首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 947 毫秒
1.
The formation of the corpus luteum (CL) is accompanied with angiogenesis and tissue remodeling and its regression involves tissue degradation. Matrix degrading proteases such as plasminogen activators (PAs) and matrix metalloproteinases (MMPs) are thought to play important roles in such controlled proteolytic processes. In this study, in situ hybridization has been used to examine the regulation and expression pattern of mRNAs coding for proteases and protease inhibitors belonging to the PA- and MMP-systems during the life cycle of the CL in an adult pseudopregnant mouse model. Of the nine proteases and five protease inhibitors that were studied, the majority were found to be temporally expressed during the formation and/or the regression of the CL. However, the mRNAs coding for urokinase type PA (uPA), membrane-type 1 MMP (MT1-MMP), and tissue inhibitor of metalloproteinases type-3 (TIMP-3) were constantly expressed in the mouse CL throughout its whole life span. To study the functional role of uPA in the CL, we analyzed luteal formation and function in uPA deficient mice. Our results revealed no significant difference in ovarian weight, serum progesterone levels, and blood vessel density in the functional CL between uPA deficient and wild type control mice. The temporal and spatial expression pattern of proteases and protease inhibitors during the CL life span suggests that members of the PA- and MMP-systems may play important roles in the angiogenesis and tissue remodeling processes during CL formation, as well as in the tissue degradation during luteal regression. However, the absence of reproductive phenotypes in mice lacking uPA and several other matrix degrading proteases indicates that there are redundancies among different matrix degrading proteases or that tissue remodeling in the ovary may involve other additional unique elements.  相似文献   

2.
K Liu  J I Olofsson  P Wahlberg  T Ny 《Endocrinology》1999,140(11):5330-5338
The corpus luteum (CL) is a transient endocrine organ that secretes progesterone to support pregnancy. The CL is formed from an ovulated follicle in a process that involves extensive angiogenesis and tissue remodeling. If fertilization does not occur or implantation is unsuccessful, the CL will undergo regression, which involves extensive tissue degradation. Extracellular proteases, such as serine proteases and matrix metalloproteinases (MMPs), are thought to play important roles in both the formation and regression of the CL. In this study, we have examined the physiological regulation pattern and cellular distribution of messenger RNAs coding for gelatinase A (MMP-2), collagenase-3 (MMP-13), membrane type MMP 1 (MT1-MMP, MMP-14), and the major MMP inhibitor, tissue inhibitor of MMPs type 1 (TIMP-1) in the CL of adult pseudopregnant (psp) rat. Northern blot and in situ hybridization analyses revealed that gelatinase A messenger RNA was mainly expressed during luteal development, indicating that gelatinase A may be associated with the neovascularization and tissue remodeling that takes place during CL formation. Collagenase-3 had a separate expression pattern and was only expressed in the regressing CL, suggesting that this MMP may be related with luteal regression. MT1-MMP that in vitro can activate progelatinase A and procollagenase-3 was constitutively expressed during the formation, function, and regression of the CL and may therefore be involved in the activation of these MMPs. TIMP-1 was induced during both the formation and regression of the CL, suggesting that this inhibitor modulates MMP activity during these processes. To test whether the induction of collagenase-3 and TIMP-1 is coupled with luteal regression, we prolonged the luteal phase by performing hysterectomies, and induced premature luteal regression by treating the pseudopregnant rats with a PGF2alpha analog, cloprostenol. In both treatments, collagenase-3 and TIMP-1 were induced only after the serum level of progesterone had decreased, suggesting that collagenase-3 and TIMP-1 are induced by physiological signals, which initiate functional luteolysis to play a role in tissue degradation during structural luteolysis. In conclusion, our data suggest that gelatinase A, collagenase-3, and MT1-MMP may have separate functions during the CL life span: gelatinase A mainly takes part in CL formation, whereas collagenase-3 mainly takes part in luteal regression; MT1-MMP is constitutively expressed during the CL life span and may therefore serve as an in vivo activator of both gelatinase A and collagenase-3. TIMP-1 is up-regulated both during the formation and regression of the CL and may therefore regulate MMP activity during both processes.  相似文献   

