首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
Excitotoxicity, which is mediated by the excessive activation of glutamate receptors, has been implicated in the pathogenesis of amyotrophic lateral sclerosis (ALS). There is substantial information about the distribution and function of ionotropic glutamate receptors in the spinal cord, although the role of metabotropic glutamate receptors (mGluRs) is poorly understood in this region of the brain, particularly under pathological conditions. We used immunocytochemistry to study the general distribution of group I and group II mGluR immunoreactivity in the human spinal cord, as well as the cell-specific expression of these receptors. We also investigated whether mGluR expression was altered in the spinal cord of patients with sporadic and familial ALS. Immunocytochemical analysis of control human spinal cord demonstrated that mGluR1alpha and mGluR5 (group I mGluRs) were highly represented in neuronal cells throughout the spinal cord. mGluR1alpha showed the highest relative level of expression in ventral horn neurons (laminae VIII and IX), whereas intense mGluR5 immunoreactivity was observed within the dorsal horn (superficial laminae I and II). Group II mGluRs (mGluR2/3) immunoreactivity was mainly concentrated in the inner part of the lamina II. With respect to specific neuronal populations, mGluR2/3 and mGluR5 appeared to be most frequently expressed in calbindin-containing and calretinin-containing cells, respectively. In control spinal cord only sparse astrocytes showed a weak to moderate mGluR immunoreactivity. Regional differences in immunoreactivity were apparent in ALS compared to control. In particular, mGluR expression was increased in reactive glial cells in both gray (ventral horn) and white matter of ALS spinal cord. Upregulation of mGluRs in reactive astrocytes may represent a critical mechanism for modulation of glial function and changes in glial-neuronal communication in the course of neurodegenerative diseases.  相似文献   

2.
Previous studies have demonstrated that human astrocytes express mRNA and receptor protein for group I and II metabotropic glutamate receptors (mGluRs). Whether these receptors can influence the inflammatory and immune response and can modulate the capacity of astrocytes to produce inflammatory cytokines is still unclear. Inflammatory cytokines can be produced by activated glial cells and play a critical role in several neurological disorders. Astrocyte-enriched human cell cultures growing in a serum-free chemically defined medium were used to study the regulation of IL (interleukin)-1β and IL-6 in response to mGluR activation. Astrocytes cultured in the absence or in the presence of epidermal growth factor (EGF), did not secrete significant IL-1β and IL-6, as determined by specific enzyme-linked immunosorbent assay (ELISA). Activation of mGluRs using (S)-3,5-dihydroxyphenylglycine (DHPG; selective group I agonist) or DCG-IV (selective group II agonist) did not affect the production of interleukins under both growth conditions. On exposure to IL-1β high levels of IL-6 were detected. Activation of mGluR3 with DCG-IV (but not of mGluR5 with DHPG) enhanced, in the presence of IL-1β, the release of IL-6 in a dose dependent manner in astrocytes cultured under conditions (+EGF) in which the mGluR expression is known to be upregulated. The effect of mGluR3 activation on IL-1β stimulated release of IL-6 was prevented by selective group II mGluR antagonists. The capacity of mGluR3 to modulate the release of IL-6 in the presence of IL-1β supports the possible involvement of this receptor subtype in the regulation of the inflammatory and immune response under pathological conditions associated with glial cell activation.  相似文献   

