首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In the rat forced swimming test, systemic application of the serotonin 1A (5-HT(1A)) receptor agonist 8-OH-DPAT reduced immobility (ID(50) 0.17-1.37mg/kg, depending on route of application and application schedule). Intracerebroventricular (i.c.v.) or local application into the dorsal raphe nucleus (DRN), a brain area rich in presynaptic 5-HT(1A) receptors, resulted in a parallel shift of the dose-response curve to the left (ID(50) 5.1 and 3.9μg/rat, respectively). Systemic application of the 5-HT(1A) receptor partial agonist ipsapirone resulted in a U-shaped dose-response curve (maximal effect about 30% immobility reduction at 3-10mg/kg). Local application of ipsapirone in the DRN reduced immobility (maximal effect 40% at 60μg/rat). However, 8-OH-DPAT and ipsapirone were still effective after depletion of brain 5-HT by means of 5,7-DHT (150μg, i.c.v.) or pCPA (either 2 x 150mg/kg or 2 x 350mg/kg, i.p.) Additionally, in non-lesioned rats: (1) the putative (postsynaptic) 5-HT(1A) antagonist NAN-190, but not spiperone, haloperidol, prazosin or 1-PP, was able to block the anti-immobility effects of 8-OH-DPAT in a behaviorally specific manner; (2) local application of 8-OH-DPAT and ipsapirone in the lateral septum (a brain area rich in postsynaptic 5-HT(1A) receptors) reduced immobility (8-OH-DPAT: ID(50) 11.4μg/rat; ipsapirone; maximal effect at 30μg/rat 38%); and (3) pretreatment with ipsapirone resulted in an attenuation of the effect of 8-OH-DPAT when both compounds were administered either systemically or in the lateral septum but not when both compounds were microinjected into the DRN. It is hypothesized that the anti-immobility effects of 5-HT(1A) receptor agonists are mediated by pre- and postsynaptic 5-HT(1A) receptors and that they closely reflect the intrinsic activity of these compounds at these receptors.  相似文献   

2.
1. The acute inhibitory effect of selective 5-hydroxytryptamine (serotonin) reuptake inhibitors (SSRIs) on 5-HT neuronal activity may offset their ability to increase synaptic 5-HT in the forebrain. 2. Here, we determined the effects of the SSRI, paroxetine, and a novel selective 5-HT1A receptor antagonist, WAY 100635, on 5-HT cell firing in the dorsal raphé nucleus (DRN), and on extracellular 5-HT in both the DRN and the frontal cortex (FCx). Extracellular electrophysiological recording and brain microdialysis were used in parallel experiments, in anaesthetized rats. 3. Paroxetine dose-dependently inhibited the firing of 5-HT neurones in the DRN, with a maximally effective dose of approximately 0.8 mg kg-1, i.v. WAY 100635 (0.1 mg kg-1, i.v.) both reversed the inhibitory effect of paroxetine and, when used as a pretreatment, caused a pronounced shift to the right of the paroxetine dose-response curve. 4. Paroxetine (0.8 mg kg-1, i.v.), doubled extracellular 5-HT in the DRN, but did not alter extracellular 5-HT in the FCx. A higher dose of paroxetine (2.4 mg kg-1, i.v.) did increase extracellular 5-HT in the FCx, but to a lesser extent than in the DRN. Whereas 0.8 mg kg-1, i.v. paroxetine alone had no effect on extracellular 5-HT in the FCx, in rats pretreated with WAY 100635 (0.1 mg kg-1), paroxetine (0.8 mg kg-1, i.v.) markedly increased extracellular 5-HT in the FCx.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
The ventral part of the medial prefrontal cortex (mPFC) plays an important role in mood and cognition. This study examined the effect of the 5-HT in this region by measuring the electrophysiological response of ventral mPFC neurones to electrical stimulation of the dorsal and median raphe nuclei (DRN and MRN), which are the source of the 5-HT input. DRN or MRN stimulation evoked a consistent, short-latency, post-stimulus inhibition in the majority of ventral mPFC neurones tested (DRN: 44/73 neurones; MRN: 24/31 neurones). Some neurones responded to DRN or MRN stimulation with antidromic spikes indicating that they were mPFC-raphe projection neurones. Both DRN- and MRN-evoked inhibitions were attenuated by systemic administration of the 5-HT1A antagonist WAY 100635 (0.1 mg/kg i.v.). DRN-evoked inhibition was also attenuated by iontophoretic application of WAY 100635 and by systemic administration of the 5-HT1A antagonist, NAD-299 (4 mg/kg i.v.) but not the 5-HT2 antagonist ketanserin (4 mg/kg, i.v.). These data suggest that DRN and MRN 5-HT neurones inhibit neurones in the ventral mPFC via activation of 5-HT1A receptors. Some of these mPFC neurones may be part of a 5-HT1A receptor-controlled postsynaptic feedback loop to the DRN and MRN.  相似文献   

