inducibility of CYP2B protein in the liver of male Wistar rats treated with phenobarbital (PB) and triphenyldioxane (TPD) were investigated. To clarify the role of phosphorylation/dephosphorylation in these processes, rats were treated with inhibitors of Ca(2+)/calmodulin-dependent kinase II (W7) or protein phosphatases PP1 and PP2A (OA) before induction. Constitutive expression of the CAR gene in livers of untreated rats was detected by multiplex RT-PCR. Treatment with W7 resulted in a 2.8-fold induction of CAR gene expression, whereas OA led to a 2.4-fold decrease of the mRNA level. The same results were obtained for CYP2B genes expression, which were increased by W7 treatment (two-fold) and decreased by OA (2.3-fold). PB-induction did not lead to significant alteration in the level of CAR gene expression, although CYP2B genes expression was enhanced two-fold over control values. TPD caused a two-fold increase of both CAR and CYP2B mRNA levels. Both inducers reduced the effects of inhibitors on CAR gene expression. Results of EMSA showed that PB, TPD or W7 alone induced formation of complexes of NR1 with nuclear proteins. Appearance of the complexes correlated with an increase in CYP2B expression, and their intensities were modulated by the protein kinase inhibitors. Thus, our results demonstrate that constitutive expressions of CAR as well as CYP2B during induction are regulated by phosphorylation/dephosphorylation processes.  相似文献   

7.
8.
9.
Human CYP1A1, CYP1A2, and CYP1B1 mRNAs were constitutively expressed in MCF-7 (human breast carcinoma) cells and were extensively (6-12-fold) induced by 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). In contrast, in HeLa (human cervical adenocarcinoma) cells, CYP1A1 and CYP1B1 were induced by TCDD by up to 2-3-fold but CYP1A2 was not detected even when the cells were treated with TCDD. In the present study, the involvement of histone deacetylation and DNA methylation in the cell-specific inducibility of the human CYP1 family was investigated. The treatment of MCF-7 cells with trichostatin A (TSA), an inhibitor of histone deacetylase, and 5-aza-2'-deoxycitidine (AzaC), an inhibitor of DNA methylase, increased the constitutive expression level of CYP1A1, CYP1A2, and CYP1B1 by 2-3-fold. However, these treatments did not affect the levels of induction by TCDD. In HeLa cells, TSA and AzaC treatment increased the constitutive expression levels of CYP1A1 and CYP1B1. The induction of CYP1A2 was enhanced to a detectable level by TSA and AzaC even when the cells were not exposed to TCDD. Interestingly, pretreatment with TSA and AzaC increased the levels of CYP1A1, CYP1A2, and CYP1B1 induced by TCDD in HeLa cells. Furthermore, it was observed that TSA and AzaC treatment increased the constitutive expression level of AhR by 2-fold only in HeLa cells. To compare the methylation status of the 5'-flanking region of the human CYP1A1 gene including five XREs and the promoter region in MCF-7 and HeLa cells, the bisulfite-modified genes were amplified and sequenced. Since there was no remarkable difference in the methylation status within a -1.4 kb region of the human CYP1A1 gene, the methylation status in the CpG sites that exist in other regions of the human CYP1A1 gene might be involved in the cell-specific induction.  相似文献   