3.
Tuberous sclerosis complex (TSC) is an autosomal dominant disorder associated with cortical malformations (cortical tubers) and the development of glial tumors (subependymal giant-cell tumors, SGCTs). Expression of metabotropic glutamate receptor (mGluR) subtypes is developmentally regulated and several studies suggest an involvement of mGluR-mediated glutamate signaling in the regulation of proliferation and survival of neural stem-progenitor cells, as well as in the control of tumor growth. In the present study, we have investigated the expression and cell-specific distribution of group I (mGluR1, mGluR5), group II (mGluR2/3) and group III (mGluR4 and mGluR8) mGluR subtypes in human TSC specimens of both cortical tubers and SGCTs, using immunocytochemistry. Strong group I mGluR immunoreactivity (IR) was observed in the large majority of TSC specimens in dysplastic neurons and in giant cells within cortical tubers, as well as in tumor cells within SGCTs. In particular mGluR5 appeared to be most frequently expressed, whereas mGluR1alpha was detected in a subpopulation of neurons and giant cells. Cells expressing mGluR1alpha and mGluR5, demonstrate IR for phospho-S6 ribosomal protein (PS6), which is a marker of the mammalian target of rapamycin (mTOR) pathway activation. Group II and particularly group III mGluR IR was less frequently observed than group I mGluRs in dysplastic neurons and giant cells of tubers and tumor cells of SGCTs. Reactive astrocytes were mainly stained with mGluR5 and mGluR2/3. These findings expand our knowledge concerning the cellular phenotype in cortical tubers and in SGCTs and highlight the role of group I mGluRs as important mediators of glutamate signaling in TSC brain lesions. Individual mGluR subtypes may represent potential pharmacological targets for the treatment of the neurological manifestations associated with TSC brain lesions.  相似文献   

4.
5.
6.
Group 1 metabotropic glutamate receptors (mGluRs) are expressed in peripheral and central neural tissues and involved in peripheral and central sensitization in various pain models. However, there are limited reports that activation of peripheral group I mGluRs could evoke pain. Furthermore, any behavioral evidences could not be found out, showing what kind of afferent fibers are involved in peripheral mGluRs-mediated hyperalgesia. This study was undertaken to clarify whether peripherally injected group I mGluRs agonists could induce pain-related behaviors and capsaicin-sensitive afferent fibers might be involved in the hyperalgesia. To assess pain sensitivity, mechanical threshold for paw withdrawal response (PWT) was measured and number of spontaneous flinching behavior was counted. Intraplantar injection of group I mGluR agonist, (RS)-3,5-dihydroxyphenylglycine (DHPG) and mGluR5 agonist, (RS)-2-chloro-5-hydroxyphenyglycine (CHPG) immediately induced pain-like behaviors, such as decrease of PWT and increased number of flinchings. These agonists-induced pain-like behaviors were blocked by group I mGluRs antagonist, (RS)-1-aminoindan-1,5-dicarboxylic acid (AIDA) and mGluR5 antagonist, 2-methyl-6-(phenylethynyl) pyridine hydrochloride (MPEP). Perineural pretreatment of 1% capsaicin solution significantly reduced pain-related behaviors induced by DHPG and CHPG, proposing that capsaicin-sensitive primary afferent fibers could be responsible for the hyperalgesia induced by activation of peripheral group I mGluRs. This study presents the first behavioral evidence that peripheral group I mGluRs activation could induce spontaneous as well as mechanical hyperalgesia and capsaicin-sensitive afferent fiber could be implicated the group I mGluR mediated hyperalgesia.  相似文献   

7.
目的:研究大鼠脑星形胶质细胞蛋白激酶B受体(TrkB)的表达及其信号转导通路。方法:用生后2~3dSD大鼠,在无菌条件下取脑,制备细胞悬液,以胶质纤维酸性蛋白(GFAP)鉴定星形胶质细胞;以RT-PCR法研究星形胶质细胞TrkB、ERK1、ERK2 mRNA表达,用蛋白印迹和免疫细胞化学法研究星形胶质细胞TrkB、ERK1、ERK2蛋白表达。用蛋白印迹法检测脑源性神经营养因子(BDNF)作用后的星形胶质细胞p-TrkB。结果:星形胶质细胞的纯度达95%以上,RT-PCR结果显示星形胶质细胞表达TrkB、ERK1、ERK2 mRNA,蛋白印迹及免疫细胞化学法显示星形胶质细胞表达TrkB、ERK1、ERK2蛋白。BDNF作用1h后TrkB磷酸化,K252a可阻止TrkB磷酸化。结论:培养的大鼠星形胶质细胞表达TrkB、ERK1、ERK2;BDNF可使TrkB磷酸化,TrkB与星形胶质细胞信号转导有关。  相似文献   

