首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Growth hormone (GH) secretion is altered in poorly controlled diabetic animals. However, modifications in the hypothalamic neuropeptides that control GH secretion, somatostatin and GH-releasing hormone (GHRH), as well as changes in the sensitivity of the hypothalamus and pituitary to the feedback effects of GH, are less clear. We have used RNase protection assays and in-situ hybridization to address whether the mRNA expression of GH, somatostatin and GHRH, as well as of the GH receptor (GHR) in the hypothalamus and anterior pituitary, are altered in streptozotocin-induced diabetic rats. After induction of diabetes, rats were treated with insulin twice daily for 3 weeks to obtain either poorly controlled (mean plasma glucose >300 mg/dl) or well-controlled diabetic rats. Although no significant change in pituitary GH mRNA expression was found, the hypothalamic expression of GHRH and somatostatin mRNA was reduced in poorly-controlled diabetic rats and returned to control values with normalisation of plasma glucose concentrations (P<0.0001 and P<0.002, respectively). Somatostatin mRNA expression was reduced only in the central portion of the periventricular nucleus, with no change being seen in the other areas of the periventricular nucleus or in the arcuate, suprachiasmatic or paraventricular nuclei. A significant decline in GHRH mRNA expression was observed in both the arcuate nucleus and ventromedial hypothalamus. Anterior pituitary GHR mRNA expression was significantly reduced in both well and poorly-controlled diabetic rats, while there was no change in the hypothalamus. To examine whether the evolution time of the diabetes influences these parameters, in a subsequent experiment, diabetic rats received no insulin for 2 months. A significant decline in GHRH and somatostatin mRNA expression was also observed in these rats. In addition, pituitary GH mRNA expression declined significantly in long-term diabetic rats. These results demonstrate that: (1) the expression of both GHRH and somatostatin declines specifically in anatomical areas involved in anterior pituitary hormone control; (2) GHR mRNA expression is decreased in the pituitary of diabetic rats, but not in the hypothalamus, and does not return to control values with normalisation of mean blood glucose concentrations; and (3) the evolution time of the diabetes is important for detecting some changes, including the decrease in pituitary GH mRNA expression.  相似文献   

2.
Spontaneous dwarf rats (SDRs) display growth hormone (GH) deficiency due to a mutation in the GH gene. This study investigated sleep in SDRs and their somatotropic axis and compared to Sprague-Dawley rats. SDRs had almost undetectable levels of plasma GH. Hypothalamic GH-releasing hormone (GHRH) mRNA was increased, whereas GHRH-receptor (GHRH-R) and somatostatin mRNAs were decreased in SDRs. Hypothalamic GHRH and somatostatin peptide content decreased in SDRs. Quantitative immunohistochemistry for GHRH and GHRH-R corroborated and extended these findings. In the arcuate nucleus, the number of GHRH-positive cells was significantly higher, whereas GHRH-R-positive perikarya were diminished in SDRs. Cortical GHRH and GHRH-R measurements showed similar expression characteristics as those found in the hypothalamus. SDRs had less rapid eye movement sleep (REMS) and more non-REMS (NREMS) than the control rats during the light period. The electroencephalogram (EEG) delta and theta power decreased during NREMS in the SDRs. After 4-h of sleep deprivation, SDRs had a significantly reduced REMS rebound compared to the controls, whereas NREMS rebound was normal in SDRs. The enhancement in delta power was significantly less than in the control group during recovery sleep. Intracerebroventricular (icv) administration of GHRH promoted NREMS in both strains of rats; however, increased REMS and EEG delta activity was observed only in control rats. Icv injection of insulin-like growth factor 1 increased NREMS in control rats, but not in the SDRs. These results support the ideas that GHRH is involved in NREMS regulation and that GH is involved in the regulation of REMS and in EEG slow wave activity regulation during NREMS.  相似文献   

3.
4.
Although it is well established that inhibin plays a major role in the regulation of the hypothalamic-pituitary-gonadal axis, its influence in the regulation of other neuroendocrine functions is still poorly understood. Recent results indicate that inhibin suppresses plasma GH levels, but its site of action is yet unknown. Therefore, in the present work we investigated the effects of inhibin on somatostatin and growth hormone releasing hormone (GHRH) mRNA levels in the hypothalamus by 'in situ' hybridization. We found that inhibin administration (4, 12 and 24 h, i.c.v.) led to an increase in somatostatin mRNA levels in the periventricular nucleus, and to a decrease in GHRH mRNA content in the arcuate nucleus of the hypothalamus. These findings indicate that inhibin regulates the hypothalamic levels of somatostatin and GHRH mRNA.  相似文献   

