首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 781 毫秒
1.
The molecular and crystal structures of the Cα-tetrasubstituted, δ-branched α-amino acid Cα-methyl-homophenylalanine, H-d -(αMe)Hph-OH, and three peptides (to the pentamer level), including the homotripeptide, have been determined by X-ray diffraction. The peptides are Z-l -(αMe)Hph-(l -Ala)2-OMe, pBrBz-[d -(αMe)Hph]3-OtBu and Ac-(Aib)2-l -(αMe)Hph-(Aib)2-OtBu. All the (αMe)Hph residues prefer φ,ψ torsion angles in the helical region of the conformational map. The two terminally blocked tripeptides adopt a β-bend conformation stabilized by a 1→4 C = O?H-N intramolecular H-bond. The terminally blocked pentapeptide is folded in a regular 310-helix. In general, the relationship between (αMe)Hph α-carbon chirality and helix handedness is the same as that exhibited by protein amino acids. A comparison is also made with the conclusions extracted from published work on peptides from other types of Cα-alkylated aromatic α-amino acids. © Munksgaard 1996.  相似文献   

2.
Conformational energy computations on Ac-l -(αMe)Val-NHMe indicate that turns and right-handed helical structures are particularly stable conformations for this chiral Cα-methyl, Cα-alkylglycyl residue. We have synthesized and characterized a variety of l -(αMe)Val derivatives and peptides (to the pentamer level). The results of the solution conformational analysis, performed using infrared absorption, 1H nuclear magnetic resonance, and circular dichroism, are in general agreement with those obtained from the theoretical investigation, in the sense that the l -(αMe)Val residue turns out to be a strong β-turn and right-handed helix former. A comparison is also made with the conclusions extracted from published work on peptides rich in other Cα-methyl, Cα-alkylglycyl residues.  相似文献   

3.
Conformations of three series of model peptides: homochiral Ac-Pro-L-Xaa-NHCH3 and heterochiral Ac-Pro-D-Xaa-NHCH3 (Xaa=Phe, Val, Leu. Abu. Ala) as ivell as α,β-dehydro Ac-Pro-ΔXaa-NHCHs [ΔXaa = (Z)-ΔPhe, ΔVal. (Z)-ΔLeu, (Z)-ΔAbu] were investigated by CD spectroscopy in 2 % dichloromethanecyclohexane, trifluoroethanol. water. and occasionally in other solvents. The spectra of homochiral peptides show a significant solvent dependence. Folded structures are present in 2% dichloromethane-cyclohexane and unordered ones occur in water. The folded conformers are of the inverse γ-turn type for all the peptides but Ac-Pro-L-Phe-NHCH3 for which the type-I β-turn is preferred. The changes in the spectra of the heterochiral peptides are limited. The compounds adopt the typc-II β–turn in 2% dichloromethanecyclohexane, represented by class B spectra, and retain this conformation in water as well as in fluorinated alcohols but not always to a full extent. The CD spectra of the unsaturated peptides in 2%, dichloromethanecyclohexane, although they cannot be assigned to any common spectral class, must be attributed to the βII-turn conformation as determined for these coinpounds by NMR and IR spectroscopy. The CD spectra of dehydropeptides exhibit a considerable solvent dependence and suggest unordered structures in water.  相似文献   

4.
Solution conformations of three series of model peptides, homochiral Ac-Pro-L-Xaa-NHCH3 and heterochiral Ac-Pro-D-Xaa-NHcH3 (Xaa = Val, Phe, Leu, Abu. Ah) as well as αβ-unsaturated Ac-Pro-ΔXaa-NHCH3 [Δ Xaa =ΔVal, (Z)-ΔPhe, (Z)-ΔLeu, (Z)-ΔAbu] were investigated in CDCl3 and CH2Cl2 by 1H-, 13C-NMR, and FTIR spectroscopy. NH stretching absorption spectra, solvent shifts Δδ for NH (Xaa) and NHCH3 on going from CDCl3 to (CD3)2SO, diagnostic interresidue proton NOEs, and trans-cis isomer ratios were examined. These studies performed showed the essential difference in conformational propensities between homochiral peptides (L-Xaa) on the one hand and heterochiral (D-Xaa) and αβ-dehydropeptides (ΔXaa) on the other. Former compounds are conformationally flexible with an inverse γ-bend, a β-turn, and open forms in an equilibrium depending on the nature of the Xaa side chain. Conformational preferences of heterochiral and αβ-dehydropeptides are very similar, with the type-II β-turn as the dominating structure. There is no apparent correlation between conformational properties and the nature of the Xaa side chain within the two groups. The β-turn formation propensity seems to be somewhat greater in αβ-unsaturated than in heterochiral peptides, but an estimation of β-folded conformers is risky.  相似文献   

