首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Accumulating evidence suggests regulatory T cells (Tregs) are associated with impaired antitumor responses. However, the relationship between the CD4(+)CD25(high)FoxP3(+) Treg and hepatocellular carcinoma (HCC) has not been well investigated. Levels of CD4(+)CD25(high)FoxP3(+) Tregs in peripheral blood mononuclear cells (PBMCs) from HCC patients and healthy donors, tumor infiltrating lymphocytes (TILs) extracted from HCC, and hepatic lymphocytes extracted from resected liver were measured by flow cytometry, and their effects on T-cell proliferation was determined by (3)H-thymidine incorporation. Serum levels of interleukin (IL)-10 and transforming growth factor (TGF)-β1 were measured by enzyme linked immunosorbent assay. The frequency of Tregs in PBMCs from HCC patients was higher than that from healthy donors. Similarly, the frequency of Tregs in TILs was higher than that of hepatic lymphocytes. On the other hand, the (3)H-thymidine uptake by TILs and PBMCs from HCC patients was decreased drastically when compared to the counterparts from normal controls. Furthermore, serum IL-10 and TGF-β1 levels increased significantly in HCC patients when compared to the healthy donors. This study identified an increased frequency of CD4(+)CD25(high)FoxP3(+) Tregs in patients with HCC. The elevated serum IL-10, TGF-β1 levels also correlated with impaired antitumor responses in these patients. Further effort is needed to establish new immunotherapeutic strategies designed to modulate Tregs to promote a competent antitumor response.  相似文献   

2.
Continuous antigen stimulation of CD4(+)CD25(-) T cells leads to generation of adaptive CD4(+)CD25(+)FOXP3(+) regulatory T (T(R)) cells. Here, we show that highly suppressive adaptive CD8(+)CD25(+)FOXP3(+) T cells can be generated in the same manner by continuous antigen stimulation in the presence of CD14(+) monocytes. During the course of stimulation, acquisition of immunosuppressive properties develops in parallel with up-regulation and expression of cytotoxic molecules. The CD8(+) T(R) cells inhibit CD4(+) and CD8(+) T cell proliferation and cytokine production, but do not alter the expression of granzyme A and granzyme B or perforin in CD8(+) effector T cells. Although, the CD8(+) T(R) cells express prostaglandin E(2), IL-10 and TGF-beta, the mechanism of suppression was independent of these soluble factors. In contrast to adaptive CD4(+) T(R) cells, the CD8(+) T(R) cells suppress mainly by a contact-dependent mechanism as evident from transwell experiments. However, neither blocking antibodies to CTLA-4, CD80 nor CD86 could reverse CD8(+) T(R)-mediated suppression, indicating that other mechanism(s) must be employed by these cells.  相似文献   

3.
4.
Tumour growth promotes the expansion of CD4(+) CD25(+) FoxP3(+) regulatory T cells (Tregs) which suppress various arms of immune responses and might therefore contribute to tumour immunosurveillance. In this study, we found an inverse correlation between circulating Treg frequencies and phosphoantigen-induced gammadelta T-cell proliferation in cancer patients, which prompted us to address the role of Tregs in controlling the gammadelta T-cell arm of innate immune responses. In vitro, human Treg-peripheral blood mononuclear cell (PBMC) co-cultures strongly inhibited phosphoantigen-induced proliferation of gammadelta T cells and depletion of Tregs restored the impaired phosphoantigen-induced gammadelta T-cell proliferation of cancer patients. Tregs did not suppress other effector functions of gammadelta T cells such as cytokine production or cytotoxicity. Our experiments indicate that Tregs do not mediate their suppressive activity via a cell-cell contact-dependent mechanism, but rather secrete a soluble non-proteinaceous factor, which is independent of known soluble factors interacting with amino acid depletion (e.g. arginase-diminished arginine and indolamine 2,3-dioxygenase-diminished tryptophan) or nitric oxide (NO) production. However, the proliferative activity of alphabeta T cells was not affected by this cell-cell contact-independent suppressive activity induced by Tregs. In conclusion, these findings indicate a potential new mechanism by which Tregs can specifically suppress gammadelta T cells and highlight the strategy of combining Treg inhibition with subsequent gammadelta T-cell activation to enhance gammadelta T cell-mediated immunotherapy.  相似文献   