4.
Neurochemical, molecular, immunohistochemical and behavioral methods were used to examine the in vivo effects of the neuropeptide galanin on central 5-HT neurotransmission and on 5-HT(1A) receptor-mediated responses. Intraventricularly infused galanin caused a long-lasting and dose-dependent reduction of basal extracellular 5-HT levels in the ventral hippocampus of awake rats as measured by microdialysis. Infusion of galanin into the dorsal raphe nucleus (DRN), but not intra-hippocampally, reduced 5-HT release. The effect of i.c.v. galanin on 5-HT release was blocked by the galanin receptor antagonist M35, acting most likely via galanin receptors at the level of the DRN. Galanin also reduced the levels of tryptophanhydroxylase mRNA in the DRN. Therefore, the effects of galanin on 5-HT(1A) receptor-mediated responses were further investigated. Surprisingly, galanin significantly attenuated the reduction of hippocampal 5-HT release induced by systemic injection of the 5-HT(1A) receptor agonist 8-OH-DPAT. Galanin also attenuated 8-OH-DPAT-induced hypothermia and locomotor activity in rats. These results indicate that galanin has important inhibitory actions on central 5-HT neurotransmission and on 5-HT(1A) receptor-mediated events.  相似文献   

5.
1. We examined the involvement of the frontal cortex in the 5-HT2A receptor-induced inhibition of 5-HT neurones in the dorsal raphe nucleus (DRN) of the anaesthetized rat using single-unit recordings complemented by Fos-immunocytochemistry. 2. Both transection of the frontal cortex as well as ablation of the medial region of the prefrontal cortex (mPFC) significantly attenuated the inhibition of 5-HT neurones induced by systemic administration of the 5-HT1A receptor agonist, 8-OH-DPAT (0.5-16 microg kg(-1), i.v.). In comparison, the response to 8-OH-DPAT was not altered by ablation of the parietal cortex. The inhibitory effect of 8-OH-DPAT was reversed by the 5-HT1A receptor antagonist, WAY 100635 (0.1 mg kg(-1), i.v.) in all neurones tested. 3. In contrast, cortical transection did not alter the sensitivity of 5-HT neurones to iontophoretic application of 8-OH-DPAT into the DRN. Similarly, cortical transection did not alter the sensitivity of 5-HT neurones to systemic administration of the selective 5-HT reuptake inhibitor, paroxetine (0.1-0.8 mg kg(-1) , i.v.). 4. 8-OH-DPAT evoked excitation of mPFC neurones at doses (0.5-32 microg kg(-1), i.v.) in the range of those which inhibited 5-HT cell firing. At higher doses (32-512 microg kg(-1), i.v.) 8-OH-DPAT inhibited mPFC neurones. 8-OH-DPAT (0.1 mg kg(-1), s.c.) also induced Fos expression in the mPFC. The neuronal excitation and inhibition, as well as the Fos expression, were antagonized by WAY 100635. 5. These data add further support to the view that the inhibitory effect of 5-HT1A receptor agonists on the firing activity of DRN 5-HT neurones involves, in part, activation of a 5-HT1A receptor-mediated postsynaptic feedback loop centred on the mPFC.  相似文献   