5.
6.
The mechanisms by which the pituitary gland, and growth hormone (GH) in particular, affect growth hormone-releasing factor (GRF) gene expression have been addressed using the technique of in situ hybridization. Anatomically matched sections through the mediobasal hypothalamus of control and hypophysectomized male rats, with or without GH hormone replacement, were analysed to obtain information on GRF mRNA levels within the arcuate nucleus and around the ventromedial hypothalamus. Hypophysectomy resulted in a 70% increase in the amount of GRF mRNA per cell (P<0.001), within neurons in the arcuate nucleus. GH replacement and T4 replacement separately partially attenuated this increase (GH replacement P< 0.001 versus hypophysectomy, T4 replacement P<0.05 versus hypophysectomy). Additionally, after hypophysectomy there was an 80% increase in the number of cells expressing the GRF gene in neurons around the ventromedial hypothalamus, when compared to shamoperated controls (P<0.01). Both GH and T4 replacement separately partially attenuated this phenomenon (P<0.01 versus hypophysectomized animals). Hypothyroidism alone did not affect GRF mRNA levels in either the arcuate nucleus or in the area surrounding the ventromedial hypothalamus. These results show that hypophysectomy increases GRF mRNA levels in two separate ways: by increasing the amount of mRNA produced per cell within the arcuate nucleus, and by increasing the number of cells expressing the gene in the area surrounding the ventromedial hypothalamus. This increase in the number of GRF mRNA-containing cells after hypophysectomy could result from the recruitment of neurons which previously did not express the GRF gene, and may reflect the plasticity of the adult central nervous system in response to a changing endocrine environment. This could represent part of a sensor mechanism to drive the production of GRF in the arcuate nucleus in response to extreme disruption of the GRF/ GH feedback loop.  相似文献   

7.
Galanin-like peptide (GALP) mRNA is expressed in neurones of the hypothalamic arcuate nucleus and within pituicytes in the neurohypophysis. Several neuropeptides that are expressed in the arcuate nucleus participate in the neuroendocrine regulation of pituitary hormone secretion. Our objective was to determine the extent to which GALP might be a target for regulation by pituitary hormones or their downstream targets in the rat. The expression of GALP mRNA in the arcuate nucleus was reduced by hypophysectomy as determined by in situ hybridization. However, this did not appear to be attributable to the loss of either gonadal or adrenal steroids because castrated, ovariectomized and adrenalectomized rats had GALP mRNA expression that was indistinguishable from their respective controls. Next, we investigated the effects of growth hormone deficiency on GALP mRNA expression by studying dwarf rats and found that GALP gene expression was not different between dwarf rats and controls. We found that thyroidectomy led to a significant reduction in GALP mRNA expression compared to intact controls, and thyroidectomized rats implanted with thyroxine pellets had GALP mRNA expression that was similar to intact controls. Thus, the reduction of GALP mRNA expression seen in hypophysectomized animals may reflect, in part, a selective loss of thyroid hormone. We also found that the expression of GALP mRNA was increased in the neurohypophysis of lactating rats compared to nonlactating rats, whereas GALP mRNA expression in the arcuate nucleus was unaffected by lactation. This suggests that the induction of GALP gene expression in pituicytes is physiologically associated with activation of oxytocin and vasopressin secretion during lactation.  相似文献   

