首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Nitric oxide has been recently identified as an endogenous activator of the soluble guanylate cyclase in the brain as well as in vascular endothelial cells and macrophages. In the present study, we determined the localization of free arginine in the brain because nitric oxide was formed from the terminal guanido group of L-arginine. Anti-arginine antiserum was raised in guinea pigs by repeated injection of L-arginine covalently conjugated to guinea pig serum albumin via glutaraldehyde. Specific anti-arginine antibody was purified from the antiserum by using an affinity gel coupled with L-arginine. Arginine-like immunoreactivity in the rat brain and spinal cord was found concentrated mainly in astrocytes including Bergmann glial cells in the cerebellum and processes of astrocytes around blood vessels. The present results suggest that glial cells, particularly astrocytes, are the main locus of L-arginine, a nitric oxide precursor, in the brain.  相似文献   

2.
In the central nervous system nitric oxide appears to be critically involved in a number of physiological and pathological processes. Although there is convincing evidence for expression of nitric oxide synthase in cultured glial cells, demonstration of this enzyme in glial cells in situ remained largely unsatisfactory. In the present study we applied immunostaining to freeze-dried sections of snap-frozen hippocampi and cerebella of rats and to sections of freeze-dried brain tissue in order to minimize diffusion artefacts and thus to obtain more precise information about the true in situ localization of nitric oxide synthase. Here we show that astrocytes and Bergmann glia react strongly with antibodies raised against cerebellar nitric oxide synthase and against a type I nitric oxide synthase-specific C-terminal peptide, respectively. This finding was further substantiated by histochemical localization of NADPH-diaphorase activity in astrocytes and Bergmann glia as well as by immunoreactivity of both types of glia cells with antibodies to the NADPH-delivering enzyme glucose-6-phosphate dehydrogenase. We conclude, that astrocytes are important sites of nitric oxide synthase I in brain, suggesting that these cells might use nitric oxide as gaseous messenger molecule for various aspects of glia-neuron signalling. © 1996 Wiley-Liss, Inc.  相似文献   

3.
4.
Nitric oxide is generated by a Ca2+/calmodulin-stimulated nitric oxide synthase and activates soluble guanylyl cyclase. Using NADPH diaphorase (NADPHd) staining as a marker for the enzyme nitric oxide synthase and an antiserum against cGMP, we investigated the cellular organization of nitric oxide donor and target cells in olfactory pathways of the brain of the locust ( Schistocerca gregaria ). A small subset of neuronal and glial cells expressed cGMP immunoreactivity after incubation of tissue in a nitric oxide donor. Nitric oxide-induced increases in cGMP immunoreactivity were quantified in a tissue preparation of the antennal lobe and in primary mushroom body cell cultures. The mushroom body neuropil is a potential target of a transcellular nitric oxide/ cGMP messenger system since it is innervated by extrinsic NADPHd-positive neurons. The mushroom body-intrinsic Kenyon cells do not stain for NADPHd but can be induced to express cGMP immunoreactivity. The colocalization of NADPHd and cGMP immunoreactivity in a cluster of interneurons of the antennal lobe, the principal olfactory neuropil of the insect brain, suggests a role of the nitric oxide/cGMP system in olfactory sensory processing. Colocalization of NADPHd staining and cGMP immunoreactivity was also found in certain glial cells. The cellular organization of the nitric oxide/cGMP system in neurons and glia raises the possibility that nitric oxide acts not only as an intercellular but also as an intracellular messenger molecule in the insect brain.  相似文献   

5.
目的探讨诱导型一氧化氮合酶(iNOS)在中枢神经系统脱髓鞘疾病中的作用。方法采用硫辛胺脱氢酶染色和抗诱导型一氧化氮合酶(抗iNOS)抗体的免疫组化方法,对髓鞘碱性蛋白诱导豚鼠产生的实验性过敏性脑脊髓炎(EAE)病程中,脑和脊髓的一氧化氮合酶(NOS)和iNOS表达情况进行研究。结果在EAE的急性期主要为血管、血管周围细胞、浸润细胞和小胶质细胞显示iNOS免疫反应阳性,在恢复期星形细胞则出现免疫反应阳性。结论提示一氧化氮是EAE早期血脑屏障破坏以及进展期髓鞘和少突胶质细胞破坏的重要介导物质。  相似文献   

