首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 62 毫秒
1.
2.
The T cell receptor (TCR) recognizes antigenic peptide presented by major histocompatibility complex (MHC) molecules. Analogs of antigenic peptides have been shown to inhibit antigen-specific T cell responses, a phenomenon described as TCR antagonism. We have examined the effect of a natural variant of an antigenic peptide and a synthetic peptide analog, on the responses of mature T cells and immature thymocytes from an αβ TCR-transgenic mouse (F5), the TCR of which recognizes a nonamer peptide from the nucleoprotein (NP) of influenza virus in the context of the H-2Db MHC molecule. Both peptides were shown to antagonize specifically the T cell cytolytic response without being able directly to stimulate mature T cells from these transgenic mice. Furthermore, a negative selection assay in vitro was used to demonstrate for the first time that antagonistic peptides are capable of antagonizing thymocyte deletion induced by antigenic peptides. These data suggest that the final selection of a T cell could be the result of a balance between the positive and negative influences of endogenous peptide ligands.  相似文献   

3.
4.
The appearance of peptide-loaded major histocompatibility complex (MHC) class II molecules at the cell surface depends critically on the invariant chain (Ii). We have studied the influence of Ii on the positive selection of CD4+ T cells, mediated by class II molecules expressed on thymic stromal cells. Invariant chain-deficient mice (Ii°) were crossed with different T cell receptor (TcR) transgenic strains and the emergence of mature CD4 single-positive thymocytes measured in Ii°/TcR transgenic offspring. Positive selection was nearly absent in Ii°/2B4 mice, which display receptors specific for a moth cytochrome c (MCC) peptide in the context of Ek. In addition, no T cell response was elicited when nontransgenic Ii° animals were injected with this peptide, even though antigenpresenting cells (APC) from such mice were perfectly capable of presenting it, suggesting that selection of the entire anti-MCC 88-103 repertoire depends on Ii. Positive selection also appeared strongly reduced in another line of Ii°/TcR transgenic mice (Ii°/BDC2.5). However, in sharp contrast, a third line (Ii°/3A9) exhibited almost normal positive selection of thymocytes displaying the transgene-encoded receptor. These thymocytes were exported to the periphery; peripheral T cells could respond normally to the appropriate peptide in vitro. The most likely interpretation of these findings is that selection of most CD4+ T cells depends on MHC class II complexes loaded with peptide in an Ii-dependent pathway, but some can be selected on class II complexes that are either loaded along an alternative, Ii-independent, route or are empty. This is consistent with the involvement of peptide in positive selection of CD4+ T cells, for which there exists little prior evidence.  相似文献   

5.
Using a flow cytometric method, CD4+, CD8+, alpha beta TCR+ and TCR variable region gene product (TVRGP)-specific T cells were analysed in healthy heterosexual males (HHeM), HIV-seronegative homosexual males (SNHM), asymptomatic seropositive homosexual males (ASPH) and homosexual males with AIDS who were either well (AIDS-A), or unwell in hospital (AIDS-B). Total CD4+ and CD8+ T cell numbers were similar in HHeM and SNHM. CD4+ T cells were significantly reduced in ASPH relative to both HHeM and SNHM and in AIDS-A and AIDS-B relative to SNHM. TVRGP-specific T cells expressed as a percentage of TCR alpha beta + cells showed no significant difference in HHeM, SNHM and AIDS-B. The proportion of alpha beta + cells expressing the V beta 5.1, V beta 12 and V alpha 2 gene product (GP) was, however, significantly reduced in ASPH and AIDS-B relative to HHeM, SNHM and AIDS-A. Possible causes of TVRGP-specific T cell deletion are discussed.  相似文献   

