首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Belli , A. & Bosco, A. 1992. Influence of stretch-shortening cycle on mechanical behaviour of triceps surae during hopping. Acta Physiol Scand 144 , 401408. Received 20 March 1 991 , accepted 3 December 1991. ISSN 0001–6772. Laboratories of Physiology, Universities of St Etienne and Lyon, France and Departments of Biology and Physical Activity, University of Jyväskylä, Finland. Six subjects performed a first series of vertical plantar flexions and a second series of vertical rebounds, both involving muscle triceps surae exclusively. Vertical displacements, vertical forces and ankle angles were recorded during the entire work period of 60 seconds per series. In addition, expired gases were collected during the test and recovery for determination of the energy expenditure. Triceps surae was mechanically modelled with a contractile component and with an elastic component. Mechanical behaviour and work of the different muscle components were determined in both series. The net muscular efficiency calculated from the work performed by the centre of gravity was 17.5±3.0% (mean ± SD) in plantar flexions and 29.9 ± 4.8% in vertical rebounds. The net muscle efficiency calculated from the work performed by the contractile component was 17.4 %% 2.9% in plantar flexions and 16.1 ± 1.47; in vertical rebounds. These results suggest that the muscular efficiency differences do not reflect muscle contractile component efficiency but essentially the storage and recoil of elastic energy. This is supported by the relationship (P < 0.01) found in vertical rebounds between the extra work and the elastic component work. A detailed observation of the mechanical behaviour of muscle mechanical components showed that the strategy to maximize the elastic work depends also on the force-velocity characteristics of the movement and that the eccentric-concentric work of the contractile component does not always correspond respectively to the ankle extension-flexion.  相似文献   

2.
An isometric torque sensor for measuring in situ contractions of plantar or dorsal flexors of intact mouse hindlimb has been developed and evaluated. With this device, muscle torque can be accurately measured within the range of -14 mN.m to +14 mN.m. Special attention was paid to fixation of the mouse hindlimb to the measurement device. Halothane-anaesthetized Swiss wild-type mice were positioned on the thermostatic measurement platform, and fixated with a hip and foot fixation system. The novel fixation unit was evaluated by measuring knee and ankle displacements during a contraction. A mathematical muscle model was used to quantify the effects of these displacements on the contractile parameters. Measured ankle and knee displacement, due to non-absolute fixation. resulted in a calculated muscle fibre shortening of 2.5%. Simulations of a contraction with this degree of fibre shortening, using the mathematical muscle model, showed only minor effects on maximal torque generation and the temporal parameters (half-relaxation time and 10-50% rise time). Furthermore, we showed that muscle torque in our set-up is hardly affected by eccentricity between ankle and measurement axis. Measured tetanic muscle torques of intact dorsal and plantar flexors were 3.2+/-0.4 mN.m and 11.8+/-1.6 mN.m, respectively. The half-relaxation time of plantar flexors was significantly higher than that of dorsal flexors (12.9+/-2.7 ms versus 8.8+/-1.2 ms), whereas the 10-50% rise time was longer in plantar (14.9+/-0.6 ms) than in dorsal (11.8+/-2.0 ms) flexors.  相似文献   

3.
The availability of animal models with disrupted genes has increased the need for small-scale measurement devices. Recently, we developed an experimental device to assess in situ mechanical properties of isometric contractions of intact muscle complexes of the mouse. Although this apparatus provides valuable information on muscle mechanical performance, it is not appropriate for determining contractile properties during shortening and lengthening contractions. In the present study we therefore developed and evaluated an experimental apparatus for assessment of shortening and lengthening contractile properties of intact plantar and dorsal flexors of the mouse. The current through a custom-built, low-inertia servomotor was measured to assess contractile muscular torque ranging from -50 to mN.m. Evaluation of the fixation procedure of the animal to the apparatus via 3-D monitoring of the muscle-tendon complex length showed that the additional shortening in length due to a contraction with maximal torque output has only minor effects on the measured torque. Furthermore, misalignment of the axis of rotation of the apparatus relative to the axis of rotation in the ankle joint, i.e. eccentricity, during a routine experiment was estimated to be less than 1.0 mm and hence did not influence the measured torque output under our experimental conditions. Peak power per unit muscle mass (mean +/- SD) of intact dorsal and plantar flexors was 0.27 +/- 0.02 and 0.19 +/- 0.03 W.g-1, respectively. The angular velocity at maximal peak power generated by the dorsal flexor complex and the plantar flexor complex was 1100 +/- 190 and 700 +/- 90 degrees.s-1, respectively.  相似文献   