6.
Microinjections of substance P (SP, 100 pmol) into the dorsal raphe nucleus (DRN) in conscious rats increased blood pressure and heart rate for 30-40 min. Concomitantly, the extracellular levels of 5-hydroxytryptamine (5-HT) in the ventral hippocampus, monitored by microdialysis, increased by 30% for 20 min compared with the vehicle control. Pretreatment with the 5-HT2 receptor antagonist, ritanserin (1 mg/kg i.v.), prevented the pressor response to SP but not the increase in heart rate. Pretreatment with the partial 5-HT1A receptor agonist, 8-methoxy-2-(N-2-chloroethyl-N-n-propyl)amino tetralin (8-MeO-CLEPAT, 10 micrograms/kg i.v.) prevented the increase in both blood pressure and heart rate. It is suggested that microinjections of SP into the DRN increase blood pressure through activation of serotonergic DRN neurons and that the postsynaptic receptor responsible for the pressor response is of the 5-HT2 type.  相似文献   

7.
The present study examined the regional localization of corticotropin-releasing factor (CRF)- and 5-hydroxytryptamine (5-HT)-immunoreactive (IR) fibers within the rat dorsal raphe nucleus (DRN) using immunohistochemistry. Additionally, the effects of CRF, administered intracerebroventricularly (0.1-3.0 micrograms) or intraraphe (0.3-30 ng), on discharge rates of putative 5-HT DRN neurons were quantified using in vivo single unit recording in halothane-anesthetized rats. CRF-IR fibers were present at all rostrocaudal levels of the DRN and exhibited a topographical distribution. CRF produced predominantly inhibitory effects on DRN discharge at lower doses and these effects diminished or became excitatory at higher doses. Inhibition of DRN discharge by CRF was attenuated by the nonselective CRF antagonist, DPheCRF12-41 and the CRF-R1-selective antagonist, antalarmin, implicating the CRF-R1 receptor subtype in these electrophysiological effects. The present findings provide anatomical and physiological evidence for an impact of CRF on the DRN-5HT system.  相似文献   

8.
The effects of the alpha 2-adrenoceptor antagonist idazoxan on 5-hydroxytryptamine (5-HT) neuronal firing and release have been investigated. Idazoxan, administered i.v. (10 micrograms/kg and 0.5 mg/kg) increased dorsal raphe nucleus (DRN)-5-HT neuronal firing rate in a dose-dependent fashion. At the higher dose, a voltammetric study revealed increases in extracellular 5-HT and 5-hydroxyindole acetic acid (5-HIAA) levels, there was no effect with the lower dose. Intra-raphe administration of idazoxan (1 ng) also elevated the firing rate of 5-HT neurones in the dorsal raphe, suggesting that idazoxan may produce the increase in firing by a direct effect in the DRN. However, microiontophoretic application of idazoxan did not increase the firing rate of 5-HT neurones in the DRN. Thus the increase in the firing rate of 5-HT neurones in the DRN observed with systemic and local administration of idazoxan is probably not due to a direct action of idazoxan on the 5-HT neurone. Possibly the idazoxan acted at alpha 2-adrenoceptors located on noradrenergic terminals thus stimulating noradrenaline release and consequently increased 5-HT activity. Chronic administration of idazoxan (0.8 mg/kg per h for 14 days), using osmotic mini-pumps, caused an elevation in basal firing rate and an attenuation of the inhibitory response of DRN 5-HT neurones to the 5-HT1A agonist, 8-hydroxy-2-(di-n-propylamino) tetralin (8-OHDPAT) (10 micrograms/kg i.v.). This finding suggests that chronic infusion with idazoxan leads to desensitisation of the 5-HT1A somatodendritic autoreceptor.  相似文献   