5.
Abstract: Using a chemo‐enzymatic approach we prepared the highly lipophilic, chiral, Cα‐methylated α‐amino acid (αMe)Aun. Two series of terminally protected model peptides containing either d ‐(αMe)Aun in combination with Aib or l ‐(αMe)Aun in combination with Gly were synthesized using solution methods and fully characterized. A detailed solution conformational analysis, based on FT‐IR absorption, 1H NMR and CD techniques, allowed us to determine the preferred conformation of this amino acid and the relationship between chirality at its α‐carbon atom and screw sense of the helix that is formed. The results obtained strongly support the view that d ‐(αMe)Aun favors the formation of the left‐handed 310‐helical conformation.  相似文献   

6.
The synthesis, physical and analytical characterization, and crystal-state structural analysis by X-ray diffraction of three analogues of the Nα-acylated tripeptide amide tail of oxytocin, each containing a cyclic Cα, α- disubstituted glycine at position 2, have been performed. The peptides arc Boc-L-Pro-Ac3c-Gly-NH2, Z-L-Pro-Ac5c-Gly-NH2 and Z-L-Pro-Ac5c-Gly-NH2. While the former is folded in a type-II β-turn conformation at the -L-Pro-Ac3c- sequence, the two latter tripeptides form two consecutive (type-II, type-I′) β-turns. The Ac5c- and Ac6c-tripeptides are the first examples of such a highly folded structural combination in a position-2 analogue of the Nα-acylated -L-Pro-L-Leu-GIy-NH2 sequence.  相似文献   

7.
The two Z-l -Ala-d l -(xMe)Trp-NH2 diastereomeric dipeptides were synthesized from (Z-l -Ala)2O and H-dl -(xMe)Trp-NH2. The latter racemate, prepared by phase-transfer catalyzed alkylation of the Nα-benzylidene derivative of alanine amide followed by acidic hydrolysis of the resulting Schiff base, was characterized by X-ray diffraction. The molecular and crystal structure of Z-l -Ala-l -(αMe)Trp-NH2, separated from its diastereomer by silica-gel column chromatography, was determined by X-ray diffraction analysis. Both independent molecules in the asymmetric unit of the dipeptide adopt a type-II β-bend conformation. However, only the more regularly folded conformation of molecule B is stabilized by a 1←4 C=O…H—N intramolecular H bond. The present results indicate that: (i) the Cα-methylated (αMe)Trp residue is a strong β-bend and helix former, and (ii) the relationship between (αMe)Trp chirality and helix screw sense tends to be opposite to that of protein amino acids. The implications for the use of the (αMe)Trp residue in designing conformationally restricted analogs of bioactive peptides are briefly discussed. ©Munksgaard 1995.  相似文献   

8.
Abstract: Using different stereoselective chemical and chemoenzymatic approaches we synthesized the chiral, Cα‐methylated α‐amino acid l ‐(αMe)Nva with a short, linear side‐chain. A set of terminally protected model peptides to the pentamer level containing either (αMe)Nva or Nva in combination with Ala and/or Aib was prepared using solution methods and characterized fully. Two (αMe)Nva peptides were also synthesized using side‐chain hydrogenation of the corresponding Cα‐methyl, Cα‐allylglycine (Mag) peptides. A detailed solution and crystal‐state conformational analysis based on FT‐IR absorption, 1H NMR and X‐ray diffraction techniques allowed us to define that: (i) (αMe)Nva is an effective β‐turn and 310‐helix former; and (ii) the relationship between (αMe)Nva chirality and the screw sense of the turn/helix formed is that typical of protein amino acids, i.e. l ‐(αMe)Nva induces the preferential formation of right‐handed folded structures. In more general terms, this study reinforced previous conclusions that peptides based on α‐amino acids with a Cα‐methyl substituent and a Cα‐linear alkyl substituent are characterized by a strong tendency to fold into turn and helical structures.  相似文献   