4.
AIM: This study determined changes in knee extensor and plantar flexor muscle volume during 29 days of bed rest with or without resistance exercise using a gravity-independent flywheel ergometer. METHODS: Seventeen men (26-41 years) were subjected to 29 days of bed rest with (n = 8) or without (n = 9) resistance exercise; Supine Squat (SS) and Calf Press (CP) performed every third day. Quadriceps and triceps surae muscle volume was determined before and after bed rest and force and power were measured during training. Prior to these interventions, reproducibility of this device for training and testing was assessed in 23 subjects who performed bilateral maximal concentric, eccentric and isometric (MVC) knee extensions and plantar flexions over repeated sessions with simultaneous measurements of force, power and electromyographic (EMG) activity. RESULTS: Quadriceps and triceps surae muscle volume decreased (P < 0.05) 10 and 16%, respectively, after 29 days bed rest. Exercise maintained quadriceps volume and mitigated triceps surae atrophy. Thus, either muscle showed different response across subject groups (P < 0.05). Force and power output during training were either maintained (P > 0.05) or increased (P < 0.05). EMG amplitude in the training mode was similar (SS; P > 0.05) or greater (CP; P < 0.05) compared with that elicited during MVC. Peak force and power test-retest coefficient of variation (CV) ranged 5-6% and 7-8% for SS and CP, respectively. CONCLUSION: The present data suggest that this resistance exercise paradigm counteracts quadriceps and abates the more substantial triceps surae muscle atrophy in bedridden subjects, and therefore should be an important asset to space travellers.  相似文献   

5.
The aim of this study was to calculate the theoretical variation of the nonlinear damping factor (B) as a function of the muscle shortening velocity, and then to compare the theoretical values with the experimental data obtained on both the elbow flexor and the ankle extensor muscles. The theoretical variation of the B factor was determined from a muscle model consisting of a contractile component in parallel with a viscous damper both in series with an elastic component, and by using, the charateristic equation of the force velocity curve. In this muscle model, the viscous element modelled the inability of the muscle to generate as big a contracting force (while shortening) as possible under isometric conditions. Eight volunteer subjects performed maximal concentric elbow flexions and ankle extensions on an isokinetic ergometer at angular velocities of 60, 120, 180, 240, 300 and 360°·s–1, and held two maximal isometric actions at an elbow angle of 90° (0° corresponds to the full extension) and at an ankle angle of 0° (0° corresponds to the foot flexion of 90° relative to the leg axis). From these measurements, the force and the shortening velocity values of each muscle were determined by using a musculo-skeletal model of the joint. The results showed that the theoretical behaviour of the B factor would seem to be dependent on the shortening velocity and on the parameter which varies according to the muscle fibre type composition and affects the curvature of the force-velocity curve (af). For each muscle group, the experimental data of B fitted with the theoretical equation, and the best fit was obtained for an of of 0.28 for the ankle extensor and of 0.32 for the elbow flexor muscles. These results indicated that from the muscle model used in the present study it is possible to describe the mechanical behaviour of the muscle during maximal concentric action.  相似文献   

6.
Using short duration perturbations, previous attempts to measure the intrinsic ankle stiffness during human standing have revealed a substantial stabilizing contribution (65–90% normalized to load stiffness ' mgh '). Others regard this method as unsuitable for the low-frequency conditions of quiet standing and believe the passive contribution to be small (10–15%). This latter view, consistent with a linear Hill-type model, argues that during standing, the contractile portion of the muscle is much less stiff than the tendon. Here, for upright subjects, we settle this issue by measuring the stiffness of the contractile portion of the passive calf muscles using low-frequency ankle rotations. Using ultrasound we tracked the changes in muscle contractile length and partitioned the ankle rotation into contractile and extra-contractile (series elastic) portions. Small ankle rotations of 0.15 and 0.4 deg show a contractile to series elastic stiffness ratio ( K ce/ K se) of 12 ± 9 and 6.3 ± 10, respectively, with both elements displaying predominantly elastic behaviour. Larger, 7 deg rotations reveal the range of this ratio. It declines in a non-linear way from a high value ( K ce/ K se= 18 ± 11) to a low value ( K ce/ K se= 1 ± 0.4) as rotation increases from 0.1 to 7 deg. There is a marked transition at around 0.5 deg. The series elastic stiffness ( K se/ mgh ) remains largely constant (77 ± 13%) demonstrating the contractile component origin of passive, short range stiffness. The linear Hill-type model does not describe the range-related stiffness relevant to the progression from quiet standing to perturbed balance and movement and can lead to inaccurate predictions regarding human balance.  相似文献   