10.
11.
Glutathione S-transferase GSTM1, GSTM3 and GSTT1 and cytochrome P450 CYP2D6, CYP1A1 and CYP2E1 loci are susceptibility candidates for cancers of the upper aerodigestive tract because putatively protective and risk genotypes have been identified from studies in other diseases associated with alcohol and tobacco consumption. We describe genotype frequencies in 398 oral, pharyngeal and laryngeal squamous cell carcinoma patients and 219 control individuals. Of the genotypes presumed to be protective, only GSTM1 A/B influenced susceptibility; the GSTM1 A/B frequency was lower in the patients than the control individuals both before [odds ratio = 0.3, 95% confidence interval (CI) 0.1-0.7] and after correction for imbalances in age, sex, smoking and alcohol consumption (odds ratio = 0.2, 95% CI 0.1-0.5). Of the putatively risk genotypes, GSTM3 AA, previously associated with susceptibility to skin cancer, was higher in the cases (odds ratio = 1.6, 95% CI 1.1-2.4). Dividing cases into oral/pharyngeal and laryngeal squamous cell carcinoma showed the GSTM3 AA frequency was higher in laryngeal squamous cell carcinoma than control individuals (odds ratio = 1.6, 95% CI 1.1-2.5) and the difference between control individuals and oral/pharyngeal squamous cell carcinoma approached significance (odds ratio = 1.7, 95% CI 1.0-2.8). The putatively protective GSTM3 BB genotype was lower in patients with glottic (1.0%) than supraglottic (3.0%) squamous cell carcinoma. We identified no differences between patients and control individuals in the frequencies of presumed risk genotypes (e.g. CYP2D6 EM, CYP1A1 m1/m1, CYP1A1 Ile/Ile, CYP2E1 DD, CYP2E1 c1c1, GSTT1 null) or, interactions between genotypes and smoking or alcohol consumption. We conclude, first, that mu class glutathione S-transferase influence risk of upper aerodigestive tract cancers thereby complementing studies in skin cancer patients showing GSTM1 A/B is protective, while GSTM3 AA moderately increases risk. The influence of GSTM1 A/B, but not GSTM1 A or GSTM1 B (mostly heterozygotes with GSTM1*0) suggests that two expressed alleles may attenuate risk. While we found immunohistochemical evidence of GSTM3 expression in the cilia lining the larynx, the biochemical consequences of the polymorphism are unclear. Indeed, the influence of the gene may reflect linkage disequilibrium with another gene. However, we did not find an association with GSTM1 genotypes. Second, we conclude that the CYP2D6, CYP2E1, CYP1A1 and GSTT1 alleles studied, although putatively good candidates, either do not determine the effectiveness of detoxification of tobacco-derived carcinogens in the upper aerodigestive tract or, that chronic consumption of tobacco and alcohol overwhelms enzyme defences, irrespective of genotype.  相似文献   

12.
Tobacco smoke exposure stimulates the expression of genes that are likely to be involved in the metabolism of its combustion products such as polycyclic aromatic hydrocarbons (PAH). Four of the smoke induced genes are aldo-keto reductases (AKR), enzymes that metabolically activate PAH to PAH o-quinones. Alternatively, PAHs are metabolized to (±)-anti-diol epoxides, such as (±)-anti-benzo[a]pyrene diol epoxide ((±)-anti-BPDE)), by the combined action of P4501A1/1B1 and epoxide hydrolase. (±)-anti-BPDE forms DNA adducts directly, while PAH o-quinones cause DNA damage by oxidative stress through a futile redox cycle. To address the role of AKRs in PAH cytotoxicity, we compared the cytotoxicity of PAH metabolites and the effects of overexpressing AKR1A1 in lung cells. (±)-anti-BPDE and B[a]P-7,8-trans-dihydrodiol, an intermediate in (±)-anti-BPDE metabolism, are toxic to A549 cells at concentrations with an IC(50) of ~2 μM. In contrast, the PAH o-quinone B[a]P-7,8-dione was about 10-fold less toxic to A549 cells with an IC(50) > 20 μM. Similar differences in cytoxicity were observed with two other PAH o-quinones (benz[a]anthracene-3,4-dione and 7,12-dimethylbenz[a]anthracene-3,4-dione) compared with their respective diol-epoxide counterparts (BA-3,4-diol-1,2-epoxide and DMBA-3,4-diol-1,2-epoxide). In addition, both anti-BPDE and B[a]P-7,8-trans-dihydrodiol induced p53 expression ~6 h post-treatment at concentrations as low as 1 μM consistent with extensive DNA damage. B[a]P-7,8-dione treatment did not induce p53 but generated reactive oxygen species (ROS) in A549 cells and induced the expression of oxidative response genes in H358 cells. We also observed that overexpression of AKR1A1 in H358 cells, which otherwise have low levels of AKR expression, protected cells 2-10-fold from the toxic effects of B[a]P-7,8-trans-dihydrodiol. These data suggest that overexpression of AKRs may protect lung cancer cells from the acute toxic effects of PAH.  相似文献   