5.
Aberrant regulatory T cell populations, characterised by a wide array of CD markers, have been identified in many autoimmune diseases. CD127 has recently been identified as a specific marker for the CD4(+)CD25(Hi) (Tregs) subset. CD127 is the first non-HLA gene to have its association with multiple sclerosis widely replicated. We demonstrate that the regulatory or suppressor T cells CD4(+)CD25(Hi) (Tregs), CD8(+)CD28(-), and CD3(+)CD56(+) (NKT) all produce low levels of CD127, and so could be at a disadvantage in survival and/or proliferation where IL7 is limiting. The remissions seen in relapsing remitting multiple sclerosis (RRMS) could be driven by regulatory T cells, and the absence of remissions seen in primary progressive MS (PPMS) may point to a particularly reduced function of this cell subset. We found that the proportions of CD4(+)FoxP3(+)CD25(Hi) regulatory T cells were not aberrant in PPMS. There was, however, a trend towards reduced FoxP3 expression per cell in this fraction (p<0.083), which has been highly correlated with suppressor function. Notably, we found that the target of regulatory T cells, the CD4(+)CD25(-) cells, was in excess (p<0.009); and in PPMS a protective CD127 haplotype is correlated with higher CD127 expression (p<0.01). These data support further investigations into the regulatory T cell immunophenotype in MS.  相似文献   

6.
CD4(+) regulatory T cells in autoimmunity and allergy   总被引:23,自引:0,他引:23  
Regulatory T cells (also referred to as suppressor T cells) are important components of the homeostasis of the immune system, as impaired regulatory T cell activity can cause autoimmune diseases and atopy. It is now clear that the phrase 'regulatory T cells' encompasses more than one cell type. For instance, CD4(+)CD25(+) regulatory T cells have received attention due to their immunosuppressive properties in vitro and in vivo, but in several instances it has been shown that CD4(+)CD25(-) T cell populations also contain potent regulatory activity. Recent progress in the field of regulatory T cells includes the discovery of the role of two tumor necrosis factor receptor (TNFR) family members (GITR and TRANCE-R/RANK) in Treg biology, the improved understanding of the role of co-stimulatory molecules and cytokines IL-10 and IL-2 in the induction and function of Tregs, and the generation of CD25(+) and CD25(-) regulatory T cells in vivo through high-avidity T cell receptor interactions.  相似文献   

7.
Naturally occurring CD4(+)CD25(+)FoxP3(+) regulatory T cells (CD25(+) Tregs) constitute a specialized population of T cells that is essential for the maintenance of peripheral self-tolerance. The immune regulatory function of CD25(+) Tregs depends upon their activation. We found that anti-CD4 antibodies activate the suppressive function of human CD25(+) Tregs in a dose-dependent manner. We demonstrate that CD4-activated CD25(+) Tregs suppress the proliferation of CD4(+) and CD8(+) T cells, their IL-2 and IFN-gamma production as well as the capacity of CD8(+) T cells to re-express CD25. By contrast, anti-CD4 stimulation did not induce suppressive activity in conventional CD4(+) T cells. These results identify CD4 as a trigger for the suppressive function of CD25(+) Tregs and suggest a possible CD4-mediated exploitation of these cells.  相似文献   

8.
Natural regulatory CD4(+) CD25(+) T cells play an important role in preventing autoimmunity by maintaining self-tolerance. They express CD25 constitutively and are produced in the thymus as a functionally mature T-cell population. Changes in the potential of these cells to regulate the activity of conventional effector lymphocytes may contribute to an increased susceptibility to infection, cancer and age-associated autoimmune diseases. In this study we demonstrated that the thymi of aged mice are populated by a higher percentage of CD4(+) CD25(+) thymocytes than in young animals. The expression of several surface markers (CD69, CD5, CD28, CTLA-4, CD122, FOXP3), usually used to characterize the phenotype of CD4(+) CD25(+) T regulatory cells, was compared between young and aged mice. We also examined the ability of sorted thymus-deriving regulatory T cells of young and aged BALB/c mice to inhibit the proliferation of lymph node lymphocytes activated in vitro. Natural regulatory T cells isolated from the thymi of young mice suppress the proliferation of responder lymph node cells. We demonstrated that thymus-deriving CD4(+) CD25(+) T cells of old mice maintain their potential to suppress the proliferation of activated responder lymphocytes of young mice. However, their potential to inhibit the proliferation of old responder T cells is abrogated. Differences in the occurrence and activity of CD4(+) CD25(+) thymocytes between young and old animals are discussed in relation to the expression of these surface markers.  相似文献   