7.
Peak torque (PT), contractional work (CW) and mean power of isokinetic plantar flexions were measured in unselected, clinically healthy subjects, randomly chosen from the official census lists of Ume?, in three age groups: 40-44, 50-54 and 60-64 years. Simultaneous recordings of integrated electromyograms (iEMG) were obtained by surface electrodes from all three heads of the m. triceps surae. PT and CW decreased exponentially with increasing velocity of angular motion and at 60 degrees X s-1 (r2 = 0.79 and 0.63, respectively) were adequately determined by crural circumference, age and sex. The muscular output declined with increasing age. Both output and iEMG showed an approximate 3:2 male:female ratio. Therefore, the ratio CW/iEMG was age, but not sex-dependent at any given velocity of angular motion. Independently of this age, the iEMGs were inversely proportional to velocity of angular motion, while iEMG/manoeuvre time was constant indicating that torque/velocity and work/velocity exponential relationships are mainly determined by muscular properties. Based on the literature it is suggested that the dependence of the measured parameters on age and sex is determined by muscular properties, rather than by the central nervous system. Moreover, the CW/iEMG ratio appears to provide a comprehensive picture of excitation and mechanical output of the muscle group studied and may therefore be a useful measure.  相似文献   

8.
Summary The aim of this study was to calculate the magnitude of the instantaneous muscular power output at the hip, knee and ankle joints during ergometer cycling. Six healthy subjects pedalled a weight-braked bicycle ergometer at 120 watts (W) and 60 revolutions per minute (rpm). The subjects were filmed with a cine camera, and pedal reaction forces were recorded from a force transducer mounted in the pedal. The muscular work at the hip, knee and ankle joint was calculated using a model based upon dynamic mechanics described elsewhere. The mean peak concentric power output was, for the hip extensors, 74.4 W, hip flexors, 18.0 W, knee extensors, 110.1 W, knee flexors, 30.0 W and ankle plantar flexors, 59.4 W. At the ankle joint, energy absorption through eccentric plantar flexor action was observed, with a mean peak power of 11.4 W and negative work of 3.4 J for each limb and complete pedal revolution. The energy production relationships between the different major muscle groups were computed and the contributions to the total positive work were: hip extensors, 27%; hip flexors, 4%; knee extensors, 39%; knee flexors, 10%; and ankle plantar flexors 20%.  相似文献   

9.
The triceps surae muscle group, consisting of the mono-articular soleus (SOL) and bi-articular gastrocnemius (GAS) muscles, primarily generates plantar flexor torque. Since the GAS muscle crosses the knee joint, flexion of the knee reduces the length of this muscle, thus limiting its contribution to torque output. However, it is not clearly understood how the central nervous system activates muscles that are at inefficient or non-optimal force-producing lengths. Therefore, the present study was designed to determine the effect of muscle length on motor-unit recruitment in the medial GAS muscle. Single motor-unit activity was recorded from the medial GAS muscle while electromyographic (EMG) activity was recorded from the SOL muscle in nine male subjects. With the ankle angle held constant at 90 degrees, the knee angle was changed from 180 degrees to 90 degrees, corresponding to a long and short GAS muscle length, respectively. Levels of voluntary plantar flexor torque were produced at a rate of 2 Nm.s-1 until motor-unit activity was detected. A total of 229 motor units were recorded, of which 121 and 108 were obtained at the long and short muscle lengths, respectively. At the short length, onset of motor-unit activity occurred at significantly higher levels of plantar flexor torque and SOL EMG. Onset of motor-unit activity occurred at 2.97 +/- 7.78 Nm and 32.14 +/- 10.25 Nm, corresponding to 0.045 +/- 0.075 mV and 0.231 +/- 0.129 mV of SOL EMG in the long and short positions, respectively. No individual GAS motor unit could be recorded at both muscle lengths. Motor units in the shortened GAS muscle may be influenced by peripheral afferents capable of reducing the excitability of the motoneurone pool. This may also reflect a specific inhibition of motor units having shortened, non-optimal fascicle lengths, and they are thereby incapable of contributing to plantar flexor torque.  相似文献   