8.
We have evaluated the expression of metabotropic glutamate receptors (mGluR subtypes 2/3, 4 and 5) in rat thymus under normal and experimental conditions after 2 and 21 days of cyclosporine-A treatment. In normal rats, immunohistochemical analysis showed that expression of mGluRs was high in dendritic cells and lymphocytes of the medulla whereas it was weak in lymphocytes of the cortex. However, there were some differences in the expression of mGluRs subtypes. mGluR5 showed strong expression in lymphocytes of medulla and dendritic cells. mGluR2/3 and mGluR4 were moderately expressed in lymphocytes and dendritic cells of the medulla and weakly in cortical lymphocytes. Immunoblotting showed moderate levels of mGluR2/3 and mGluR4 and strong levels of mGluRS. After 2 days of cyclosporine-A treatment, we observed by immunohistochemistry and immunoblotting a distinct decrease in all mGluRs and their expression had almost completely disappeared after 21 days of treatment. The results clearly indicate that: 1) mGluR2/3, 4 and 5 are widely expressed in thymic cells; 2) the mGluR5 subtype is expressed most strongly in medullary cells; and 3) cyclosporine-A rapidly inhibits expression of all mGluR subtypes after 2 days of treatment and their complete disappearance after prolonged treatment. These findings may indicate a possible mechanism by which cyclosporine-A produces its immunosupressive effects.  相似文献   

9.
Group I metabotropic glutamate receptors (mGluRs) are Gαq-protein-coupled receptors and are densely expressed in medium-sized spiny projection neurons of the neostriatum. Among different subtypes of glutamate receptors, group I mGluRs have been demonstrated to actively interact with the ionotropic glutamate receptor N-methyl-d-aspartate (NMDA) subtypes for regulating various forms of cellular activities and synaptic plasticity. In this study, the possible role of group I mGluRs in regulating serine phosphorylation of NMDA receptor NR1 subunits in the neostriatum was investigated in vivo. We found in chronically cannulated rats that injection of the group I mGluR agonist 3,5-dihydroxyphenylglycine (DHPG) into the dorsal striatum (caudate putamen) significantly increased phosphorylation of the two serine residues (serine 896 and serine 897) on the intracellular C-terminus of the NR1. The increase in NR1 phosphorylation was dose-dependent and DHPG had no effect on basal levels of NR1 proteins. Intrastriatal infusion of the group I mGluR antagonist N-phenyl-7-(hydroxyimino)cyclopropa[b]chromen-1a-carboxamide (PHCCC) significantly attenuated the DHPG-stimulated NR1 phosphorylation. Pretreatment with the mGluR5 antagonist 2-methyl-6-(phenylethynyl)pyridine hydrochloride (MPEP) also produced the same effect. These data suggest that group I mGluRs, likely mGluR5 subtypes, possess the ability to upregulate protein phosphorylation of NMDA receptor NR1 subunits in striatal neurons in vivo.  相似文献   

10.
Purpose/aim: Glutamate is one of the signaling molecules responsible for transmission in the central nervous system. Periodontal ligament (PDL) cells were recently reported to express metabotropic glutamate receptors (mGluRs). However, the functions of mGluR signaling in PDL cells or PDL-related cells remain largely unknown. The aim of this study was to investigate the expression and function of mGluRs in PDL-related cells. Materials and methods: OCCM-30 cells, immortalized murine cementoblasts, were stimulated with l-glutamate or mGluRs antagonists. The cells’ proliferative response was evaluated using a colorimetric assay and gene expression was assessed using real-time polymerase chain reaction. The nuclear translocation of cyclin D1 was evaluated by immunohistochemistry. Results: l-Glutamate promoted the proliferation of OCCM-30 cells, which expressed mGluR1, but not mGluR5. Dihydroxyphenylglycine (DHPG), an agonist of group I mGluRs (mGluR1 and mGluR5), also promoted cell proliferation, and this was inhibited by LY456236, an mGluR1 antagonist. DHPG increased the expression of cyclin D1, a key regulator of cell proliferation, and its nuclear translocation. DHPG also increased the expression of Bcl2A1, an antiapoptotic oncogene and simultaneously reduced the expression of Bax, a pro-apoptotic marker. Furthermore, the DHPG-induced proliferation of OCCM-30 cells was reduced by pretreatment with SB203580, SP600125, and PD98059, inhibitors of p38, JNK, and ERK1/2, respectively. Conclusions: These findings indicate that activation of mGluR1 expressed by OCCM-30 cells induces cell proliferation in a manner that is dependent on mitogen-activated protein kinase pathways and that cyclin D1 and Bcl2A1/Bax may be involved. Our results provide useful information for elucidating the mechanisms underlying cementum homeostasis and regeneration.  相似文献   