9.
Regulatory T cells (Tregs) play an important role in the maintenance of immune tolerance to self-antigens and are involved in modulating immune responses in autoimmunity, transplant rejection, and tumor immunity. Recently, a novel subset of TCR-αβ(+) CD4(-) CD8(-) (double negative, DN) T cells has been described to specifically suppress T-cell responses in mice. Here, we demonstrate that human DN T cells are highly potent suppressors of both CD4(+) and CD8(+) T-cell responses. In contrast to naturally occurring CD4(+) CD25(+) Tregs, DN T cells have to be activated by antigen-presenting cells (APCs) to induce their regulatory potential. The suppressive activity of DN T cells is neither mediated indirectly by modulation of APCs nor by competition for T-cell growth factors. Furthermore, DN T-cell-mediated suppression toward responder T cells is TCR dependent and requires novel protein synthesis. In contrast to murine DN T cells, which eliminate effector T cells via Fas/FasL or perforin/granzyme, human DN T cells suppress proliferation of responder T cells by cell contact-dependent mechanisms. Taken together, our data indicate that human DN T cells exert strong immunosuppressive effects on both CD4(+) and CD8(+) T cells and may serve as a new therapeutic approach to treat autoimmunity and transplant rejection.  相似文献   

10.
Defective recruitment of regulatory T cells (Treg) function to the airway is important in the pathogenesis of allergic asthma. Complement regulatory protein (CD46) is a newly defined costimulatory molecule for Treg activation, which together with IL-10/granzyme B production may aid in suppressing asthmatic inflammation. This study examines chemotaxis and adhesion molecule expression on CD3/CD46-activated CD4(+) T cells (Tregs) from patients with and without asthma to suppress mite allergen-induced respiratory epithelial cells inflammation and to elucidate the mechanism of CD46-mediated Treg activation. Diminished IL-10/granzyme B and CCR4 expression from CD3/CD46-activated Tregs appeared in asthmatic subjects. CD3/CD46-activated Tregs from asthma patients co-cultured with BEAS-2B cells suppressed Dermatophagoides pteronyssinus 2 induced nuclear factor-κB/p65 by cell contact inhibition. Decreased interaction of CD3/CD46-mediated Tregs and BEAS-2B cells from asthmatics was associated with downregulated phosphorylation of protein kinase B (AKT) expression. Results provide the first evidence that decreased interaction between CD46-mediated Tregs and lung epithelial cells with less IL-10/granzyme B production may cause airway inflammation in allergic asthma.  相似文献   

11.
CD134 (OX40) is expressed on activated CD4(+) donor T cells in allogeneic stem cell transplant recipients with acute graft-versus-host disease. The data presented here reveal that differential expression of CD25 by CD4(+) CD134(+) T cells allows separation of these activated cells into 2 phenotypically and functionally distinct alloreactive T-cell subsets. These subsets exhibit distinct tissue associations, with CD4(+) CD134(+) CD25(-) T cells preferentially found in lymphoid tissues and CD4(+) CD134(+) CD25(+) T cells located in lymphoid tissues and inflamed extralymphoid tissues. The CD25(-) T-cell subset exhibited potent proliferative responses to both concanavalin A and allogeneic host leukocytes. By contrast, the CD25(+) T-cell subset proliferated minimally in response to either treatment and inhibited alloantigen-induced proliferation of the CD25(-) subset. Proliferative unresponsiveness associated with the CD25(+) T-cell subset did not extend to cytokine secretion. When stimulated with alloantigen, both CD4(+) CD134(+) T-cell subsets responded by secreting interferon-gamma and interleukin (IL)-10, and neither T-cell subset produced detectable levels of IL-2 or IL-4. Three-day treatment of the CD25(+) T-cell subset with IL-2 restored the proliferative responsiveness of these cells to host alloantigens, suggesting that the proliferative unresponsiveness associated with this T-cell subset reflected a requirement for IL-2. The preferential tissue associations and distinct functional properties associated with these separable alloreactive CD4(+) CD134(+) T-cell subsets suggest that they participate differentially in clinical graft-versus-host disease.  相似文献   

12.
Adoptive transfer of naturally occurring CD4(+)CD25(+) regulatory T cells can tolerize transplantation alloresponses in animal models. However isolation of these cells in sufficient numbers from humans is cumbersome and prone to contamination with alloreactive CD25(+) T cells. Incubation of ethylenecarbodiimide-coupled antigen presenting cells (APC) with na?ve T cells and antigen has been shown to induce tolerance in various experimental models. We therefore investigated whether ECDI-coupled allogeneic APC were able to induce an expandable human CD4(+) Treg population. CD4(+) and CD4(+) CD25(-) cells cultured for 5 days with ECDI-treated human PBMC exhibited potent suppressive capacity in a mixed lymphocyte reaction. Induction of these ECDI-Tregs was associated with up-regulation of Foxp3 mRNA and protein expression and they maintained high expression of CD62L and CD27 as well as low CD127 expression. ECDI-treated APC displayed reduced expression of the co-stimulatory signaling molecules CD40 and CD80, and failed to stimulate proliferation and cytokine secretion in co-cultured CD4(+) T cells. Restimulation in the presence of rapamycin and hrIL-2 led to expansion of ECDI-Tregs with increasing Foxp3 levels and suppressive activity significantly higher than expanded naturally occurring CD4(+)CD25(+) Tregs. In summary these findings support the hypothesis that ECDI-coupled APC can convert na?ve CD4(+) T cells into functional Tregs with different phenotypic characteristics than naturally occurring CD4(+)CD25(+) Tregs. These inducible Tregs could provide a novel approach that might facilitate the translation of ex vivo generated and expanded Tregs into clinical settings.  相似文献   