9.
The stress-related neuropeptide, corticotropin-releasing factor (CRF) regulates the dorsal raphe nucleus–serotonin (DRN–5-HT) system during stress and this may underlie affective and cognitive dysfunctions that characterize stress-related psychiatric disorders. CRF acts on both CRF1 and CRF2 receptor subtypes in the DRN that exert opposing inhibitory and excitatory effects on DRN-5-HT neuronal activity and 5-HT forebrain release, respectively. The current study first assessed the cognitive effects of intra-DRN microinfusion of CRF or the selective CRF2 agonist, urocortin II in stress-naive rats on performance of an operant strategy set-shifting task that is mediated by the medial prefrontal cortex (mPFC). CRF (30 ng) facilitated strategy set-shifting performance, whereas higher doses of CRF and urocortin II that would interact with CRF2 were without effect, consistent with a CRF1-mediated action. This dose decreased 5-HT extracellular levels in the mPFC, further supporting a role for CRF1. The effects of CRF were then assessed in rats exposed to repeated social stress using the resident–intruder model. Repeated social stress shifted the CRF effect from facilitation of strategy set shifting to facilitation of reversal learning and this was most prominent in a subpopulation of rats that resist defeat. Notably, in this subpopulation of rats 5-HT neuronal responses to CRF have been demonstrated to shift from CRF1-mediated inhibition to CRF2-mediated excitation. Because 5-HT facilitates reversal learning, the present results suggest that stress-induced changes in the cellular effects of CRF in the DRN translate to changes in cognitive effects of CRF. Together, the results underscore the potential for stress history to shift cognitive processing through changes in CRF neurotransmission in the DRN and the association of this effect with coping strategy.  相似文献   

10.
The effects of nociceptin/orphanin FQ on putative serotonin (5HT) neurons of the dorsal raphe nucleus (DRN), known to modulate the behavioral responses to stress, were investigated in vivo and in vitro. In DRN slices from unstressed rats, nociceptin/orphanin FQ concentration-dependently inhibited the firing rate of putative 5HT neurons (EC50 = 21.6 ± 1.21 nM) and the selective NOP receptor antagonist UFP-101 shifted the concentration-response curve to the right (estimated pA2 6.86). Nociceptin/orphanin FQ potency was enhanced in slices prepared from rats previously subjected to a 15 min swim stress (EC50 = 1.98 ± 0.11 nM). Swim stress did not change the number or affinity of NOP receptors in DRN. Stress-elicited potentiation involved corticotropin-releasing factor (CRF)1 receptors, GABA signaling and protein synthesis, being attenuated by pre-treatment with antalarmin (20 mg/kg, i.p.), diazepam (2.4 mg/kg, i.p.) and cycloheximide (2.5 mg/kg, i.p.), respectively. In anesthetized unstressed rats, locally applied nociceptin/orphanin FQ (0.03 and 0.1 ng/30 nl) inhibited the firing rate of DRN neurons (to 80 ± 7 and 54 ± 10% of baseline, respectively). Nociceptin/orphanin FQ inhibition was potentiated both 24 h after swim stress and 1 h after CRF (30 ng/30 nl intra-DRN). Stress-induced potentiation was prevented by the selective CRF1 receptor antagonist, NBI 30755 (20 mg/kg, i.p.). In contrast, the inhibitory response of DRN neurons to the 5HT1A agonist, 8OH-DPAT (1μg/1 μl, intra-DRN) was not potentiated by swim stress, ruling out a non-specific enhanced permeability of GIRK channel. Together, these findings suggest that CRF and the nociceptin/orphanin FQ/NOP system interact in the DRN during stress to control 5HT transmission; this may play a role in stress-related neuropsychopathologies.  相似文献   