3.
Proteolytic degradation of the extracellular matrix is essential to angiogenesis. Two families of proteases, the serine proteases of plasminogen activator/plasmin system and the matrix metalloproteinases (MMPs) are closely involved in these processes. The treatment of mice with a diet containing a new synthetic MMP inhibitor, OPB-3206: 3S-[4-(N-hydroxyamino)-2R-isobutylsuccinyl] amino-1methoxy-3, 4-dihydrocarbostyril, abrogated the development of new vessels in a rat corneal assay, and in a mouse Matrigel assay. In an in vitro angiogenesis model, OPB-3206 inhibited the migration and the tube formation of bovine aortic endothelial cells at 10–100 times lower concentrations than those required to inhibit the growth of these cells. OPB-3206 as well as other MMP inhibitory drugs, batimastat/BB-94 and marimastat/BB-2516, also selectively inhibited tubular morphogenesis in vitro. OPB-3206 reduced the activities of interstitial collagenase and type IV collagenase, but the concentrations of 50% inhibition against these MMPs were much higher than those of BB-94 and BB-2516. However, this new compound also inhibited urokinase type plasminogen activator activity on fibrin zymogram, while BB-94 and BB-2516 did not. Furthermore, the addition of urokinase type plasminogen activator reduced the inhibitory effect of the tubular morphogenesis of vascular endothelial cells by OPB-3206. The treatment of mice with a diet containing this new compound also reduced the growth of implanted mammary carcinomas as well as the lung metastasis of colon carcinoma. The anti-angiogenic effect of OPB-3206 appeared to be associated with its inhibition of tumor growth and metastasis. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

4.
Insulin-like growth factor-binding protein 5 (IGFBP-5) mediates involution of the mammary gland. The decrease in DNA content and mammary gland weight which accompanies involution was inhibited by prolactin (PRL) in wild-type but not transgenic mice expressing IGFBP-5. Phospho-STAT5 protein levels were significantly lower in IGFBP-5 transgenic mice during lactation suggesting that IGFBP-5 antagonises PRL signalling in the mammary epithelium. In contrast, phospho-STAT3 levels increased during involution to a similar extent in both wild-type and transgenic mice and were unaffected by PRL. PRL inhibited gene expression of matrix metalloproteinases (MMPs) 3 and 12 but not tissue plasminogen activator or plasmin in wild-type and transgenic animals. The effects of PRL on MMPs appear to be indirect since PRL failed to inhibit MMP-3, -7 or -12 expression in HC-11 cells or in a co-transfection including an activated PRL receptor, STAT5 and a MMP-3-luciferase reporter gene. PRL is a potent inhibitor, both of cell death, an effect which is suppressed by IGFBP-5, and of MMP expression, which is independent of the actions of IGFBP-5.  相似文献   

5.
Increased activity of matrix metalloproteinases (MMPs) has been implicated in numerous disease processes, including tumor growth and metastasis, arthritis, and periodontal disease. It is now becoming increasingly clear that extracellular matrix degradation by MMPs is also involved in the pathogenesis of cardiovascular disease, including atherosclerosis, restenosis, dilated cardiomyopathy, and myocardial infarction. Administration of synthetic MMP inhibitors in experimental animal models of these cardiovascular diseases significantly inhibits the progression of, respectively, atherosclerotic lesion formation, neointima formation, left ventricular remodeling, pump dysfunction, and infarct healing. This review focuses on the role of MMPs in cardiovascular disease, in particular myocardial infarction and the subsequent progression to heart failure. MMPs, which are present in the myocardium and capable of degrading all the matrix components of the heart, are the driving force behind myocardial matrix remodeling. The recent finding that acute pharmacological inhibition of MMPs or deficiency in MMP-9 attenuates left ventricular dilatation in the infarcted mouse heart led to the proposal that MMP inhibitors could be used as a potential therapy for patients at risk for the development of heart failure after myocardial infarction. Although these promising results encourage the design of clinical trials with MMP inhibitors, there are still several unresolved issues. This review describes the biology of MMPs and discusses new insights into the role of MMPs in several cardiovascular diseases. Attention will be paid to the central role of the plasminogen system as an important activator of MMPs in the remodeling process after myocardial infarction. Finally, we speculate on the use of MMP inhibitors as potential therapy for heart failure.  相似文献   