8.
The effect of exogenous growth hormone (GH) and insulin-like growth factor I (IGF-I) on brain IGF-I binding sites (IGF-IR), and on the levels of growth hormone-releasing hormone (GHRH) and somatostatin was studied in hypophysectomized and intact juvenile male rats. Animals were injected subcutaneously twice daily (n=5 each) with recombinant GH (rGH) (2.5 U/kg per day) or rIGF-I (500 μg/kg per day). In the hypophysectomized rats, serum GH and IGF-I levels were markedly suppressed and IGF-I levels were partially restored by GH treatment. There was a significant increase in IGF-IR binding capacity in the IGF-I-treated hypophysectomized rats compared to the saline-treated hypophysectomized animals (150.61 ± 45.66 vs 41.32±12.42 fmol/mg, p<0.05) but no significant difference in IGF-IR mRNA levels. GHRH levels in the saline-treated hypophysectomized group were significantly lower than in the saline-treated intact rats (31.2±11.2 vs 140.6±48.1 pg/mg tissue, respectively, p<0.01); no effect was induced by GH or IGF-I (37.5±26.8 and 53.8±22.5 pg/mg tissue, respectively). However, in the intact rats, GH and IGF-I injection led to a decrease in GHRH content, which was significant in the GH-treated compared to the saline-treated animals (33.1±16.2 vs 140.6±48.1 pg/mg tissue, p<0.01). No difference was found in somatostatin levels between intact and hypophysectomized rats (631.2±81.2 and 625.0±62.5 pg/mg tissue, respectively). However, in the hypophysectomized animals, GH and IGF-I treatment induced a significant increase in somatostatin levels (1300±193.7 pg/mg tissue, p<0.01, and 912.5±81.2 pg/mg tissue, p<0.05, respectively). Our findings suggest that the bioavailability of exogenous IGF-I is greater than that of GH-stimulated endogenous IGF-I. Because IGF-I is a potent neurotrophic agent, this effect may have important implications for states of neurodegenerative diseases.  相似文献   

9.
Corticotropin-releasing hormone (CRH) neurons located in the paraventricular nucleus (PVN) of the hypothalamus are implicated in regulating the endocrine response to stress. The amygdala is an established component of the neural circuitry mediating the stress response. To obtain information concerning the effects of stress on amygdala CRH neurons, a time-course study was conducted to examine, in rats, whether a 1-h restraint period increases CRH mRNA levels. The effects of restraint were also measured in the PVN. Using a sensitive RNase protection assay, we found that CRH mRNA levels in both the amygdala and paraventricular nucleus were significatly elevated 1 h after cessation of restraint. CRH mRNA levels in the paraventricular nucleus, but not the amygdala, remained elevated at the 3-h post-stress interval. 48 h after the termination of restraint, CRH mRNA levels in both brain structures returned to control levels. These data provide the first direct evidence that stress activates amygdala CRH neurons.  相似文献   

10.
GHRH and sleep     
A significant portion of the total daily growth hormone (GH) secretion is associated with deep non-REM sleep (NREMS). GH secretion is stimulated by the hypothalamic neurohormone, GH-releasing hormone (GHRH). Exogenous GHRH promotes NREMS in various species. Suppression of endogenous GHRH (competitive antagonist, antibodies, somatostatinergic stimulation, high doses of GH or insulin-like growth factor) results in simultaneous inhibition of NREMS. Mutant and transgenic animals with a defect in GHRHergic activity display permanently reduced NREMS which cannot be reversed by means of GH supplementation. GHRH contents and mRNA levels in the hypothalamus correlate with sleep-wake activity during the diurnal cycle and sleep deprivation and recovery sleep. Stimulation of NREMS by GHRH is a hypothalamic action. GABAergic neurons in the anterior hypothalamus/preoptic region are candidates for mediating promotion of NREMS by GHRH. In contrast to NREMS, stimulation of REMS by GHRH is mediated by GH. Simultaneous stimulation of NREMS and GH secretion by GHRH may promote adjustment of tissue anabolism to sleep.  相似文献   

11.
Current evidence demonstrates that the stomach‐derived hormone ghrelin, a potent growth hormone (GH) secretagogue, promotes feeding through a mechanism involving the short‐term activation of hypothalamic AMP‐activated protein kinase (AMPK), which in turn results in decreased hypothalamic levels of malonyl‐CoA and increased carnitine palmitoyltransferase 1 (CPT1) activity. Despite this evidence, no data have been reported about the effect of chronic, central ghrelin administration on hypothalamic fatty acid metabolism. In the present study, we examined the differences in hypothalamic fatty acid metabolism in the presence and absence of GH, by using a model for the study of GH‐deficiency, namely the spontaneous dwarf rat and the effect of long‐term central ghrelin treatment and starvation on hypothalamic fatty acid metabolism in this animal model. Our data showed that GH‐deficiency induces reductions in both de novo lipogenesis and β‐oxidation pathways in the hypothalamus. Thus, dwarf rats display reductions in fatty acid synthase (FAS) mRNA expression both in the ventromedial nucleus of the hypothalamus (VMH) and whole hypothalamus, as well as in FAS protein and activity. CPT1 activity was also reduced. In addition, in the present study, we show that chronic ghrelin treatment does not promote AMPK‐induced changes in the overall fluxes of hypothalamic fatty acid metabolism in normal rats and that this effect is independent of GH status. By contrast, we demonstrated that both chronic ghrelin and fasting decreased FAS mRNA expression in the VMH of normal rats but not dwarf rats, suggesting GH status dependency. Overall, these results suggest that ghrelin plays a dual time‐dependent role in modulating hypothalamic lipid metabolism. Understanding the molecular mechanism underlying the interplay between GH and ghrelin on hypothalamic lipid metabolism will allow new strategies for the design and development of suitable drugs for the treatment of GH‐deficiency, obesity and its comorbidities.  相似文献   