6.
Glial cells are responsible for maintaining brain homeostasis. Modification of the viability and functions of glial cells, including astrocytes and microglia, are associated with neuronal death and neurological diseases. Many toxins (heavy metals, pesticides, bacterial or viral toxins) are known to impact on brain cell viability and functions. Although recent publications suggest a potential link between environmental exposure of humans to mycotoxins and neurological diseases, data regarding the effects of fungal toxins on brain cells are scarce. In the present study, we looked at the impact of deoxynivalenol (DON), a fungal ribotoxin, on glial cells from animal and human origin. We found that DON decreased the viability of glial cells with a higher toxicity against microglial cells compared with astrocytes. In addition to cellular toxicity, DON affected key functions of glial cells. Thus, DON caused a biphasic effect on the neuroinflammatory response of microglia to lipopolysaccharide (LPS), while sublethal doses of DON increased the LPS-induced secretion of TNF-α and nitric oxide, toxic doses inhibited it. In addition to affecting microglial functions, sublethal doses of DON also suppressed the uptake of L-glutamate by astrocytes. This inhibition was associated with a modification of the expression of the glutamate transporters at the plasma membrane. Our results suggest that environmental ribotoxins such as DON could, at low doses, cause modifications of brain homeostasis and possibly participate in the etiology of neurological diseases in which alterations of the glia are involved.  相似文献   

7.
Activation-induced cell death of rat astrocytes   总被引:10,自引:0,他引:10  
Suk K  Lee J  Hur J  Kim YS  Lee M  Cha S  Yeou Kim S  Kim H 《Brain research》2001,900(2):342-347
Inflammatory activation of astrocytes has been implicated in various neurodegenerative diseases. The elimination of activated astrocytes by apoptosis or the deactivation may be the mechanisms for auto-regulation of activated astrocytes. To test the possibility of apoptotic elimination of activated astrocytes, we examined a potential correlation between activation state of astrocytes and their viability using C6 rat glial cells and rat primary astrocyte cultures exposed to a variety of inflammatory stimuli such as lipopolysaccharide, interferon-gamma, and tumor necrosis factor-alpha. Nitric oxide production was measured to evaluate inflammatory activation of astrocytes. We found that: (i) the activation of astrocytes by the combination of lipopolysaccharide and inflammatory cytokines, but not by either alone, led to nitric oxide production followed by apoptotic cell death; (ii) the amount of nitric oxide produced by activated astrocytes was inversely proportional to the viability of the cells; (iii) inhibition of nitric oxide synthase by N-monomethyl L-arginine blocked death of activated astrocytes; and (iv) nitric oxide donors induced apoptosis of astrocytes in a caspase-dependent manner. Taken collectively, our results suggest that activated astrocytes produce nitric oxide as an autocrine mediator of caspase-dependent apoptosis, and this type of programmed cell death of astrocytes may be the underlying mechanism for the auto-regulation of inflammatory activation of astrocytes.  相似文献   

8.
Inducible nitric oxide synthase (iNOS) expression has been shown to be differentially regulated among different cell types and species. In cultures of primary human fetal glial cells, we have shown that astrocytes rather than microglia express iNOS. In the present study, we extended these findings to primary cultures of astrocytes and microglia derived from adult human brains. Mixed cultures of adult brain tissue were stimulated with IL-1β and IFNγ, a combination known to induce iNOS maximally in human fetal cells, and the expression of iNOS was determined by immunocytochemistry. Cell types were determined by morphology as well as immunocytochemistry for GFAP (astrocytes) and CD68 (microglia). The results showed that in cultures of adult human glia, iNOS was expressed following stimulation with cytokines, and the expression was restricted to astrocytes. Astrocyte iNOS immunoreactivity was detected both in the cytosol and in a discrete paranuclear region, a pattern noted in human fetal astrocytes. These results demonstrate that the ability to express iNOS is common to both fetal and adult human astrocytes.  相似文献   

9.
We and others have previously reported that glucose transporter 1 (GLUT1)-like 45 kDa protein is localized to parenchymal cells in the brain. However, the precise cellular localization has remained unclear. In the present study, we examined the cellular localization of GLUT1 in the rat brain by double immunostaining methods and immunoelectron microscopic analysis using a rabbit antiserum specific to GLUT1. Western blot analysis of the rat brain revealed that the antiserum detected a strong band with a molecular weight of 45 kDa and a weak band of about 55 kDa, which corresponded respectively to the known molecular weights of the GLUT1 proteins in the brain parenchymal cells and the brain microvessels. Immunohistochemical staining revealed a large number of GLUT1-immunoreactive glial cells and microvessels in almost every region of the brain. Double immunofluorescence analysis demonstrated that the GLUT1-like 45 kDa protein occurred in many galactocerebroside-positive oligodendrocytes and in some glial fibrillary acidic protein (GFAP)-positive astrocytes. No GLUT1-immunoreactivity was observed in OX42-positive microglia. Immunoelectron microscopic examination confirmed that the GLUT1-immunoreactivity was mainly localized in the cytoplasm of the oligodendrocytes and astrocytes. The results indicate that the 45 kDa form of GLUT1 protein exists in the glial cells including astrocytes and oligodendrocytes.  相似文献   