11.
The effect of buspirone on corticotropin-releasing factor (CRF) and stress-stimulated cecal motility and its antagonism by 5-HT1A (spiroxatrine) and sigma (BMY 14802) antagonists were evaluated by electromyography in rats equipped with chronically implanted electrodes on the cecum and a small catheter into the right lateral ventricle of the brain. Exposure to mental stress, consisting of a fear-conditioned response, increased during 30 min the frequency of cecal spike bursts significantly (P less than 0.01). The frequency of cecal spike bursts was also increased following intracerebroventricular injection of CRF (500 ng/kg). Buspirone (1 mg/kg s.c.) abolished the stimulatory effects of mental stress and CRF on cecal motility. Whereas spiroxatrine (0.5 mg/kg s.c.) blocked the effect of buspirone on the colonic hypermotility induced by i.c.v. injection of CRF, BMY 14802 at a similar dose (0.5 mg/kg s.c.) was unable to block the action of buspirone. It is concluded that s.c. administration of buspirone suppresses the stress-induced cecal motor response through 5-HT1A receptors, probably by inhibiting the central or peripheral pathways involved in CRF mediation of these effects.  相似文献   

12.
The aim of the present study was to investigate a putative modulation of rat 5-HT system by the muscarinic receptor antagonist atropine using in-vivo electrophysiological and behavioural techniques. In the dorsal raphe nucleus, administration of atropine (1 mg/kg i.v.) prevented the suppressant effect of the selective serotonin reuptake inhibitor paroxetine (0.5 mg/kg i.v.) on the spontaneous firing activity of 5-HT neurons, suggesting that atropine could induce an attenuation of somatodendritic 5-HT1A autoreceptors responsiveness. The 5-HT1A receptor agonist 8-OH-DPAT decreased both immobility in the forced swim test and the body core temperature. Pre-treatment with atropine (5 and 10 mg/kg i.p.) enhanced antidepressant-like effect of 8-OH-DPAT (1 mg/kg s.c.) and reduced 8-OH-DPAT (0.1 mg/kg s.c.)-induced hypothermia. In conclusion, the present study reports a functional role of muscarinic receptors in the modulation of pre- and post-synaptic 5-HT1A receptors mediated responses.  相似文献   

13.
1. Extracellular 5-hydroxytryptamine (5-HT) was determined in dorsal raphe nucleus (DRN), median raphe nucleus (MRN) and nucleus accumbens by use of microdialysis in unanaesthetized rats. 2. Infusion of the gamma-aminobutyric acid (GABA)A receptor agonist muscimol into DRN and MRN resulted in decreased 5-HT in DRN and MRN, respectively. Muscimol infusion into nucleus accumbens had no effect on 5-HT. 3. Infusion of the GABAA receptor antagonist bicuculline into DRN resulted in increased DRN and nucleus accumbens 5-HT. Bicuculline infusion into MRN had no effect on 5-HT. This suggests that endogenous GABA had a tonic, GABAA receptor-mediated inhibitory effect on 5-HT in DRN, but not in MRN. 4. Infusion of the GABAB receptor agonist baclofen into DRN produced a decrease in DRN 5-HT. Baclofen infusion into nucleus accumbens resulted in decreased nucleus accumbens 5-HT. This suggests that GABAB receptors are present in the area of cell bodies and terminals of 5-hydroxytryptaminergic neurones. 5. Infusion of the GABAB receptor antagonists phaclofen and 2-hydroxysaclofen had no effect on midbrain raphe and forebrain 5-HT. This suggests that GABAB receptors did not contribute to tonic inhibition of 5-HT release. 6. In conclusion, 5-HT release is physiologically regulated by distinct subtypes of GABA receptors in presynaptic and postsynaptic sites.  相似文献   