10.
Summary This study aimed to assess the effects of training using electrical stimulation (ES) on the contractile characteristics of the triceps surae muscle. A selection of 12 subjects was divided into two groups (6 control, 6 experimental). The ES sessions were carried out using a stimulator. Flexible elastomer electrodes were used. The current used discharged pulses lasting 200 s at 70 Hz. Contraction time was 5 s and rest time 15 s. The session lasted 10 min for each muscle. Training sessions were three times a week for 4 weeks. Biomechanical tests were performed using an isokinetic ergometer. Subjects performed plantar flexions of the ankle over a concentric range of movement at different angular velocities (60, 120, 180, 240, 300, 360°·s–1) and held isometric contractions for 5 s at several ankle flexion angles (–30/–15/0/15°–0 corresponded to foot flexion of 90° relative to the leg axis). The force-velocity relationship was seen to shift evenly upwards under the influence of ES (P<0,05). The increased force during the after test was greater (P<0,05) for ankle angle positions of 15° and –30°, which demonstrated a link between the training angle and the gain in strength. No change was noted in the cross-sectional area of the muscle. The results showed that ES allowed the contractile qualities of muscle to be developed in isometric and dynamic conditions. Nervous mechanisms can account for most of these adaptations.  相似文献   

11.
Six men performed a single ankle plantar flexion exercise in the supine position with the maximal effort with counter movement (CM, plantar flexion preceded by dorsiflexion) and without counter movement (NoCM, plantar flexion only) produced by a sliding table that controlled applied load to the ankle (40 % of the maximal voluntary force). The reaction force at the foot and ankle joint angle were measured using a force plate and a goniometer, respectively. From real-time ultrasonography of the gastrocnemius medialis muscle during the movement, the fascicle length was determined. The estimated peak force, average power, and work at the Achilles' tendon during the plantar flexion phase in CM were significantly greater than those in NoCM. In CM, in the dorsiflexion phase, fascicle length initially increased with little electromyographic activity, then remained constant while the whole muscle-tendon unit lengthened, before decreasing in the final plantar flexion phase. In NoCM, fascicle length decreased throughout the movement and the fascicle length at the onset of movement was longer than that of the corresponding phase in CM. It was concluded that during CM muscle fibres optimally work almost isometrically, by leaving the task of storing and releasing elastic energy for enhancing exercise performance to the tendon.  相似文献   

12.
A three-element cardiac muscle fibre model, utilising Huxley's sliding filament theory for the contractile element and coupled with parallel series elastic components, was simulated to see if it were possible to predict the cardiac Fenn effect. The force/length energy (FLE) was computed in both isometric and isotonic contractions, as a function of muscle fibre length (preload) in the isometric case and afterload in the isotonic contraction case. Simulation results demonstrated that isotonic contractions produced a greater FLE than isometric contractions at every corresponding afterload, with the difference being equal to the work produced in the isotonic case, which is characteristic of the Fenn effect. The maximum energy utilisation was observed at maximum force isometric contractions, as has been experimentally observed in cardiac muscle. Changing the stiffness of the series elastic component did not change the Fenn-effect behaviour. Fenn-effect plots using crossbridge eneegy predictions showed behaviour similar to the FLE plots, but the FLE: crossbridge energy ratio declined with decreasing force even though the efficiency has been experimentally found to be constant.  相似文献   