11.
G-protein coupled metabotropic glutamate receptors (mGluRs) are important modulators of synaptic transmission in the mammalian CNS and have been implicated in various forms of neuroplasticity and nervous system disorders. Increasing evidence also suggests an involvement of mGluRs in nociception and pain behavior although the contribution of individual mGluR subtypes is not yet clear. Subtypes mGluR1 and mGluR5 are classified as group I mGluRs and share the ability to stimulate phosphoinositide hydrolysis and activate protein kinase C. The present study examined the role of group I mGluRs in nociceptive processing and capsaicin-induced central sensitization of primate spinothalamic tract (STT) cells in vivo. In 10 anesthetized male monkeys (Macaca fascicularis) extracellular recordings were made from 20 STT cells in the lumbar dorsal horn. Responses to brief (15 s) cutaneous stimuli of innocuous (BRUSH) and barely and substantially noxious (PRESS and PINCH, respectively) intensity were recorded before, during, and after the infusion of group I mGluR agonists and antagonists into the dorsal horn by microdialysis. Cumulative concentration-response relationships were obtained by applying different concentrations for at least 20 min each (at 5 microl/min). The actual concentrations reached in the tissue are 2-3 orders of magnitude lower than those in the microdialysis fibers (values in this paper refer to the latter). The group I antagonists were also applied at 10-25 min after capsaicin injection. S-DHPG, a group I agonist at both mGluR1 and mGluR5, potentiated the responses to innocuous and noxious stimuli (BRUSH > PRESS > PINCH) at low concentrations (10-100 microM; n = 5) but had inhibitory effects at higher concentrations (1-10 mM; n = 5). The mGluR5 agonist CHPG (1 microM-100 mM; n = 5) did not potentiate but inhibited all responses (10-100 mM; n = 5). AIDA (1 microM-100 mM), a mGluR1-selective antagonist, dose-dependently depressed the responses to PINCH and PRESS but not to BRUSH (n = 6). The group I (mGluR1 > mGluR5) antagonist CPCCOEt (1 microM-100 mM) had similar effects (n = 6). Intradermal injections of capsaicin sensitized the STT cells to cutaneous mechanical stimuli. The enhancement of the responses by capsaicin resembled the potentiation by the group I mGluR agonist S-DHPG (BRUSH > PRESS > PINCH). CPCCOEt (1 mM) reversed the capsaicin-induced sensitization when given as posttreatment (n = 5). After washout of CPCCOEt, the sensitization resumed. Similarly, AIDA (1 mM; n = 7) reversed the capsaicin-induced sensitization and also blocked the potentiation by S-DHPG (n = 5). These data suggest that the mGluR1 subtype is activated endogenously during brief high-intensity cutaneous stimuli (PRESS, PINCH) and is critically involved in capsaicin-induced central sensitization.  相似文献   

12.
Brain-derived neurotrophic factor (BDNF), which mediates neuronal growth, neuroprotection and synaptic modulation, is expressed in neurons and glial cells. The present study investigated the expression of BDNF in response to the activation of group I metabotropic glutamate receptors (mGluRs) by (S)-3,5-Dihydroxyphenylglycine (DHPG) in rat C6 glioma cells. The increase in BDNF mRNA in DHPG-stimulated cells, which peaked by 12 h after DHPG exposure, was attenuated by the mGluR5 inhibitor MPEP, but not by the mGluR1 inhibitor CPCCOEt. DHPG-induced BDNF mRNA expression reduced in cultures pretreated with protein kinase C (PKC) inhibitor, GFX, but not with calcium/calmodulin kinase II (CaMKII) inhibitor, KN-93. Immunostaining revealed high BDNF expression in cytoplasm of C6 cells after 48 h of incubation with 1 μM DHPG, but this was lower in MPEP-pretreated cells. These results indicate that activation of group I mGluRs induces BDNF mRNA and protein expression via mGluR5 subtype and PKC-dependent signaling pathway in C6 glioma cells.  相似文献   