10.
The enzyme argininosuccinate synthetase (ASS) initiates the metabolic pathway leading from L-citrulline to L-arginine, the only physiological substrate of all isoforms of nitric oxide synthases. The presence of ASS in glial cells in vivo was investigated by immunohistochemical methods in a model of rat brain inflammation. Phosphate-buffered saline or a mixture of bacterial lipopolysaccharide and interferon-gamma was injected into the left striatum, and animals were killed 24 hours later. Ipsilateral and contralateral sides of brain sections were incubated with an antiserum against ASS or antibodies against cell-specific markers. In the three areas examined, striatum, corpus callosum, and cortex, a strong induction of ASS immunoreactivity was observed in glial cells after injection of immunostimulants. A detailed quantitative analysis of double-stained sections revealed that ASS was almost exclusively expressed in reactive, ED1-positive microglial cells/brain macrophages in immunostimulant- or sham-injected ipsilateral sides of the sections. Furthermore, ASS/ED1 costaining was observed in perivascular cells. Colocalization of ASS with astroglial marker glial fibrillary acidic protein was given only occasionally after immunostimulation. ASS-positive neurons were detected in control and experimental animals; staining intensity was comparable in both cases. The results suggest that neurons express ASS constitutively, whereas the enzyme is induced in glial cells in response to proinflammatory stimuli. This finding is the first demonstration of an induction of a pathway auxiliary to generation of nitric oxide in brain in response to immunostimulants and provides new insight into neural arginine metabolism.  相似文献   

11.
The brains of Alzheimer's disease (AD) patients present activated glial cells, amyloid plaques and dystrophic neurites. The core of amyloid plaques is composed of aggregated amyloid peptide (Abeta), a peptide known to activate glial cells and to have neurotoxic effects. We evaluated the capability of glial cells to mediate Abeta(1-42) cytotoxicity in hippocampal cultures. Conditioned media obtained from microglial cultures exposed to Abeta induced apoptosis of hippocampal cells. This pro-apoptotic effect was not observed in hippocampal cultures exposed to conditioned media obtained from mixed glial (astrocytes and microglia) cultures that had been exposed to Abeta. Microglia exposed to Abeta responded with reactive morphological changes, induction of iNOS, elevated nitric oxide production and decreased reductive metabolism. All these responses were attenuated by the presence of astrocytes. This astrocyte modulation was however, not observed when glial cells were exposed to proinflammatory factors (LPS+Interferon-gamma) alone or in combination with Abeta. Our results suggest that astrocytes and proinflammatory molecules are determining factors in the response of microglia to Abeta.  相似文献   

12.
X-Adrenoleukodystrophy (X-ALD) is an inherited peroxisomal disorder of deficient catabolism of very long-chain (VLC) fatty acids with resulting neuroinflammatory demyelinating disease. Our recent documentation of nitric oxide (NO)-mediated increase in VLC fatty acid levels in glial cells and demonstration of greater increase of VLC fatty acids levels in the inflammatory region (plaque) of X-ALD brain as compared to the normal-looking region away from the plaque prompted us to investigate the possible involvement of NO in the pathophysiology of X-ALD. Herein we provide evidence of the expression of inducible nitric oxide synthase (iNOS) in the CNS of X-ALD patients. In situ hybridization demonstrated that iNOS mRNA was present in brain tissues from X-ALD patients but not in normal controls. Double-labeling immunofluorescence studies using cell-specific markers confirmed that iNOS-expressing cells in the CNS of X-ALD were astrocytes and microglia/macrophages. Finally, antibodies against nitrotyrosine strongly immunoreacted with tissues from the center of the plaque region of X-ALD brains suggesting the presence of the NO reaction product nitrotyrosine in the CNS of X-ALD. Taken together, these results demonstrate that iNOS is expressed in the brains of patients with X-ALD and may contribute to the pathogenesis of the disease.  相似文献   