12.
13.
14.
Recent studies suggest that glucocorticoids may increase NPY and NPY mRNA levels. To determine if endogenous corticosterone affects the level of NPY mRNA in areas that control NPY levels in the paraventricular nucleus, we examined the effects of adrenalectomy and corticosterone replacement on NPY mRNA levels in the arcuate nucleus and brainstem. Rats were either adrenalectomized, adrenalectomized and corticosterone replaced, or sham-operated. The arcuate nucleus, hypothalamus (excluding arcuate nucleus), and brainstem were collected and the RNA isolated. Dot blots were made of each tissue and the NPY mRNA quantitated by densitometry. Adrenalectomy significantly reduced NPY mRNA levels in the arcuate nucleus, while corticosterone replacement restored the NPY mRNA levels. NPY mRNA levels in the remainder of the hypothalamus were not affected by adrenalectomy. Adrenalectomy also had no affect on NPY mRNA levels in the brainstem. These data suggest that the paraventricular nucleus may be affected by glucocorticoids via an NPY pathway and that the two major afferent pathways of NPY-containing neurons to the paraventricular nucleus may be regulated by different mechanisms.  相似文献   

15.
Orexins are hypothalamic neuropeptides that stimulate arousal and food intake but also activate the hypothalamic-pituitary-adrenal (HPA) axis. During late pregnancy in the rat, the responsiveness of the HPA axis to stressors is attenuated, and thus we investigated HPA axis responses to centrally administered orexin-A during pregnancy. Intracerebroventricular injection of orexin-A (0.5 micro g, 140 pmol) significantly increased plasma adrenocorticotropic hormone and corticosterone concentration within 10 min in virgin female Sprague-Dawley rats, but had no effect in day 21 pregnant rats. Orexin-A significantly increased corticotropin-releasing hormone (CRH) mRNA expression, measured by in situ hybridization, in the paraventricular nucleus (PVN) of the virgin group but not in the pregnant group. Thus, the responsiveness of PVN CRH neurones to orexin-A, and hence the pituitary-adrenal axis, is markedly reduced in pregnancy. This may favour anabolic adaptations in pregnancy.  相似文献   

16.
Immunoreactivities of somatostatin and growth hormone-releasing factor (GRF) in the hypothalamus of spontaneous dwarf rats (SDRs, gene symbol; dr), which show isolated growth hormone (GH) deficiency, and normal rats were studied with an avidin-biotin complex (ABC) immunohistochemical method. Somatostatin and GRF immunoreactivities were observed in the median eminence and each afferent nucleus with no difference between these animals. The observation suggests that the etiology of the GH deficiency lies in GH cells themselves and is not hypothalamic in origin. This observation indicates that the SDR is a new model animal for type I dwarfism.  相似文献   

17.
The primary role of the orexins was originally believed to be appetite regulation, but is now believed to be the regulation of sleep, arousal and locomotor activity. Orexin A immunoreactivity (orexin A-IR) and prepro-orexin mRNA were measured in the CNS of obese and lean Zucker rats. There were no differences in orexin A-IR or prepro-orexin mRNA levels between obese and lean Zucker rats. The orexins are therefore unlikely to be important in this model of obesity. Levels of orexin A-IR and prepro-orexin mRNA were measured in the CNS of Wistar-Kyoto (WKY) rats, which are hypoactive and have abnormal sleep architecture. Compared to Wistar rats, WKY rats had significantly lower orexin A-IR (with differences of up to 100% in some brain regions) and prepro-orexin mRNA levels. These observations suggest that the sleep and activity phenotype of the WKY strain may be related to orexin deficiency and that this strain may be a useful model of partial orexin deficiency.  相似文献   