13.
14.
The metabotropic glutamate receptors (mGluRs) have distinct distribution patterns in the CNS but subtypes within group I or group III mGluRs share similar ultrastructural localization relative to neurotransmitter release sites: group I mGluRs are concentrated in an annulus surrounding the edge of the postsynaptic density, whereas group III mGluRs are concentrated in the presynaptic active zone. One of the group II subtypes, mGluR2, is expressed in both pre- and postsynaptic elements, having no close association with synapses. In order to determine if such a distribution is common to another group II subtype, mGluR3, an antibody was raised against a carboxy-terminus of mGluR3 and used for light and electron microscopic immunohistochemistry in the mouse CNS. The antibody reacted strongly with mGluR3, but it also reacted, though only weakly, with mGluR2. Therefore, to examine mGluR3-selective distribution, we used mGluR2-deficient mice as well as wild-type mice.Strong immunoreactivity for mGluR3 was found in the cerebral cortex, striatum, dentate gyrus of the hippocampus, olfactory tubercle, lateral septal nucleus, lateral and basolateral amygdaloid nuclei, and nucleus of the lateral olfactory tract. Pre-embedding immunoperoxidase and immunogold methods revealed mGluR3 labeling in both presynaptic and postsynaptic elements, and also in glial profiles. Double labeling revealed that the vast majority of mGluR3 in presynaptic elements is not closely associated with glutamate and GABA release sites in the striatum and thalamus, respectively. However, in the spines of the dentate granule cells, the highest receptor density was found in perisynaptic sites (20% of immunogold particles within 60 nm from the edge of postsynaptic membrane specialization) followed by a decreasing receptor density away from the synapses (to approximately 5% of particles per 60 nm). Furthermore, 19% of immunogold particles were located in asymmetrical postsynaptic specialization, indicating an association of mGluR3 to glutamatergic synapses.The present results indicate that the localization of mGluR3 is rather similar to that of group I mGluRs in the postsynaptic elements, suggesting a unique functional role of mGluR3 in glutamatergic neurotransmission in the CNS.  相似文献   

15.
Cirone J  Sharp C  Jeffery G  Salt TE 《Neuroscience》2002,109(4):779-786
The distribution of different metabotropic glutamate receptors (mGluRs 1a, 1b, 1c, 2/3, 4 and 5) has been compared in the superior colliculus of the rat, cat and ferret using immunohistochemical techniques and light microscopy. We found that although there are differences in labelling patterns between the species, there are also substantial similarities. In general, there was only light staining for the various mGluR1 splice variants, whereas labelling for the other Group I receptor, mGluR5, was heavier and with a pattern which suggested that at least some label arose from retinal afferents to the superficial superior colliculus. A further consistent feature in all species was labelling of astrocytes in the optic nerve/optic tract, superficial superior colliculus and brain at the collicular level with the antibody directed towards the Group II receptors, mGluR2 and mGluR3. Staining for the Group III receptor, mGluR4, was dense in the superficial superior colliculus in all species, with characteristics suggesting nerve fibre staining. mGluR4 staining was seen in the cat optic nerve/optic tract. One source of mGluR4 staining in the superior colliculus may thus be retinal axons, although other sources cannot be entirely excluded. These results demonstrate that distributions of mGluRs in these species have significant similarities but also some differences, suggesting that within the superior colliculus there may be some preservation of functional roles for some of the different receptor types. This is particularly so for the Group II and Group III receptors, which appear to have specific and distinct roles in the modulation of visual responses.  相似文献   