14.
Major depression is a debilitating psychiatric disease that may be precipitated by a dysregulation of stress neurocircuitry caused by chronic or severe stress exposure. Moreover, hyperresponsivity to stressors correlates with depressed mood and may contribute to the etiology of major depression. The serotonergic dorsal raphe nucleus (DRN) is an important site in the neurocircuitry underlying behavioral responses to stressors, and is tightly regulated, in part, by a combination of intrinsic cell properties, autoinhibition, and GABAergic synaptic transmission. The stress-related neurotransmitter corticotropin-releasing factor (CRF) modulates DRN neuronal excitability and subsequent 5-HT release in the forebrain. Wistar Kyoto (WKY) rats exhibit exaggerated behavioral responses to stressors, that is, stress hyperresponsivity, and are considered an animal model of depression. To better understand the neurobiological basis of the stress hyperresponsivity, we used a combination of mRNA analysis and whole-cell electrophysiological techniques to measure differences in intrinsic activity and receptor response, in 5-HT- and non-5-HT-containing neurons of the DRN in WKY rats compared with Sprague-Dawley controls. In the WKY rat, there was a decrease in the neuronal excitability of 5-HT neurons coupled with decreased TPH2 production. Additionally, we found that CRF did not increase GABAergic activity in 5-HT neurons as is normally seen in 5-HT neurons of Sprague-Dawley controls. The CRF modulation of 5-HT DRN neurotransmission at the single-cell level is selectively disrupted in the WKY animal model of depression and may be one of the cellular correlates underlying depression.  相似文献   

15.
1 In cats intracerebroventricular administration of 5, 10, 20 mug of peruvoside, a cardiac glycoside obtained from the plant, Thevetia neriifolia, and 10 and 20 mug of ouabain, produced marked neurotoxicity. This was dose-related. 2 Prior administration reserpine (2 mg/kg i.m., 500 mug i.c.v.) or tetrabenazine (25 mg/kg i.v., 50 mg/kg i.v. and 2 mg/,g i.c.v.) suppressed the neurotoxicity, but lithium carbonate (100 mg/,g i.p., 2 mg 2.c.v.) and haloperidol (200 mug i.c.v.) were ineffective. 3 Prior administration of 2-bromolysergic acid diethylamide (BOL-148, 200 mug i.c.v.) or p-chlorophenylalanine (PCPA) (400 mg/kg i.p.) suppressed the neurotoxicity induced by peruvoside and ouabain. 4 Perfusion of the lateral ventricles of cats with 10, 20 and 30 mug of peruvoside or ouqbain produced a massive release of 5-hydroxytryptamine (5-HT). This was dose-related. Prior administration PCPA suppressed the release of 5-HT. 5 The results of the findings indicate the involvement of 5-HT in the genesis of neurotoxicity induced by peruvoside or ouabain.  相似文献   

16.
  1. The effects of risperidone on brain 5-hydroxytryptamine (5-HT) neuronal functions were investigated and compared with other antipsychotic drugs and selective receptor antagonists by use of single cell recording and microdialysis in the dorsal raphe nucleus (DRN).
  2. Administration of risperidone (25–400 μg kg−1, i.v.) dose-dependently decreased 5-HT cell firing in the DRN, similar to the antipsychotic drug clozapine (0.25–4.0 mg kg−1, i.v.), the putative antipsychotic drug amperozide (0.5–8.0 mg kg−1, i.v.) and the selective α1-adrenoceptor antagonist prazosin (50–400 μg kg−1, i.v.).
  3. The selective α2-adrenoceptor antagonist idazoxan (10–80 μg kg−1, i.v.), in contrast, increased the firing rate of 5-HT neurones in the DRN, whereas the D2 and 5-HT2A receptor antagonists raclopride (25–200 μg kg−1, i.v.) and MDL 100,907 (50–400 μg kg−1, i.v.), respectively, were without effect. Thus, the α1-adrenoceptor antagonistic action of the antipsychotic drugs might, at least partly, cause the decrease in DRN 5-HT cell firing.
  4. Pretreatment with the selective 5-HT1A receptor antagonist WAY 100,635 (5.0 μg kg−1, i.v.), a drug previously shown to antagonize effectively the inhibition of 5-HT cells induced by risperidone, failed to prevent the prazosin-induced decrease in 5-HT cell firing. This finding argues against the notion that α1-adrenoceptor antagonism is the sole mechanism underlying the inhibitory effect of risperidone on the DRN cells.
  5. The inhibitory effect of risperidone on 5-HT cell firing in the DRN was significantly attenuated in rats pretreated with the 5-HT depletor PCPA (p-chlorophenylalanine; 300 mg kg−1, i.p., day−1 for 3 consecutive days) in comparison with drug naive animals.
  6. Administration of risperidone (2.0 mg kg−1, s.c.) significantly enhanced 5-HT output in the DRN.
  7. Consequently, the reduction in 5-HT cell firing by risperidone appears to be related to increased availability of 5-HT in the somatodendritic region of the neurones leading to an enhanced 5-HT1A autoreceptor activation and, in turn, to inhibition of firing, and is probably only to a minor extent caused by its α1-adrenoceptor antagonistic action.
  相似文献   