13.
Expression of two different types of intermediate filaments, vimentin filaments and glial filaments, was studied immunohistochemically in experimental rat gliomas. Although vimentin filaments are most commonly seen in mesenchymal cells, recent immunocytochemical study demonstrated that this type of filaments can be recognized also in glial cells during early cell differentiation and in tumor cells of epithelial origin. In the present communication, distribution of vimentin filaments in rat glial tumors was investigated and compared with that of glial filaments by using specific antiserum to each protein subunit, vimentin and astroprotein (GFAP). Ethylnitrosourea (50 mg/kg) was injected subcutaneously into 3 day-old Wistar rats. After four to ten months, brains of animals were removed, fixed in 95% ethanol and embedded in paraffin. Peroxidase-antiperoxidase method was carried out on 6 micron-thick sections. In normal portion of the brain, immunoreaction for vimentin was noted in ependymal cells and in vascular endothelial cells but not in astrocytes. This distribution contrasted with that of astroprotein (GFAP), which distributed in astrocytes but not in normal ependymal cells. These findings confirmed that the two antisera used in the present study do not crossreact to each other. In contrast to the absence of vimentin immunoreaction in normal astrocytes, a number of tumor cells showed positive reaction to the antiserum to vimentin. Mixed glioma with astrocytoma and oligodendroglioma had both astroprotein (GFAP)-positive and negative cells. Well developed cellular processes were noted in astroprotein (GFAP)-positive cells (astrocytoma cells). Weak immunoreaction for vimentin was noted in those cells.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
To obtain information about the role of nitric oxide (NO) in the development of hypertensive cerebral lesions, we used immunohistochemical methods to study the distribution and level of nitric oxide synthase (NOS) in the brain of stroke-prone spontaneously hypertensive rats (SHRSPs). The early changes in the brain of SHRSPs were petechiae, edema and massive glial accumulation around fibrin deposits, which contained necrotized microvessels, whereas advanced cerebral lesions comprised massive bleeding, cavity formation and diffuse degeneration of the white matter. In the normotensive control rats, immunoreactivity for NOS was demonstrated in scattered neuronal cells, as has been reported previously, but there was no reactivity in glial cells. In the present study in SHRSPs, however, considerable NOS immunoreactivity was observed in most reactive astrocytes and in a proportion of the microglial cells and macrophages in the vicinity of the cortical lesions and in the subcortical white matter both ipsi- and contralateral to the cortical lesion. The nerve cells in the edematous region also showed weak immunoreactivity for NOS. The distribution of increased NOS in SHRSP brains corresponded well with the sites of extravasated plasma fluid as demonstrated by anti-fibrinogen antibody. Based on these findings, we postulate that edema and the simultaneously generated free radicals or some extravasated plasma components may induce expression of NOS in the reactive cells and nerve cells, and that the NO thus generated may be involved in the development of hypertensive cerebral lesions. Received: 19 June 1995 / Revised, accepted: 21 February 1996  相似文献   

15.
Central nervous system degenerative diseases are often characterized by an early, strong reaction of astrocytes and microglia. Both these cell types can play a double role, protecting neurons against degeneration through the synthesis and secretion of trophic factors or inducing degeneration through the secretion of toxic molecules. Therefore, we studied the effects of S100B and trimethyltin (TMT) on human astrocytes and microglia with two glial models, primary cultures of human fetal astrocytes and a microglia cell line. After treatment with 10(-5) M TMT, astrocytes showed morphological alterations associated with an increase in glial fibrillary acidic protein (GFAP) expression and changes in GFAP filament organization. Administration of S100B before TMT treatment prevented TMT-induced changes in morphology and GFAP expression. A decrease in inducible nitric oxide synthase expression was observed in astrocytes treated with TMT, whereas the same treatment induced iNOS expression in microglia. In both cases, S100B prevented TMT-induced changes. Tumor necrosis factor-alpha mRNA expression in astrocytes was not modified by TMT treatment, whereas it was increased in microglia cells. S100B pretreatment blocked the TMT-induced increase in TNF-alpha expression in microglia. To trace the mechanisms involved in S100B activity, the effect of BAY 11-7082, an inhibitor of nuclear factor-kappaB (NF-kappaB) activation, and of PD98059, an inhibitor of MEK-ERK1/2, were investigated. Results showed that the protective effects of S100B against TMT toxicity in astrocytes depend on NF-kappaB, but not on ERK1/2 activation. These results might help in understanding the role played by glial cells in brain injury after exposure to chemical neurotoxicants and support the view that S100B may protect brain cells in case of injury. (c) 2005 Wiley-Liss, Inc.  相似文献   

16.
Following a recent claim, based on glial acidic fibrillary protein (GFAP) expression, that brain-derived astrocytes in culture are in fact endothelial cells, we immuno-labelled primary cultures of rat brain astrocytes and endothelium with various GFAP antisera. Both cell types stained positively with a polyclonal antibody, although monoclonal antiserum labelled only astrocytes. We conclude that staining of endothelial cells with the polyclonal GFAP antiserum is due to cross reactivity with another protein.  相似文献   