16.
Application of group I metabotropic glutamate receptor (mGluR) agonists elicits seizure discharges in vivo and prolonged ictal-like activity in in vitro brain slices. In this study we examined 1) if group I mGluRs are activated by synaptically released glutamate during epileptiform discharges induced by convulsants in hippocampal slices and, if so, 2) whether the synaptically activated mGluRs contribute to the pattern of the epileptiform discharges. The GABA(A) receptor antagonist bicuculline (50 microM) was applied to induce short synchronized bursts of approximately 250 ms in mouse hippocampal slices. Addition of 4-aminopyridine (4-AP; 100 microM) prolonged these bursts to 0.7-2 s. The mGluR1 antagonist (S)-(+)-alpha-amino-4-carboxy-2-methylbenzeneacetic acid (LY 367385; 25-100 microM) and the mGluR5 antagonist 2-methyl-6-(phenylethynyl)pyridine (MPEP; 10-50 microM), applied separately, significantly reduced the duration of the synchronized discharges. The effects of these antagonists were additive when applied together, suggesting that mGluR1 and mGluR5 exert independent actions on the epileptiform bursts. In phospholipase C beta1 (PLCbeta1) knockout mice, bicuculline and 4-AP elicited prolonged synchronized discharges of comparable duration as those observed in slices from wild-type littermates. Furthermore, mGluR1 and mGluR5 antagonists reduced the duration of the epileptiform discharges to the same extent as they did in the wild-type preparations. The results suggest that mGluR1 and mGluR5 are activated synaptically during prolonged epileptiform discharges induced by bicuculline and 4-AP. Synaptic activation of these receptors extended the duration of synchronized discharges. In addition, the data indicate that the synaptic effects of the group I mGluRs on the duration of epileptiform discharges were mediated by a PLCbeta1-independent mechanism.  相似文献   

17.
Previous studies implicated metabotropic glutamate receptors (mGluRs) in N-methyl-D-aspartate (NMDA) receptor-independent long-term potentiation (LTP) in area CA1 of the rat hippocampus. To learn more about the specific roles played by mGluRs in NMDA receptor-independent LTP, we used whole cell recordings to load individual CA1 pyramidal neurons with a G-protein inhibitor [guanosine-5'-O-(2-thiodiphosphate), GDPbetaS]. Although loading postsynaptic CA1 pyramidal neurons with GDPbetaS significantly reduced G-protein dependent postsynaptic potentials, GDPbetaS failed to prevent NMDA receptor- independent LTP, suggesting that postsynaptic G-protein-dependent mGluRs are not required. We also performed a series of extracellular field potential experiments in which we applied group-selective mGluR antagonists. We had previously determined that paired-pulse facilitation (PPF) was decreased during the first 30-45 min of NMDA receptor-independent LTP. To determine if mGluRs might be involved in these PPF changes, we used a twin-pulse stimulation protocol to measure PPF in field potential experiments. NMDA receptor-independent LTP was prevented by a group II mGluR antagonist [(2S)-alpha-ethylglutamic acid] and a group III mGluR antagonist [(RS)-alpha-cyclopropyl-4-phosphonophenylglycine], but was not prevented by other group II and III mGluR antagonists [(RS)-alpha-methylserine-O-phosphate monophenyl ester or (RS)-alpha-methylserine-O-phosphate]. NMDA receptor-independent LTP was not prevented by either of the group I mGluR antagonists we examined, (RS)-1-aminoindan-1,5-dicarboxylic acid and 7-(hydroxyimino)cyclopropa[b]chromen-1a-carboxylate ethyl ester. The PPF changes which accompany NMDA receptor-independent LTP were not prevented by any of the group-selective mGluR antagonists we examined, even when the LTP itself was blocked. Finally, we found that tetanic stimulation in the presence of group III mGluR antagonists lead to nonspecific potentiation in control (nontetanized) input pathways. Taken together, our results argue against the involvement of postsynaptic group I mGluRs in NMDA receptor-independent LTP. Group II and/or group III mGluRs are required, but the specific details of the roles played by these mGluRs in NMDA receptor-independent LTP are uncertain. Based on the pattern of results we obtained, we suggest that group II mGluRs are required for induction of NMDA receptor-independent LTP, and that group III mGluRs are involved in determining the input specificity of NMDA receptor-independent LTP by suppressing potentiation of nearby, nontetanized synapses.  相似文献   