13.
Seo MJ  Kim GR  Son YM  Yang DC  Chu H  Min TS  Jung ID  Park YM  Han SH  Yun CH 《Molecular immunology》2011,48(15-16):1744-1752
To understand the interaction of dendritic cells (DCs) with cancer cells, we investigated molecular changes in DCs following co-culture with cancer cells. DCs co-cultured with Jurkat cancer cells showed remarkable down-regulation of MHC class I molecules, while DCs co-cultured with MCF-7 cancer cells showed minimal changes. Interestingly, down-regulation of MHC class I on DCs was not observed upon treatment with Jurkat cell lysate or culture supernatant, suggesting the importance of direct cell-cell interactions. The expressions of CD40, CD80, CD83, MHC class II, and IL-12p40 on DCs co-cultured with Jurkat cells were only slightly affected. In contrast, DCs co-cultured with MCF-7 cells showed increased expressions of CD80, CD83, CD86, and IL-12p40. Furthermore, DCs co-cultured with Jurkat cells showed a down-regulation of low molecular weight polypeptides (LMP) 7, and of transporter associated with antigen processing (TAP) 1 and 2 at the mRNA expression level. LMP7, TAP2 and β2-microglobulin (β2M) were also down-regulated at the protein level. We further demonstrated how altered expression of MHC class I on DCs caused by co-culture with cancer cells affected autologous CD8(+) T cells, using the model MHC class I-presented HSV antigen. We found that DCs that had been HSV-treated and co-cultured with Jurkat cells showed a reduced potency to activate CD8(+) T cells. In contrast, HSV-treated DCs that had been co-cultured with MCF-7 cells induced activation of CD8(+) T cells, including high expression of CD25, CD69, granzyme B and cytokines, TNF-α and IFN-γ.  相似文献   

14.
Properties of CD4(+) T cells in human cytomegalovirus infection   总被引:4,自引:0,他引:4  
The correlates of protective immunity to disease-inducing viruses in man remain to be elucidated. We determined the kinetics and properties of cytomegalovirus (CMV)-specific CD4(+) T cells in healthy individuals and renal transplant recipients during different stages of CMV infection. Our data reveal that circulating CMV-specific CD4(+) T cells displayed an effector-memory phenotype, and produced the T helper 1 cytokines interferon-gamma and tumor necrosis factor-alpha. In addition, they lacked molecules for secondary lymphoid organ homing and expressed the cytotoxic molecule granzyme B, inferring a direct role of these cells at target sites of infection. In asymptomatic individuals the CMV-specific CD4(+) T-cell response preceded CMV-specific CD8(+) T-cell responses, whereas in symptomatic individuals the CMV-specific effector memory CD4(+) T-cell response was delayed and only detectable after antiviral therapy. The appearance of disease symptoms in these patients suggests that functional CD8(+) T cell and antibody responses are insufficient to control viral replication and that formation of effector memory CD4(+) T cells is necessary for recovery of infection.  相似文献   

15.
Alloantigen-induced regulatory CD8+CD103+ T cells   总被引:1,自引:0,他引:1  
Regulatory T cells (Tregs) appear of great importance in the balance between alloreactivity and tolerance and subsets of both CD4(+) and CD8(+) T cells have been recognized to function as regulatory T cells after allogenic transplantation. Among the CD8(+) T-cell subsets, the CD103(+) cells were most recently identified as regulatory. In this review, we describe their phenotypical and functional properties, as well as their relevance for the alloimmune response in vivo. These CD8(+)CD103(+) Tregs are generated within mixed lymphocyte cultures (MLCs) and are elevated by additional transforming growth factor-beta. Interestingly, myeloid dendritic cells are the responsible cell type for induction of CD103(+) Tregs. Allostimulated CD8(+)CD103(+) Tregs display an antigen-experienced effector phenotype with limited effector functions such as cytotoxicity and interferon-gamma production and show a reduced proliferation capacity after restimulation. Beside this anergic phenotype, CD8(+)CD103(+) Tregs are able to suppress alloreactive effector T cells. Through intracellular cytokine staining and transwell assays, we showed that the mechanism of suppression is cytokine independent, but close cell-cell contact is required for suppression.  相似文献   