6.
7.
CD4+ helper T lymphocytes and CD8+ killer T lymphocytes are both generated in the thymus from common precursor cells expressing CD4 and CD8. The development of immature CD4+ CD8+ thymocytes into mature ‘single-positive’ T cells requires T cell antigen-receptor (TCR)-mediated positive selection signals. Although it is known that the recognition specificity of TCR expressed by CD4+ CD8+ thymocytes determines their fate to become either CD4+ or CD8+ T cells, the molecular signals that direct precursor thymocytes to become CD4+ and CD8+ T cells are unclear. By using ZAP-70? mutant thymus organ cultures in which T cell development is arrested at the CD4+ CD8+ thymocyte stage, the present study shows that distinct biochemical treatments can selectively restore the generation of mature CD4+ and CD8+ T cells, bypassing TCR-induced positive selection signals. The combination of phorbol ester and ionomycin selectively restores the generation of CD4+CD8? TCRhigh cells consistent with previous results. On the other hand, we find that the generation of CD4? CD8+ TCRhigh cells is selectively induced by pertussis toxin. Interestingly, the signals generated by pertussis toxin, which increase Notch expression, can dominate the signals by phorbol ester and ionomycin, steering thymocyte development to CD8 lineage. These results indicate that distinct biochemical signals replace TCR signals that selectively induce positive selection of CD4+ and CD8+ T cells, and that biochemical treatment can manipulate the development and choice of CD4+ and CD8+ T cells.  相似文献   

8.
Positive selection is an obligatory step during intrathymic T cell differentiation. It is associated with rescue of short-lived, self major histocompatibility complex (MHC)-restricted thymocytes from programmed cell death, CD4/CD8 T cell lineage commitment, and induction of lineage-specific differentiation programs. T cell receptor (TCR) signaling during positive selection can be closely mimicked by targeting TCR on immature thymocytes to cortical epithelial cells in situ via hybrid antibodies. We show that selection of CD4 T cell lineage cells in mice deficient for MHC class I and MHC class II expression can be reconstituted in vivo by two separable T cell receptor signaling steps, whereas a single TCR signal leads only to induction of short-lived CD4+CD8la intermediates. These intermediates remain susceptible to a second TCR signal for 12-48 h providing an estimate for the duration of positive selection in situ. While both TCR signals induce differentiation steps, only the second one confers long-term survival on immature thymocytes. In further support of the two-step model of positive selection we provide evidence that CD4 T cell lineage cells rescued by a single hybrid antibody pulse in MHC class II-deficient mice are pre-selected by MHC class 1.  相似文献   

9.
T cell receptors (TCR) identify target cells presenting a ligand consisting of a major histocompatibility complex molecule (MHC) and an antigenic peptide. A considerable amount of evidence indicates that the TCR contacts both the peptide and the MHC components of the ligand. In fully differentiated T cells the interaction between the peptide and the TCR makes the critical contribution to eliciting a cellular response. However, during the positive selection of thymocytes the contribution of peptide relative to MHC is less well established. Indeed it has been suggested that the critical interaction for positive selection is between the TCR and the MHC molecule and that peptides can be viewed as either allowing or obstructing this contact. This predicts that a given TCR is capable of engaging multiple MHC/peptide complexes. In this study a system is described which detects simply engagement of the TCR by MHC/peptide complexes rather than the functional outcome of such interactions. Using this approach the extent to which peptides can influence contacts between the TCR and the MHC molecule has been examined. The results show that the TCR does in fact engage a wide range of ligands in an MHC-restricted but largely peptide-independent manner, suggesting that only a few peptides are able to prevent the TCR from contacting the MHC molecule.  相似文献   

10.
B‐cell development up to the immature B‐cell stage takes place in the bone marrow, while final maturation into mature B cells occurs in the spleen. During differentiation, the precursor and immature B cells have to pass several checkpoints, including those in which they are censored for being auto‐reactive, and therefore being potentially dangerous. Numerous studies have shown that the immature B‐cell stage in the bone marrow and the transitional B‐cell stages in the spleen comprise distinct checkpoints at which auto‐reactivity is censored. Recently, evidence has been provided that the large pre‐BII stage in the bone marrow, at which the pre‐BCR is expressed, is yet another B‐cell tolerance checkpoint. Here, we review these findings and speculate on directions for possible further experimentation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号