18.
Two inhibitory responses mediated by both pre- and post-synaptic metabotropic glutamate receptors (mGluRs) were investigated in dopamine neurons of the substantia nigra using whole-cell patch recordings. (2R,4R)-APDC, a group II mGluR agonist, and L-2-amino-4-phosphonobutyrate (L-AP4), a group III mGluR agonist, reversibly suppressed the amplitude of excitatory postsynaptic currents (EPSCs). However, (S)-3,5-DHPG, a group I mGluR agonist, exhibited less inhibitory action on the EPSCs. LY341495, a highly potent group II mGluR antagonist, antagonized the broad spectrum mGluR agonist, 1S,3R-ACPD-induced suppression of EPSCs. In acutely dissociated dopamine neurons, glutamate (Glu) in the presence of CNQX and AP-5 evoked an outward current accompanied by an increase in K(+) conductance. (S)-3,5-DHPG, but not (2R,4R)-APDC or L-AP4, also induced an outward current. Glu-induced outward current (I(Glu-out)) was partially inhibited by LY367385, a selective mGluR1 antagonist, but not by MPEP, a selective mGluR5 antagonist. Ryanodine and cyclopiazonic acid blocked the I(Glu-out). In the presence of caffeine, Glu failed to induce a current. Charybdotoxin, but not apamin or iberiotoxin, inhibited the I(Glu-out). Taken together, both group II and III mGluRs are mainly involved in the presynaptic inhibition of Glu release to dopamine neurons, while group I mGluRs, including at least mGluR1, participate in the hyperpolarization of dopamine neurons mediated by the opening of charybdotoxin-sensitive Ca(2+)-activated K(+) channels.  相似文献   

19.
Removal of neurotransmitter from the extracellular space is crucial for normal functioning of the central nervous system. In this study, we have used high-affinity metabotropic glutamate receptors (mGluRs) expressed by hippocampal CA1 pyramidal cells to test how far bath-applied glutamate penetrates into slice tissue before being removed by uptake mechanisms. Activation of group I mGluRs by 100 microM DHPG produced an inward current of -48+/-10pA (I(mGluR)), which was blocked by application of group I mGluR antagonists. In contrast, bath application of 100 microM glutamate in the presence of a ionotropic glutamate receptor antagonist and TTX did not activate I(mGluR) in CA1 cells patch-clamped at a depth of approximately 30 microm. Similarly, sole inhibition of glutamate transporters by the broad-spectrum glutamate transporter antagonist TBOA did not induce I(mGluR) under the same conditions. Only if glutamate was co-applied with TBOA an I(mGluR) of -39+/-8pA was recorded which was also blocked by group I antagonists. The data suggest that TBOA-sensitive uptake mechanisms are able to maintain a steep concentration gradient of glutamate to such a degree that a CA1 neuron at a depth of 30 microm is exposed to low extracellular glutamate levels that are not sufficient to induce a detectable activation of group I mGluRs (< 2 microM).  相似文献   

20.
Group I metabotropic glutamate receptors (mGluRs), including mGluR1 and mGluR5, are G protein–coupled receptors (GPCRs) that are expressed at excitatory synapses in brain and spinal cord. GPCRs are often negatively regulated by specific G protein–coupled receptor kinases and subsequent binding of arrestin-like molecules. Here we demonstrate an alternative mechanism in which group I mGluRs are negatively regulated by proline-directed kinases that phosphorylate the binding site for the adaptor protein Homer, and thereby enhance mGluR–Homer binding to reduce signaling. This mechanism is dependent on a multidomain scaffolding protein, Preso1, that binds mGluR, Homer and proline-directed kinases and that is required for their phosphorylation of mGluR at the Homer binding site. Genetic ablation of Preso1 prevents dynamic phosphorylation of mGluR5, and Preso1(?/?) mice exhibit sustained, mGluR5-dependent inflammatory pain that is linked to enhanced mGluR signaling. Preso1 creates a microdomain for proline-directed kinases with broad substrate specificity to phosphorylate mGluR and to mediate negative regulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号