13.
Aim: This study determined changes in knee extensor and plantar flexor muscle volume during 29 days of bed rest with or without resistance exercise using a gravity‐independent flywheel ergometer. Methods: Seventeen men (26–41 years) were subjected to 29 days of bed rest with (n = 8) or without (n = 9) resistance exercise; Supine Squat (SS) and Calf Press (CP) performed every third day. Quadriceps and triceps surae muscle volume was determined before and after bed rest and force and power were measured during training. Prior to these interventions, reproducibility of this device for training and testing was assessed in 23 subjects who performed bilateral maximal concentric, eccentric and isometric (MVC) knee extensions and plantar flexions over repeated sessions with simultaneous measurements of force, power and electromyographic (EMG) activity. Results: Quadriceps and triceps surae muscle volume decreased (P < 0.05) 10 and 16%, respectively, after 29 days bed rest. Exercise maintained quadriceps volume and mitigated triceps surae atrophy. Thus, either muscle showed different response across subject groups (P < 0.05). Force and power output during training were either maintained (P > 0.05) or increased (P < 0.05). EMG amplitude in the training mode was similar (SS; P > 0.05) or greater (CP; P < 0.05) compared with that elicited during MVC. Peak force and power test‐retest coefficient of variation (CV) ranged 5–6% and 7–8% for SS and CP, respectively. Conclusion: The present data suggest that this resistance exercise paradigm counteracts quadriceps and abates the more substantial triceps surae muscle atrophy in bedridden subjects, and therefore should be an important asset to space travellers.  相似文献   

14.
Several recent studies have shown that the contractile state of the intact heart may be described by the instantaneous relationships between contractile element velocity, length and stress. However, there is little direct evidence that the intact heart can be described by a model containing at least a contractile element and a series elastic component (SEC). In isolated muscle the series elastic component can be analyzed by determining the length changes following quick releases to known loads during contraction. The characteristics of the effective SEC of the intact left ventricle (LV) were determined by a quick release method in 8 dogs in which the left ventricle contracted isovolumically against a balloon inserted via the mitral annulus. During active contraction, sequential withdrawals of 0.5 to 7.0 ml of fluid were performed rapidly (5-18 msec) by an electrically-timed, springloaded syringe. From these releases the calculated maximum extension of the SEC averaged 4.03 +/- 0.27% of LV circumference at LV pressures averaging 79/6 mmHg (systolic/end-diastolic; range 66-107/0-15 mmHg.) The reductions of the left ventricular midwall circumference were plotted against the corresponding changes in mean wall stress. The load extension curve determined in this manner was unchanged by varying the time of release and by norepinephrine infusion. These data support a model for the intact LV that contains an undamped SEC, the characteristics of which resemble those of isolated cardiac muscle.  相似文献   

15.
Movement patterns were studied during fast voluntary forward flexions of the trunk from an erect standing position. Three healthy subjects performed three series of six consecutive trunk flexions at maximum velocity and with successively increasing amplitude, covering a major part of the range of motion (range for all subjects: 13-97 degrees). Angular displacements of the trunk, hip, knee and ankle were measured together with the tilt of the pelvis and the flexion of the spine using a Selspot optoelectronic system. Trunk flexion was the result of a simultaneous forward pelvic tilt and flexion of the spine. For trunk movements up to 55 degrees, spine flexion dominated the movement, whereas for larger movements a major part of the amplitude was caused by pelvic tilt. During flexion of the trunk a simultaneous hip flexion and ankle extension was seen. At the knee there was an initial flexion and a subsequent extension. The net amplitude of the knee flexion showed a negative correlation with net trunk flexion amplitude for movements up to 50 degrees, whereas for larger amplitudes the correlation was positive. Time from onset of the trunk movement to peak knee flexion showed a weak correlation to net trunk flexion amplitude (r = 0.34) whereas the corresponding correlation was higher for pelvic tilt, spine flexion, hip flexion, ankle extension, and knee extension (r = 0.60-0.91). Each successive trial during a series of trunk movements was started from an increasing degree of knee flexion. This gradual adaptation was also present when successive trunk flexions were performed with constant movement amplitude.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
In the present study, the torque or work produced during isometric, pure concentric and eccentric-concentric plantar flexions, performed in sitting, standing and prone were measured. The electromyographic (EMG) activity was measured from the soleus, gastrocnemius medialis, tibialis anterior and rectus femoris muscles. The isometric tests showed the highest torques in the standing test. The rectus femoris and gastrocnemius activities were lower in the prone than in the standing test. The sitting test showed lower activities in all muscles of the lower leg compared with the standing test. No differences in work between the prone and sitting tests were found during the concentric phases. Higher rectus femoris activity in the eccentric-concentric test and lower activity in the triceps surae during the concentric phases were seen in the sitting compared with the prone test. We conclude that tests of overall functional ability should be performed in the standing position while specific tests of the plantar flexors should be performed in the prone position.  相似文献   