9.
The crystal structure and solution conformation of Ac-Pro-ΔAla-NHCH3 and the solution conformation of Ac-Pro-(E)-ΔAbu-NHCH3 were investigated by X-ray diffraction method and NMR, FTIR and CD spectroscopies. Ac-Pro-ΔAla-NHCH, adopts an extended-coil conformation in the crystalline state, with all-trans peptide bonds and the ΔAla residue being in a C5 form, φ1=– 71.4(4), ψ1=– 16.8(4), φ2=– 178.4(3) and ψ2= 172.4(3)°. In inert solvents the peptide also assumes the C5 conformation, but a γ-turn on the Pro residue cannot be ruled out. In these solvents Ac-Pro-(E)- ΔAbu-NHCH3 accommodates a βII-turn, but a minor conformer with a nearly planar disposition of the CO—NH and C=C bonds (φ2~0°) is also present. Previous spectroscopic studies of the (Z)-substituted dehydropeptides Ac-Pro-(Z)- ΔAbu-NHCH, and Ac-Pro-ΔVal-NHCH3 reveal that both peptides prefer a βII-turn in solution. Comparison of conformations in the family of four Ac-Pro-ΔXaa-NHCH3 peptides let us formulate the following order of their tendency to adopt a β-turn in solution: (Z)- ΔAbu > (E)- δAbu > ΔVal; ΔAla does not. None of the folded structures formed by the four compounds is stable in strongly solvating media. © Munksgaard 1996.  相似文献   

10.
The crystal structures of four peptides incorporating l-aminocycloheptane-l-carboxylic acid (Ac7c) are described. Boc-Aib-Ac7c-NHMe and Boc-Pro-Ac7c-Ala-OMe adopt β-turn conformations stabilized by an intramolecular 4 × 1 hydrogen bond, the former folding into a type-I/III β-turn and the latter into a type-II β-turn. In the dipeptide esters, Boc-Aib-Ac7c-OMe and Boc-Pro-Ac7c-OMe, the Ac7c and Aib residues adopt helical conformations, while the Pro residue remains semi-extended in both the molecules of Boc-Pro-Ac7c-OMe found in the asymmetric unit. The cycloheptane ring of Ac7c residues adopts a twist-chair conformation in all the peptides studied. 1H-NMR studies in CDCl3 and (CD3)2SO and IR studies in CDCl3, suggest that Boc-Aib-Ac7c-NHMe and Boc-Pro-Ac7c-Ala-OMe maintain the β-turn conformations in solution.  相似文献   

11.
Abstract: A homologous series of nonapeptides and their acetylated versions were successfully prepared using solid‐phase synthetic techniques. Each nonapeptide was rich in α,α‐dialkylated amino acids [one 4‐aminopiperidine‐4‐carboxylic acid (Api) and six α‐aminoisobutyric acid (Aib) residues] and also included lysines or lysine analogs (two residues). The incorporation of the protected dipeptide 9‐fluorenylmethyloxycarbonyl (Fmoc)‐Aib‐Aib‐OH improved the purity and overall yields of these de novo designed peptides. The helix preference of each nonapeptide was investigated in six different solvent environments, and each peptide's antimicrobial activity and cytotoxicity were studied. The 310‐helical, amphipathic design of these peptides was born out most prominently in the N‐terminally acetylated peptides. Most of the peptides exhibited modest activity against Escherichia coli and no activity against Staphylococcus aureus. The nonacetylated peptides (concentrations ≤100 μm ) and the acetylated peptides (concentrations ≤200 μm ) did not exhibit any significant cytotoxicity with normal (nonactivated) murine macrophages.  相似文献   