13.
Single-walled carbon nanotubes (SWCNTs) have attracted attention for biomedical and biotechnological applications, such as drug delivery. However, there are concerns about the safety of SWCNTs for use in humans. To investigate the potential use of SWCNTs for targeted drug delivery to the lung, we examined their effect on drug-metabolizing enzymes in primary normal human bronchial epithelial (NHBE) cells from two donors and the lung carcinoma A549 cell line. Exposure of NHBE and A549 cells to SWCNTs dysregulated some of the important drug-metabolizing enzymes expressed in the human respiratory organs. Exposure of NHBE cells to SWCNTs for 24 h had a pronounced effect on expression of CYP1A1 and CYP1B1 mRNAs, which were reduced to less than 1% of control cells. These effects were also observed in A549 cells. Exposure of A549, HepG2 hepatic carcinoma cells, and MCF-7 breast carcinoma cells to tetrachlorodibenzo-p-dioxin induced the expression and enzymatic activity of CYP1A1 and CYP1B1, which were also suppressed by SWCNTs, suggesting that SWCNTs down-regulated both basal and induced CYP1A1 and CYP1B1 activities. Chromatin immunoprecipitation assays revealed that the down-regulatory effect of SWCNTs may be due to inhibition of activated aryl hydrocarbon receptor binding to the enhancer regions of the CYP1A1 and CYP1B1 genes. Down-regulation of CYP1A1 and CYP1B1 genes by SWCNTs may affect the defense mechanisms by reducing procarcinogen bioactivation in the human lung.  相似文献   

14.
The aryl hydrocarbon receptor (AhR) mediates a wide variety of toxic effects due to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). The human hepatoma cell line SK-HEP-1 expresses AhR and ARNT. However, TCDD failed to induce CYP1A1 and XRE-dependent reporter genes in these cells. Although CYP1A1 was not induced by TCDD exposure, both CYP1B1 and AhR repressor (AhRR) were constitutively expressed. The AhR antagonist alpha-naphthoflavone altered the basal level of XRE-dependent reporter gene expression dose-dependently. As our results suggested the activation of AhR signals by putative endogenous ligands, we established SK-HEP-1-derived cell lines that stably expressed CYP1A1. The inducibility of XRE-dependent reporter genes and CYP1B1 by TCDD was restored in these cells. Our findings demonstrated the presence of endogenous ligands in SK-HEP-1 cells due to the absence of the metabolizing enzyme CYP1A1, but not CYP1B1, which allowed the constitutive expression of AhR target genes.  相似文献   

15.
1. The effects of nicardipine and three other calcium channel antagonists, nifedipine, diltiazem and verapamil, on hepatic gene expression of cytochrome P450s (P450), CYP1A1, CYP1A2, CYP2B1, CYP2B2, CYP3A1 and CYP3A2 in male rats were examined by an RT-PCR method. 2. Treatment of rats with nicardipine resulted in a significant increase in hepatic expression of all the P450 genes examined. Other calcium channel antagonists, nifedipine, diltiazem and verapamil, also enhanced the gene expression of CYP2B1, CYP2B2, CYP3A1 and CYP3A2, although these showed no capacity for activating CYP1A1 and CYP1A2 genes. 3. We have demonstrated for the first time that nicardipine activated not only the genes of CYP2B1, CYP2B2, CYP3A1 and CYP3A2, but also those of CYP1A1 and CYP1A2 in the rat liver and have further suggested that calcium channel antagonists may show a common capacity for activating the genes of CYP2B1, CYP2B2, CYP3A1 and CYP3A2. Furthermore, this increased expression of P450 genes was demonstrated to contribute to increase in the protein level of the corresponding P450s.  相似文献   