17.
Several stimuli result in glial activation and induce nitric oxide (NO) production in microglial and astroglial cells. The bacterial endotoxin lipopolysaccharide (LPS) has been widely used to achieve glial activation in vitro, and several studies show that both microglial and, to a lesser extent, astroglial cell cultures produce NO after LPS treatment. However, NO production in endotoxin-treated astrocyte cultures is controversial. We characterized NO production in microglial, astroglial and mixed glial cell cultures treated with lipopolysaccharide, measured as nitrite accumulation in the culture media. We also identified the NO-producing cells by immunocytochemistry, using specific markers for the inducible NO synthase (iNOS) isoform, microglial and astroglial cells. Only microglial cells showed iNOS immunoreactivity. Thus, contaminating microglial cells were responsible for NO production in the secondary astrocyte cultures. We then analysed the effect of astrocytes on NO production by microglial cells using microglial-astroglial cocultures, and we observed that this production was clearly enhanced in the presence of astroglial cells. Soluble factors released by astrocytes did not appear to be directly responsible for such an effect, whereas nonsoluble factors present in the cell membrane of LPS-treated astrocytes could account, at least in part, for this enhancement.  相似文献   

18.
In cultures of purified microglial cells and astrocytes from newborn rats, the immunocytochemical localization of interleukin-1β (IL-1β) and inducible nitric oxide synthase (iNOS) using recently developed antibodies, as well as the release of IL-1β and nitric oxide (NO), was studied following exposure of the cells to endotoxin [lipopolysaccharide (LPS)]. In the absence of LPS, IL-1β- and iNOS-immunoreactive microglial cells and IL-1β or NO release were not observed, whereas in the presence of the endotoxin, the production of NO and IL-1β by microglial cells dramatically exceeded their synthesis and release by astrocytes. Interestingly, microglial cells cultured for 4–8 days in the presence of astrocytes appeared to lose their ability to produce iNOS, whereas the release of IL-1β remained unaltered. Moreover, endotoxin-stimulated microglial cells appeared to regain their ability to synthesize iNOS following their separation from astrocytes. These data show that microglia are primarily responsible for NO and IL-1β production in mixed glial cell cultures upon endotoxin stimulation. Moreover, in the presence of astrocytes the induction of iNOS, but not that of IL-1β in microglial cells is gradually inhibited. © 1996 Wiley-Liss, Inc.  相似文献   

19.
Stimulation of parallel fibers in the cerebellar cortex triggers a transient calcium increase in Bergmann glial cells, a special form of astrocytes. Using patch-clamping and imaging techniques we have found that this form of neuron-glia interaction is mediated by nitric oxide (NO) since the response is blocked by the NO-synthase inhibitor N omega-nitro-l-arginine and mimicked by NO donors. None of the neurotransmitter receptors of Bergmann glia identified so far participates in or interferes with this signaling cascade. The NO-triggered increases in [Ca(2+)](i), as studied in Bergmann glial cells in the slice or in cultured astrocytes, are due to Ca(2+) influx and not to release from cytoplasmic stores. Thus, NO released from parallel fibers serves as a signaling substance to the neighboring glial elements.  相似文献   

20.
We have successfully established highly enriched astrocyte cultures upon passaging of primary cultures derived from various regions of postmortem human adult brain and spinal cord. Tissues were collected at autopsies with relatively short postmortem times (3–9 hr) from multiple sclerosis (MS) and (normal) control cases. Immunocytochemical analysis showed that primary cultures were composed of colonies of oligoclonal cells that expressed the intermediate filament proteins glial fibrillary acidic protein (GFAP), vimentin, as well as glutamine synthetase (GS). Passaging the astrocytes did not affect their proliferating capacity as monitored by bromodeoxyuridine (BrdU) incorporation. Astrocyte-specific markers were stably expressed for at least 12 passages per individual tissue sample. Large numbers of GFAP-positive astrocytes were obtained from each sample and could be stored frozen and recultured. Very few macrophages/microglial cells (1–3%) were present in the human adult astrocyte cultures, using a panel of macrophage-specific markers. However, the monoclonal antibodies (mAbs KP1, EBM11, 25F9) and lysozyme antiserum directed against lysosomal antigens strongly immunostained cultured astrocytes derived from MS and control cases, implicating that expression of these lysosomal antigens is not restricted to macrophages/microglial cells in human glial cell cultures. Interestingly, astrocytes derived from active demyelinated MS lesions showed an increased proliferating capacity compared to astrocytes derived from non-lesioned and normal brain and spinal cord regions, as shown with a microculture tetrazolium assay (MTT assay). J. Neurosci. Res. 49:342–354, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号