18.
19.
Orexin-A and -B (hypocretin-1 and -2) have been implicated in the stimulation of feeding. Here we show the effector neurons and signaling mechanisms for the orexigenic action of orexins in rats. Immunohistochemical methods showed that orexin axon terminals contact with neuropeptide Y (NPY)- and proopiomelanocortin (POMC)-positive neurons in the arcuate nucleus (ARC) of the rats. Microinjection of orexins into the ARC markedly increased food intake. Orexins increased cytosolic Ca(2+) concentration ([Ca(2+)](i)) in the isolated neurons from the ARC, which were subsequently shown to be immunoreactive for NPY. The increases in [Ca(2+)](i) were inhibited by blockers of phospholipase C (PLC), protein kinase C (PKC) and Ca(2+) uptake into endoplasmic reticulum. The stimulation of food intake and increases in [Ca(2+)](i) in NPY neurons were greater with orexin-A than with orexin-B, indicative of involvement of the orexin-1 receptor (OX(1)R). In contrast, orexin-A and -B equipotently attenuated [Ca(2+)](i) oscillations and decreased [Ca(2+)](i) levels in POMC-containing neurons. These effects were counteracted by pertussis toxin, suggesting involvement of the orexin-2 receptor and Gi/Go subtypes of GTP-binding proteins. Orexins also decreased [Ca(2+)](i) levels in glucose-responsive neurons in the ventromedial hypothalamus (VMH), a satiety center. Leptin exerted opposite effects on these three classes of neurons. These results demonstrate that orexins directly regulate NPY, POMC and glucose-responsive neurons in the ARC and VMH, in a manner reciprocal to leptin. Orexin-A evokes Ca(2+) signaling in NPY neurons via OX(1)R-PLC-PKC and IP(3) pathways. These neural pathways and intracellular signaling mechanisms may play key roles in the orexigenic action of orexins.  相似文献   

20.
In transgenic growth-retarded (Tgr) rats, expression of human growth hormone (hGH) is targeted to hypothalamic GH-releasing hormone (GHRH) neurones. In these rats, GHRH is reduced and somatostatin expression is increased, resulting in secondary GH deficiency and dwarfism. Tgr rats also show reduced pituitary prolactin (PRL), which may reflect an additional lactogenic feedback action of the hGH transgene, analogous to that in mice transgenic for peripheral hGH which show enhanced dopamine (DA) and tyrosine hydroxylase (TH) expression in the hypothalamic tuberoinfundibular dopaminergic (TIDA) neurones that inhibit PRL secretion. The present study examined DA histofluorescence and TH immunoreactivity in Tgr rats, and also in dw/dw rats, a dwarf strain with primary pituitary GH but not PRL deficiency. Radioimmunoassay confirmed a significant decrease in total pituitary PRL content in Tgr rats, but showed a marked increase in total pituitary PRL in dw/dw rats. Despite their PRL deficiency, Tgr rats showed qualitatively increased TIDA histofluorescence and TH immunoreactivity compared with AS control rats, though the total number of detectable TH-positive TIDA neurones was similar for Tgr and AS. In contrast, dw/dw rats showed increased numbers of TH-immunoreactive TIDA neurones whilst TIDA fluorescence was unchanged, and these findings were not affected in dw/dw rats given bovine GH (200 microg/d s.c. for 7 d). These results suggest that reduced PRL in Tgr rats is due to a local lactogenic feedback effect of hGH to stimulate TIDA neurones. The complex changes in TIDA neurones probably reflect a combination of increased lactogenic feedback in Tgr rats, with an increased (Tgr) or decreased (dw/dw) somatogenic feedback on GHRH neurones, some of which coexpress TH. Thus, the unchanged number of TIDA neurones in Tgr rats may result from hGH stimulation of TH and DA, but a reduction in GHRH-producing cells, whereas increased TIDA neurones in dw/dw rats suggests a stimulation by endogenous PRL with an increased GHRH cell complement due to GH deficiency. These findings therefore indicate that differences in lactogenic feedback in these dwarf rat models are reflected in marked differences in their hypothalamic TIDA neurones.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号