17.
Human subjects maintained isometric plantar or dorsal flexions of the ankle in a matching task. H-reflexes of different sizes were superimposed on the steady activity. The peak-to-peak amplitude of the reflexes was measured on the electromyogram (EMG) of the soleus muscle. The size of the corresponding muscle contractions was determined on the isometric torque signal in relation to the maintained flexion force. The EMG-torque relation which was defined as the reflex muscle contraction as a function of the EMG reflex signal approximated a square root function for a given steady contraction level. It was not modulated by steady dorsal flexions, but it decreased continuously with stronger plantar steady torques. This dependence was caused by the silent period following the reflex discharge. Since the reflex discharge and the silent period were near in time to the duration of the contraction, the silent period had a direct effect on the reflex contraction amplitude.  相似文献   

18.
Peak torque (PT), contractional work (CW) and mean power of isokinetic plantar flexions were measured in unselected, clinically healthy subjects, randomly chosen from the official census lists of Umeå, in three age groups: 40–44, 50–54 and 60–64 years. Simultaneous recordings of integrated electromyograms (iEMG) were obtained by surface electrodes from all three heads of the m. triceps surae. PT and CW decreased exponentially with increasing velocity of angular motion and at 60°. s-1 (r2= 0.79 and 0.63, respectively) were adequately determined by crural circumference, age and sex. The muscular output declined with increasing age. Both output and iEMG showed an approximate 3:2 male: female ratio. Therefore, the ratio CW/iEMG was age, but not sex-dependent at any given velocity of angular motion. Independently of this age, the iEMGs were inversely proportional to velocity of angular motion, while iEMG/manoeuvre time was constant indicating that torque/velocity and work/velocity exponential relationships are mainly determined by muscular properties. Based on the literature it is suggested that the dependence of the measured parameters on age and sex is determined by muscular properties, rather than by the central nervous system. Moreover, the CW/iEMG ratio appears to provide a comprehensive picture of excitation and mechanical output of the muscle group studied and may therefore be a useful measure.  相似文献   

19.
Summary The running economy of seventeen athletes was studied during running at a low speed (3.3 m · s–1) on a motor-driven treadmill. The net energetic cost during running expressed in kJ·kg–1·km–1 was on average 4.06. As expected, a positive relationship was found between the energetic cost and the percentage of fast twitch fibres (r=0.60,n=17,p<0.01). In addition, the mechanical efficiency during two different series of jumps performed with and without prestretch was measured in thirteen subjects. The effect of prestretch on muscle economy was represented by the ratio between the efficiency of muscular work performed during prestretch jumps and the corresponding value calculated in no prestretch conditions. This ratio demonstrated a statistically significant relationship with energy expenditure during running (r=–0.66,n=13,P<0.01), suggesting that the elastic behaviour of leg extensor muscles is similar in running and jumping if the speeds of muscular contraction during eccentric and concentric work are of similar magnitudes.  相似文献   

20.
Summary Contraction work (CW) was recorded for each of 200 repetitive isokinetic plantar flexions (1.05 rad · s–1) and knee extensions (1.57 rad · s–1) in 14 elite male orienteers. Simultaneous recordings of integrated electromyograms (iEMG) were obtained from the 3 parts of triceps surae and from 3 superficial portions of quadriceps femoris. CW in both muscle groups decreased significantly during the first 30 contractions (the fatigue phase), followed by a steady state level. The relative steady state level was higher for the plantar flexors (70±17%) than for the knee extensors (56±12%). For quadriceps a significant increase in iEMG occurred during the first 10 contractions followed by a decrease, whereas the iEMG of the plantar flexors showed a gradual decrease to the steady state level, which was similar for the two muscle groups (71–72%). The chosen expression of output/input balance (CW/iEMG) was constant throughout the plantarflexion test but decreased during the initial 20 knee extensions down to 82%. Thus, the fatigue phase of the knee extensions appeared to be divided into two; the first part had decreases in both CW and CW/iEMG and the second part with a decrease in CW alone. In contrast the plantar flexors only showed the characteristics of the second part.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号