6.
In each reproductive cycle, extensive tissue remodeling takes place in the ovary during follicular development, ovulation, formation and regression of corpus luteum (CL) and follicular atresia. Several lines of indirect evidence suggest that these changes are mediated, in part, by proteases belonging to the plasminogen activator (PA) and the matrix metalloproteinase (MMP) systems. These two enzyme systems include both proteinases and associated inhibitors, that are thought to act in concert via a cascade of proteolytic events, the end result of which is the generation of a broad spectrum proteolytic activity, that can mediate physiological tissue remodeling throughout the body. The current review highlights the key features of these two enzyme systems and focuses on their regulation and functional role during the dynamic remodeling processes that takes place in the ovary during each reproductive cycle.  相似文献   

7.
8.
The Role of the Fibrinolytic System in Corneal Angiogenesis   总被引:3,自引:0,他引:3  
The plasminogen activation system has been implicated in angiogenesis and angiogenesis-dependent diseases such as cancer, atherosclerosis and ocular diseases. The identification and development of inhibitors of angiogenesis offer new possibilities for the treatment of these diseases. To clarify the role of proteins involved in the regulation of fibrinolysis during corneal angiogenesis, we have studied corneal vessel formation in mice deficient for urokinase-type plasminogen activator (uPA), tissue-type plasminogen activator (tPA), plasminogen, plasminogen activator inhibitor-1 (PAI-1) and thrombin-activatable fibrinolysis inhibitor (TAFI). Our results corroborate earlier findings that angiogenesis in the mouse cornea is dependent on PAI-1 and plasminogen. The absence of tPA, uPA or TAFI did not affect the formation of new vessels in the cornea.  相似文献   

9.
10.
11.
CONTEXT: Endometriosis, the growth of endometrial tissue outside the uterus, is principally an estrogen-dependent disease. In contrast, exposure to progesterone during pregnancy or therapeutically has been shown to provide benefit to some women with this disease. However, recent research suggests that the presence of endometriosis impairs the capacity of the eutopic endometrium to respond to endogenous progesterone. OBJECTIVE: Reduced progesterone responsiveness results in an elevated endometrial expression of matrix metalloproteinases (MMPs) during the secretory phase of the menstrual cycle in women with endometriosis. Although cyclic MMP expression is critical for endometrial growth and remodeling, the failure of progesterone to down-regulate MMPs may impair nidation and promote the invasive establishment of endometriosis. In the current study we examined the ability of a newly developed progesterone receptor (PR) agonist, tanaproget (TNPR), to down-regulate endometrial MMP expression in vitro and regress experimental endometriosis in vivo. SETTING: This study was performed at a university-based medical center. PARTICIPANTS: Asymptomatic volunteers and patients with endometriosis were studied. MAIN OUTCOME MEASURES: We examined the ability of TNPR to down-regulate endometrial MMP expression in vitro compared with that of natural progesterone and two currently marketed synthetic steroidal progestins. Using a human/mouse model of endometriosis, we also tested the in vivo ability of TNPR to regress ectopic lesions established by tissues with reduced progesterone sensitivity. RESULTS: TNPR effectively down-regulated MMP expression in vitro and induced significant reduction of lesions in mice with disease established by tissues from endometriosis patients. CONCLUSION: Given the positive preclinical pharmacological profile of TNPR that has recently been reported, additional development of this compound for the treatment of endometriosis is warranted.  相似文献   

12.
Zhao BQ  Ikeda Y  Ihara H  Urano T  Fan W  Mikawa S  Suzuki Y  Kondo K  Sato K  Nagai N  Umemura K 《Blood》2004,103(7):2610-2616
Cerebral hemorrhage associated with antithrombotic and thrombolytic therapy in acute stroke continues to present a major clinical problem. Rupture of the cerebral microvasculature involves the degradation and remodeling of extracellular matrix. Here we demonstrated that the delayed administration of heparin 3 hours after photothrombotic middle cerebral artery occlusion (MCAO) caused cerebral hemorrhage in wild-type (WT) mice but not in tissue plasminogen activator (tPA)-deficient knockout (KO) mice. Heparin administration increased tPA activity and its mRNA expression at 6 and 12 hours after MCAO in the ischemic hemispheres of WT mice. The expression of tPA was enhanced in microglial cells in the ischemic border zone. We also observed an exacerbation of matrix metalloproteinase (MMP) 9 expression at the mRNA level and its conversion to an active form after heparin administration in the ischemic hemisphere in WT mice but not in tPA KO mice. The increased MMP 9 expression was localized in microglial cells and endothelial cells. These findings suggest that endogenous tPA, through the enhancement of MMP 9 expression and proteolytic activation, plays an essential role in the pathogenesis of heparin-produced cerebral hemorrhage. Targeting tPA, MMP 9, or both may provide a new approach for preventing cerebral hemorrhage associated with antithrombotic therapy for stroke in humans.  相似文献   