12.
Stereochemical constraints have been introduced into the enkephalin backbone by substituting α-aminoisobutyryl (Aib) residues at positions 2 and 3, instead of Gly. 1H n.m.r. studies of Tyr-Aib-Gly-Phe-Met-NH2, Tyr-Aib-Aib-Phe-Met-NH2 and Tyr-Gly-Aib-Phe-Met-NH2 demonstrate the occurrence of folded, intramolecularly hydrogen bonded structures in organic solvents. Similar conformations are also favoured in the corresponding t-butyloxycarbonyl protected tetrapeptides, which lack the Tyr residue. A β-turn centred at positions 2 and 3 is proposed for the Aib2-Gly3analog. In the Gly2-Aib3analog, the β-turn has Aib3-Phe4as the corner residues. The Aib2-Aib3analog adopts a consecutive β-turn or 310 helical conformation. High in vivo biological activity is observed for the Aib2and Aib2-Aib3analogs, while the Aib3peptide is significantly less active.  相似文献   

13.
Abstract: Two complete series of N‐protected oligopeptide esters to the pentamer level from 1‐amino‐cyclodecane‐1‐carboxylic acid (Ac10c), an α‐amino acid conformationally constrained through a medium‐ring Cαi ? Cαi cyclization, and either the l ‐Ala or Aib residue, along with the N‐protected Ac10c monomer and homo‐dimer alkylamides, were synthesized using solution methods and fully characterized. The preferred conformation of these model peptides was assessed in deuterochloroform solution using FT‐IR absorption and 1H NMR techniques. Furthermore, the molecular structures of two derivatives (Z‐Ac10c‐OH and Fmoc‐Ac10c‐OH) and two peptides (the dipeptide ester Z‐Ac10c‐l ‐Phe‐OMe and the tripeptide ester Z‐Aib‐Ac10c‐Aib‐OtBu) were determined in the crystal state using X‐ray diffraction. The experimental results support the view that β‐bends and 310‐helices are preferentially adopted by peptides rich in Ac10c, the third largest cycloaliphatic Cα,α‐disubstituted glycine known. This investigation allowed us to complete a detailed conformational analysis of the whole 1‐amino‐cycloalkane‐1‐carboxylic acid (Acnc, with n = 3–12) series, which represents the prerequisite for our recent proposal of the ‘Acnc scan’ concept.  相似文献   

14.
Using a data set of 250 non-homologous high-resolution globular proteins, a systematic analysis of the conformations that precede and succeed (positions i and i+3) the various classical β-turn types has been carried out. The collective conformation of a specific β-turn type, including the flanking positions, termed motif, has been studied. In all the four turn types, the majority of examples are preceded and succeeded by extended conformation. Some of the other observations are: (1) In a type I β-turn, Gly at position i+ 3 has a higher favorability to occur with positive ø and does not prefer the major motif βαRR-β. (2) The left-handed alpha;-helical conformation (alpha;L) is not preferred at both the flanking positions for type I'and II β-turns, (3) The β–β motif is favourable for all the turn types and the motif β–αL very highly favourable for type I. © Munksgaard 1996.  相似文献   

15.
The conformational behaviour of host-guest peptides of the type Ac-Ala-Xxx-Ala-Ala-Xxx-Ala-Ala-Xxx-Ala-Ala-NH-PEGM (Xxx =α-aminoisobutyric acid (Aib), (S)-2-ethylalanine ((S)-Iva). (S)-2-methyiserine ((S)-α-MeSer)) has been studied by CD spectroscopy in CF3CH2OH. CH3OH. and water and by i.r. spectroscopy in CHCl3 and in the solid state. In this way the relative helix-inducing potential of the two chiral α-methyl-α-amino acids (S)-Iva and (S)-α-MeSer could be established in comparison to the strong helix-former Aib. The results show that (S)-Iva exerts a comparable helix-inducing effect as Aib, making this amino acid a valuable complementary tool for the stabilization or induction of helices. No significant helix-promoting effect was observed for (S)-α-MeSer in polar solvents; however, the i.r.-spectroscopic data in CHCl3 and in the solid state point to a helical conformation under these conditions. Possible reasons for the different behaviour of (S)-Iva and (S)-α-MeSer are briefly discussed.  相似文献   