16.
17.
CD8(+)CD28(-) T cells have been characterized by oligoclonal expansions, impaired proliferative responses, but preserved cytotoxicity and reduced telomeres. To examine this subset further and define the underlying mechanisms of proliferation arrest, we investigated several features of this cell type compared with CD8(+)CD28(+) controls. We analyzed expression of various activation markers, thymidine incorporation upon activation, T-cell receptor (TCR) zeta-chain phosphorylation, cell cycle characteristics, and cell cycle related gene expression. Flow cytometry revealed higher expression of CD11b, CD29, CD57, and CD94, and lower expression of CD25 in CD8(+)CD28(-) compared with CD8(+)CD28(+) T cells. Sorted CD8(+)CD16(-)CD28(-) cells exhibited decreased phosphorylation of the TCR zeta-chain in three of four probands. Proliferation of these T cells was impaired, even when activated with mitogens that bypass TCR signaling. Cell cycle profiles demonstrated a lower percentage of cycling cells and significantly higher levels of cyclin dependent kinase inhibitor p16(INK4a) in the CD28(-) subset compared with the CD28(+) control. These observations suggest that expanded CD8(+)CD28(-) T cells in normal elderly individuals have reduced proliferation concomitant with increased p16(INK4a) expression. Defects in TCR signaling were associated with altered TCR zeta-chain phosphorylation.  相似文献   

18.
Regulatory T cell responses to infectious organisms influence not only immunity and immunopathology, but also responses to bystander antigens. Mice infected with the gastrointestinal nematode parasite Heligmosomoides polygyrus show an early Th2-dominated immune response (days 7-14), but by day 28 a strongly regulatory profile is evident with antigen-specific IL-10 release and elevated frequency of CD4(+) T cells bearing surface TGF-beta. CD4(+)CD25(+) T cells from infected mice show enhanced capacity to block in vitro effector T cell proliferation. CD4(+)CD25(+) cell numbers expand dramatically during infection, with parallel growth of both CD25(+)Foxp3(+) and CD25(+)Foxp3(-) subsets. CTLA-4 and glucocorticoid-induced tolerance-associated receptor, also associated with regulatory T cell function, become more prominent, due to both expanded CD25(+) cell numbers and increased expression among the CD25(-) population. Both intensity and frequency of CD103 expression by CD4(+) T cells rise significantly, with greatest expansion among CD25(+)Foxp3(+) cells. While TGF-beta expression is observed among both CD25(+)Foxp3(+) and CD25(+)Foxp3(-) subsets, it is the latter population which shows higher TGF-beta staining following infection. These data demonstrate in a chronic helminth infection that Foxp3(+) regulatory T cells are stimulated, increasing CD103 expression in particular, but that significant changes occur to other populations including expansion of CD25(+)TGF-beta(+)Foxp3(-) cells, and induction of CTLA-4 on CD25(-) non-regulatory lymphocytes.  相似文献   

19.
20.
CD4(+) CD25(+) regulatory T cells are increasingly recognized as central players in the regulation of immune responses. In vitro studies have mostly employed allogeneic or polyclonal responses to monitor suppression. Little is known about the ability of CD4(+) CD25(+) regulatory T cells to suppress antigen-specific immune responses in humans. It has been previously shown that CD4(+) CD25(+) regulatory T cells anergize CD4(+) T cells and turn them into suppressor T cells. In the present study we demonstrate for the first time in humans that CD4(+) CD25(+) T cells are able to inhibit the proliferation and cytokine production of antigen specific CD4(+) and CD8(+) T cells. This suppression only occurs when CD4(+) CD25(+) T cells are preactivated. Furthermore, we could demonstrate that CD4(+) T-cell clones stop secreting interferon-gamma (IFN-gamma), start to produce interleukin-10 and transforming growth factor-beta after coculture with preactivated CD4(+) CD25(+) T cells and become suppressive themselves. Surprisingly preactivated CD4(+) CD25(+) T cells affect CD8(+) T cells differently, leading to reduced proliferation and reduced production of IFN-gamma. This effect is sustained and cannot be reverted by exogenous interleukin-2. Yet CD8(+) T cells, unlike CD4(+) T cells do not start to produce immunoregulatory cytokines and do not become suppressive after coculture with CD4(+) CD25(+) T cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号