13.
Proteases of the plasminogen activator (PA) and matrix metalloproteinase (MMP) system play an important role in smooth muscle cell (SMC) migration and neointima formation after vascular injury. Inhibition of either PAs or MMPs has previously been shown to result in decreased neointima formation in vivo. To inhibit both protease systems simultaneously, a novel hybrid protein, TIMP-1.ATF, was constructed consisting of the tissue inhibitor of metalloproteinase-1 (TIMP-1) domain, as MMP inhibitor, linked to the receptor-binding amino terminal fragment (ATF) of urokinase. By binding to the u-PA receptor this protein will not only anchor the TIMP-1 moiety directly to the cell surface, it will also prevent the local activation of plasminogen by blocking the binding of urokinase-type plasminogen activator (u-PA) to its receptor. Adenoviral expression of TIMP-1.ATF was used to inhibit SMC migration and neointima formation in human saphenous vein segments in vitro. SMC migration was inhibited by 65% in Ad.TIMP-1.ATF-infected cells. Infection with adenoviral vectors encoding the individual domains, Ad.TIMP-1 and Ad.ATF, reduced migration by 32% and 52%, respectively. Neointima formation in saphenous vein organ cultures infected with Ad.TIMP-1.ATF was inhibited by 72% compared with 42% reduction after Ad.TIMP-1 infection and 34% after Ad.ATF infection. These data show that binding of TIMP-1.ATF hybrid protein to the u-PA receptor at the cell surface strongly enhances the inhibitory effect of TIMP-1 on neointima formation in human saphenous vein cultures.  相似文献   

14.
The effect of galardin, a broad-spectrum matrix metalloproteinase (MMP) inhibitor, was studied in mice kept on a high fat diet (HFD). Five-week-old male wild-type mice were fed the HFD (42% fat) for up to 12 weeks and were daily injected intraperitoneally with the inhibitor (100 mg/kg) or with vehicle. After 12 weeks of the HFD, the body weights of both groups were comparable, but the weight of the isolated subcutaneous (SC) or gonadal (GON) fat deposits was significantly lower in the inhibitor-treated group than in the control group (88 +/- 11 versus 251 +/- 66 mg, respectively, for SC fat [P<0.05]; 90 +/- 24 versus 217 +/- 30 mg, respectively, for GON fat [P<0.02]). The number of adipocytes was somewhat higher and the diameter was somewhat smaller (but not significantly) in adipose tissues of the inhibitor-treated group. Adipose tissue of the inhibitor-treated mice contained more collagen than did that of the vehicle-treated mice (Sirius red-stained area of 42 +/- 2.6% versus 22 +/- 4.4%, respectively, for SC fat [P<0.05]; 21 +/- 5.1% versus 4.7 +/- 0.92%, respectively, for GON fat [P<0.01]); a distinct collagen-rich cap was formed around the inhibitor-treated tissue. In situ zymography with casein- or gelatin-containing gels confirmed a reduced MMP activity in SC and GON adipose tissues of inhibitor-treated mice. Thus, in this model, growth and development of adipose tissue appears to be limited by the formation of a collagen-rich matrix cap around the inhibitor-treated tissue. These data suggest a functional role for MMPs in the development of adipose tissue.  相似文献   