17.
1. The effects of intracerebroventricular injections to the right lateral ventricle (i.c.v.) of 5-hydroxytryptamine (5-HT, 40 and 120 nmol kg-1), N,N-di-n-propyl-5-carboxamidotryptamine (DP-5-CT; 3 nmol kg-1), 5-carboxamidotryptamine (5-CT; 3 nmol kg-1), 8-hydroxy-2-(di-N-propylamino) tetralin (8-OH-DPAT; 3, 40 and 120 nmol kg-1) and 1-(2,5-di-methoxy-4-iodophenyl)-2-aminopropane (DOI; 40 and 120 nmol kg-1) on renal sympathetic nerve activity, blood pressure, heart rate and phrenic nerve activity were investigated in normotensive rats anaesthetized with alpha-chloralose. 2. 5-HT caused a long lasting pressor response which was associated with an initial bradycardia and renal sympathoinhibition followed by a tachycardia and renal sympathoexcitation. Pretreatment with the 5-HT2/5-HT1C receptor antagonists, cinanserin (300 nmol kg-1, i.c.v.) or LY 53857 (300 nmol kg-1, i.c.v.) reversed the initial bradycardia and sympathoinhibition to tachycardia and sympathoexcitation. Combined pretreatment with LY 53857 (300 nmol kg-1, i.c.v.) and the 5-HT1A antagonist, spiroxatrine (300 nmol kg-1, i.c.v.), blocked the effects of 5-HT on all the above variables. 3. Pretreatment with the vasopressin V1-receptor antagonist, beta-mercapto-beta,beta-cyclopentamethylene-propionyl1, O-Me-Tyr2, Arg8-vasopressin [(d(CH2)5Tyr(Me)AVP, 10 micrograms kg-1, i.v.] did not affect the magnitude but reduced the duration of the pressor response produced by i.c.v. 5-HT and reversed the initial bradycardia and renal sympathoinhibition to tachycardia and sympathoexcitation. 4. 1-(2,5-Di-methoxy-4-iodophenyl)-2-aminopropane (DOI) caused a pressor effect which was associated with a bradycardia and sympathoinhibition.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
1. The effects of injections i.c.v. of quipazine, (2 micromol kg-1) and 1-(2,5-di-methoxy-4-iodophenyl)-2-aminopropane (DOI; 2 micromol kg-1) on renal sympathetic and phrenic nerve activity, mean arterial blood pressure (MAP) and heart rate were investigated in alpha-chloralose anaesthetized rats pretreated with a peripherally acting 5-HT2 receptor antagonist. 2. Quipazine or DOI caused a rise in MAP which was associated with a tachycardia and renal sympathoinhibition in rats pretreated (i.c.v.) with the antagonist vehicle 10% PEG. These effects of quipazine were completely blocked by pretreatment with cinanserin (a 5-HT2 receptor antagonist) and attenuated by spiperone (a 5-HT2A receptor antagonist). However, pretreatment with SB200646A (a 5-HT2B/2C receptor antagonist) only blocked the sympathoinhibition, while pretreatment with SB204741 (a 5-HT2B receptor antagonist) reversed the sympathoinhibition to excitation as it also did for DOI. Quipazine also caused renal sympathoexcitation in the presence (i.v.) of a vasopressin V1 receptor antagonist. 3. Injection (i.v.) of the V1 receptor antagonist at the peak pressor response evoked by quipazine alone and in the presence of SB204741 caused an immediate fall in MAP. For quipazine alone the renal sympathoinhibition was slowly reversed to an excitation, while the renal sympathoexcitation observed in the presence of SB204741 was potentiated. In both, the quipazine-evoked tachycardia was unaffected. 4. The data indicate that cardiovascular responses caused by i.c.v. quipazine and DOI are primarily due to activation of central 5-HT2A receptors, which causes the release of vasopressin and a tachycardia. This released vasopressin appears to suppress a 5-HT2A receptor-evoked central increase in sympathetic outflow, which involves the activation of central 5-HT2B receptors indirectly by the released vasopressin.  相似文献   