16.
17.
18.
Halogenated agonists for the aryl hydrocarbon receptor (AHR), such as 3,3',4,4',5-pentachlorobiphenyl (PCB126) and 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), cause developmental toxicity in fish. AHR dependence of these effects is known for TCDD but only presumed for PCB126, and the AHR-regulated genes involved are known only in part. We defined the role of AHR in regulation of four cytochrome P450 1 (CYP1) genes and the effect of PCB126 on cell cycle genes (i.e., PCNA and cyclin E) in zebra fish (Danio rerio) embryos. Basal and PCB126-induced expression of CYP1A, CYP1B1, CYP1C1, and CYP1C2 was examined over time as well as in relation to cell cycle gene expression and morphological effects of PCB126 in developing zebra fish. The four CYP1 genes differed in the time for maximal basal and induced expression, i.e., CYP1B1 peaked within 2 days postfertilization (dpf), the CYP1Cs around hatching (3 dpf), and CYP1A after hatching (14-21 dpf). These results indicate developmental periods when the CYP1s may play physiological roles. PCB126 (0.3-100nM) caused concentration-dependent CYP1 gene induction (EC50: 1.4-2.7nM, Lowest observed effect concentration [LOEC]: 0.3-1nM) and pericardial edema (EC50: 4.4nM, LOEC: 3nM) in 3-dpf embryos. Blockage of AHR2 translation significantly inhibited these effects of PCB126 and TCDD. PCNA gene expression was reduced by PCB126 in a concentration-dependent manner, suggesting that PCB126 could suppress cell proliferation. Our results indicate that the four CYP1 genes examined are regulated by AHR2 and that the effect of PCB126 on morphology in zebra fish embryos is AHR2 dependent. Moreover, the developmental patterns of expression and induction suggest that CYP1 enzymes could function in normal development and in developmental toxicity of PCB126 in fish embryos.  相似文献   

19.
Diethylstilbestrol (DES) induces mammary tumors in female ACI rats and is associated with an increased risk of developing breast cancer in humans. Diallyl sulfide (DAS) has been shown to prevent cancer in animals. Previously, we have shown that DAS inhibits the production of DES induced DNA adducts when given prior to DES. We hypothesize that DAS alters the expression of genes responsible for DES metabolism. To test this hypothesis, four groups of 10 female ACI rats were treated daily for four days as follows: (1) corn oil, (2) 50mg/kg DES, (3) 50mg/kg DAS, and (4) 50mg/kg DAS+50mg/kg DES. RNA was isolated from breast tissue and mRNA levels of CYP1A1, CYP1B1, glutathione-S-transferase (GST) and superoxide dismutase (SOD) were analyzed by real-time PCR. DES, DAS, and DES/DAS treatments increased the expression of CYP1A1 by 2.1-, 4.7-, and 12.7-fold, respectively. Similar results were seen for CYP1B1. DES decreased the expression of GST by 23%, whereas DAS and DAS/DES treatments increased the expression of GST by 12- and 16.7-fold, respectively. Similar results were seen with SOD. These results suggests that DAS may prevent the formation of DES induced DNA damage by altering the expression of DES metabolizing genes.  相似文献   

20.
Cigarette smoke, which contains several carcinogens known to initiate and promote tumorigenesis and metastasis, is the major cause of oral cancer. Lysosomal cathepsin proteases play important roles in tumor progression, invasion and metastasis. In the present work we investigated the effects of cigarette smoke condensate (CSC) on cathepsin (B, D and L) expression and protease-mediated invasiveness in human oral squamous cell carcinoma (OSCC) cells. Our results show that treatment of OSCC cells (686Tu and 101A) with CSC activated cathepsins B, D and L in a dose-dependent manner. Both expression and activity of these cathepsins were up-regulated in CSC-exposed versus non-exposed cells. Although cathepsin L had the lowest basal level, it had the highest induction in exposed cells compared to cathepsins B and D. Suppression of CSC-induced cathepsin B and L activities by specific chemical inhibitors decreased the invasion process, suggesting that these proteases are involved in the invasion process. Overall, our results indicate that CSC activates cathepsin B and L proteolytic activity and enhances invasiveness in OSCC cells, a response that may play a role in CSC-mediated tumor progression and metastasis dissemination.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号