15.
We hypothesized that formation of advanced glycation end products (AGEs) associated with diabetes reduces matrix degradation by metalloproteinases (MMPs) and contributes to the impairment of ischemia-induced angiogenesis. Mice were treated or not with streptozotocin (40 mg/kg) and streptozotocin plus aminoguanidine (AGEs formation blocker, 50 mg/kg). After 8 weeks of treatment, hindlimb ischemia was induced by right femoral artery ligature. Plasma AGE levels were strongly elevated in diabetic mice when compared with control mice (579 +/- 21 versus 47 +/- 4 pmol/ml, respectively; P < 0.01). Treatment with aminoguanidine reduced AGE plasma levels when compared with untreated diabetic mice (P < 0.001). After 28 days of ischemia, ischemic/nonischemic leg angiographic score, capillary density, and laser Doppler skin-perfusion ratios were 1.4-, 1.5-, and 1.4-fold decreased in diabetic mice in reference to controls (P < 0.01). Treatment with aminoguanidine completely normalized ischemia-induced angiogenesis in diabetic mice. We next analyzed the role of proteolysis in AGE formation-induced hampered neovascularization process. After 3 days of ischemia, MMP-2 activity and MMP-3 and MMP-13 protein levels were increased in untreated and aminoguanidine-treated diabetic mice when compared with controls (P < 0.05). Despite this activation of the MMP pathway, collagenolysis was decreased in untreated diabetic mice. Conversely, treatment of diabetic mice with aminoguanidine restored collagenolysis toward levels found in control mice. In conclusion, blockade of AGE formation by aminoguanidine normalizes impaired ischemia-induced angiogenesis in diabetic mice. This effect is probably mediated by restoration of matrix degradation processes that are disturbed as a result of AGE accumulation.  相似文献   

16.
Matrix metalloproteinases (MMPs) play an important role in the extracellular matrix remodeling. Experimental and clinical studies have demonstrated that MMP 2 and 9 are upregulated in the dilated failing hearts and involved in the development and progression of myocardial remodeling. However, little is known about the role of MMPs in mediating adverse myocardial remodeling in response to chronic pressure overload (PO). We, thus, hypothesized that selective disruption of the MMP 2 gene could ameliorate PO-induced cardiac hypertrophy and dysfunction in mice. PO hypertrophy was induced by transverse aortic constriction (TAC) in male MMP 2 knockout (KO) mice (n=10) and sibling wild-type (WT) mice (n=9). At 6 weeks, myocardial MMP 2 zymographic activity was 2.4-fold increased in WT+TAC, and this increase was not observed in KO+TAC, with no significant alterations in other MMPs (MMP 1, 3, 8, and 9) or tissue inhibitors of MMPs (1, 2, 3, and 4). TAC resulted in a significant increase in left ventricular (LV) weight and LV end-diastolic pressure (EDP) with preserved systolic function. KO+TAC mice exerted significantly lower LV weight/body weight (4.2+/-0.2 versus 5.0+/-0.2 mg/g; P<0.01), lung weight/body weight (4.9+/-0.2 versus 6.2+/-0.4 mg/g; P<0.01), and LV end-diastolic pressure (4+/-1 versus 10+/-2 mm Hg; P<0.05) than WT+TAC mice despite comparable aortic pressure. KO+TAC mice had less myocyte hypertrophy (cross-sectional area; 322+/-14 versus 392+/-14 microm2; P<0.01) and interstitial fibrosis (collagen volume fraction; 3.3+/-0.5 versus 8.2+/-1.0%; P<0.01) than WT+TAC mice. MMP 2 plays an important role in PO-induced LV hypertrophy and dysfunction. The inhibition of MMP 2 activation may, therefore, be a useful therapeutic strategy to manage hypertensive heart disease.  相似文献   

17.
Extrahepatic cholestasis leads to complex injury and repair processes that result in bile infarct formation, neutrophil infiltration, cholangiocyte and hepatocyte proliferation, extracellular matrix remodeling, and fibrosis. To identify early molecular mechanisms of injury and repair after bile duct obstruction, microarray analysis was performed on liver tissue 24 hours after bile duct ligation (BDL) or sham surgery. The most upregulated gene identified encodes plasminogen activator inhibitor 1 (PAI-1, Serpine 1), a protease inhibitor that blocks urokinase plasminogen activator (uPA) and tissue-type plasminogen activator (tPA) activity. Because PAI-1, uPA, and tPA influence growth factor and cytokine processing as well as extracellular matrix remodeling, we evaluated the role of PAI-1 in cholestatic liver injury by comparing the injury and repair processes in wild-type (WT) and PAI-1-deficient (PAI-1-/-) mice after BDL. PAI-1-/- mice had fewer and smaller bile infarcts, less neutrophil infiltration, and higher levels of cholangiocyte and hepatocyte proliferation than WT animals after BDL. Furthermore, PAI-1-/- mice had higher levels of tPA activation and mature hepatocyte growth factor (HGF) after BDL than WT mice, suggesting that PAI-1 effects on HGF activation critically influence cholestatic liver injury. This was further supported by elevated levels of c-Met and Akt phosphorylation in PAI-1-/- mice after BDL. In conclusion, PAI-1 deficiency reduces liver injury after BDL in mice. These data suggest that inhibiting PAI-1 might attenuate liver injury in cholestatic liver diseases.  相似文献   

18.
19.