19.
KP-102 (GHRP-2: pralmorelin) is a synthetic growth hormone releasing peptide (GHRP) that powerfully stimulates the release of GH by acting (i.v.) at both hypothalamic and pituitary sites. Intravenous (i.v.) administration of KP-102 also elicits slight but significant release of adrenocorticotropic hormone (ACTH) in both animals and humans, as is seen with other GHRPs. GHRPs are thought to stimulate the hypothalamic-pituitary-adrenal axis by releasing endogenous ACTH secretagogues such as arginine vasopressin (AVP) and/or corticotropin releasing factor (CRF), though neither AVP nor CRF has been shown clearly to be involved significantly in GHRP-evoked ACTH release. In the present study, we investigated the effects of KP-102 on ACTH release in conscious rats under improved experimental conditions that minimized the influence of stress. Administration of KP-102 i.v. increased plasma ACTH significantly, but did not stimulate ACTH release from rat primary pituitary cells. Administration of KP-102 together with either AVP or CRF elicited significantly greater increases in plasma ACTH levels than any of the agonists alone. Notably, the combination of KP-102 and AVP produced a much greater increase in ACTH than KP-102 plus CRF, indicating that KP-102 augments the effect of exogenous CRF only weakly. Conversely, a CRF antagonist markedly inhibited KP-102-induced ACTH release in conscious rats, whereas an AVP antagonist or anti-AVP antiserum did not. Taken together, these findings suggest that KP-102 acts via the hypothalamus to stimulate ACTH release in rats, and that these effects are mediated mainly by the release of CRF.  相似文献   

20.
Antagonists of the substance P (SP) preferring neurokinin 1 receptor (NK1R) represent a promising novel class of drugs for the treatment of stress-related disorders such as depression and anxiety disorders; however, the involved neuronal pathways releasing SP in response to stressors are ill defined. By using in vivo microdialysis in combination with a highly sensitive and selective radioimmunoassay we found that exposure to forced swim stress increased SP release in the rat lateral septum (LS), a key area in processing emotions and stress responses. Acute administration of the selective NK1R antagonist L-822429 injected either systemically or locally into the LS reduced passive and facilitated active stress-coping strategies in the forced swim test. This effect seems to be mediated by enhanced intraseptal serotonergic transmission via serotonin (5-HT)1A receptors since NK1R blockade reversed the swim stress-induced decrease to an increase in extracellular 5-HT efflux, and furthermore the behavioral effects of L-822429 were blocked by intraseptal 5-HT1A receptor antagonism. A direct heterosynaptic regulation by NK1R on 5-HT release from serotonergic fibers was ruled out by immunocytochemistry at the light and electron microscopic level indicating involvement of GABAergic interneuron(s) in this interaction. Taken together, our data identify the LS as a critical brain area for the involvement of SP transmission in the modulation of stress responses and demonstrate that NK1R blockade can elicit a functionally significant facilitatory effect on 5-HT transmission, which does not necessarily involve the previously proposed interaction with neuronal firing at the cell body level of raphe neurons.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号