Objective

To investigate the role of matrix metalloproteinases (MMPs) and tissue inhibitors of matrix metalloproteinases (TIMPs) in spondylarthropathy (SpA) synovitis.

Methods

Paired samples of synovial biopsy tissue as well as serum and synovial fluid (SF) from 41 patients with SpA and 20 patients with rheumatoid arthritis (RA) and serum samples from 20 healthy controls were analyzed by immunohistochemistry and enzyme‐linked immunosorbent assay for the presence of MMPs 1, 2, 3, and 9 and TIMPs 1 and 2. In addition, sera from 16 patients with ankylosing spondylitis (AS) and peripheral synovitis and 17 patients with AS and exclusively axial involvement were analyzed. An additional cohort of SpA patients was analyzed at baseline and after 12 weeks of infliximab treatment.

Results

Staining for MMPs and TIMPs showed a cellular and interstitial pattern in the synovial lining and sublining layers that was similar between the RA and SpA patients. Involvement of MMPs and TIMPs in SpA synovitis was suggested by the correlation with cellular infiltration, vascularization, and cartilage degradation. Higher serum levels of MMPs 3 and 9 were revealed in SpA and RA patients as compared with healthy controls. Production of MMP‐3, but not MMP‐9, in the serum reflected the presence of peripheral synovitis, as indicated by 1) the correlation between serum levels, SF levels (which were 1,000‐fold higher than the serum levels), and synovial expression of MMP‐3, 2) the increased levels of MMP‐3 in AS patients with peripheral disease and not exclusively axial involvement, and 3) the correlation of serum and SF MMP‐3 with parameters of synovial, but not systemic, inflammation. The modulation of the MMP/TIMP system by tumor necrosis factor α (TNFα) blockade was confirmed by the down‐regulation of all MMPs and TIMPs in the synovium and a pronounced and rapid decrease of serum MMP‐3.

Conclusion

MMPs and TIMPs are highly expressed in SpA synovitis and mirror both the inflammatory and tissue‐remodeling aspects of the local disease process. Serum MMP‐3, originating from the inflamed joint, represents a valuable biomarker for peripheral synovitis. Modulation of the MMP/TIMP system by infliximab could contribute to the antiinflammatory and tissue‐remodeling effects of TNFα blockade in SpA.
  相似文献   

20.
Exposure to the arterial hemodynamic environment is thought to be a potential trigger for the pathological remodeling of saphenous vein grafts. Using matched pairs of freshly isolated human saphenous vein, we analyzed the early effects of ex vivo hemodynamic conditions mimicking the venous (native) compared with arterial (graft) environment on the key components of vascular remodeling, ie, matrix metalloproteinase (MMP)-9 and MMP-2 and cell proliferation. Interestingly, we found that arterial conditions halved latent MMP-9 (50+/-11%, P=0.01) and MMP-2 (44+/-6%, P=0.005) levels relative to matched vein pairs maintained ex vivo under venous perfusion for up to 3 days. Immunostaining supported decreased MMP levels in the innermost area of arterially perfused veins. Either decreased synthesis or increased posttranslational processing may decrease MMP zymogen levels. Biosynthetic radiolabeling showed that arterial perfusion actually increased MMP-9 and MMP-2 production. When we then examined potential pathways for MMP zymogen processing, we found that arterial conditions did not affect the expression of MT-MMP-1, a cell-associated MMP activator, but that they significantly increased the levels of superoxide, another MMP activator, suggesting redox-dependent MMP processing. Additional experiments indicated that increased superoxide under arterial conditions was due to diminished scavenging by decreased extracellular superoxide dismutase. Arterial perfusion also stimulated cell proliferation (by 220% to 750%) in the majority of vein segments investigated. Our observations support the hypothesis that arterial hemodynamic conditions stimulate early vein graft remodeling. Furthermore, physiological arterial flow may work to prevent pathological remodeling, particularly the formation of intimal hyperplasia, through rapid inactivation of secreted MMPs and, possibly, through preferential stimulation of cell proliferation in the outer layers of the vein wall.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号