16.
Several linear molecules containing the Cα,α-diphenylglycine residue were prepared as potential anticonvulsants. The conformational preferences of the Cα,α-diphenylglycine residue were assessed in these synthetic derivatives and dipeptides by X-ray diffraction, FTIR absorption and 1H NMR techniques, and by conformational energy computations. Five (out of six) derivatives adopt the fully extended C5 conformation in the crystal state. This intramolecularly H-bonded form is largely populated in chloroform solution in all the derivatives investigated. Conformational energy computations in vacuo support the view that the intramolecularly H-bonded C7-ring form is the most stable structure for these compounds. Only one linear derivative exhibits a (modest) anticonvulsant activity.  相似文献   

17.
The crystal and molecular structure of the fully protected dipeptide Boc-Val-(S)-α-MeSer-OMe has been determined by X-ray diffraction techniques. Crystals grown from ethyl acetate/n-pentane mixtures are tetragonal, space group 141, with cell parameters at 295 K of a= 15.307(2), c= 18.937(10)Å, V = 4437.1 Å3, M.W. = 332.40, Z = 8, Dm= 0.99 g/cm3 and Dx= 0.995 g/cm3. The structure was solved by application of direct methods and refined to an R value of 0.028 for 1773 reflections with I≥3σ(I) collected on a CAD-4 diffractometer. Both chiral centers have the (S) configuration. The dipeptide assumes in the solid state an S shape. The urethane moiety is in the cis conformation, while the amide bond is in the common trans conformation. The conformational angles φ1, ψ1 of the Val and φ2, and ψ2 of the (S)-αMeSer fall in the F region of the φ-ψ map. The isopropyl side chain of the Val residue has the (t, g?) conformation, while the Ser side chain has a g+ conformation. The hydrogen bond donor groups are all involved in intermolecular H-bond interactions. Along the quaternary axis the dipeptide molecules are linked to each other with the formation of infinite rows.  相似文献   

18.
Two sterically constrained peptides {iBoc-Aib-Aib-Aib-DkNap-Leu-Qx-Ala-Aib-Aib-F1, (Dk4Qx6[7/9]) and iBoc-Aib-Aib-Aib-DkNap-Leu-Aib-Ala-Aib-Aib-Fl, (Dk47/9)} containing α-aminoisobutyric acid (Aib) and Aib-class amino acids in conjunction with selected mono-α-alkyl amino acids were synthesized by an optimized TBTU/HOBt procedure. The use of Aib-class amino acids (e.g. DkNap and Qx), defined and discussed here, gives rise to the same overwhelmingly 310-helical backbone conformation as that provided by simpler Aib-rich peptides and homopeptides. The synthetic α,α-dialkylamino acids (DkNap, Qx) are aromatic homologues of the known alicyclic variants of Aib, the Ac5c and Ac6c amino acids. Two new organic solubilizing groups for peptides, iBoc and 2-methoxyethylamine, are introduced. The 1H nuclear magnetic resonance analyses of the Dk4s/p[7/9] and Dk4Qx6[7/9] peptides demonstrate the unambiguous 310s/b-helical hydrogen bonding pattern of these peptides, confirming the design objective of these sequence patterns containing greater than 50% Aib and Aib-class composition. © Munksgaard 1994.  相似文献   

19.
The crystal structure of Ac-Pro-ΔVal-NHCH3 was examined to determine the influence of the α,β-dehydrovaline residue on the nature of peptide conformation. The peptide crystallizes from methanol-diethyl ether solution at 4° in needle-shaped form in orthorhombic space group P212121 with a= 11.384(2) Å, b = 13.277(2) Å, c = 9.942(1) Å. V = 1502.7(4) Å3 Z = 4, Dm= 1.17 g cm?3 and Dc=1.18 g cm?3 The structure was solved by direct methods using SHELXS-86 and refined to an R value of 0.057 for 1922 observed reflections. The peptide is found to adopt a β-bend between the type I and the type III conformation with φ1=?68.3(4)°, ψ1=? 20.1(4)°, φ2=?73.5(4)°= and Ψ2=?14.1(4)°=. An intramolecular hydrogen bond between the carbonyl oxygen of ith residue and the NH of (i+ 3)th residue stabilizes the β-bend. An additional intermolecular N.,.O hydrogen bond joins molecules into infinite chains. In the literature described crystal structures of peptides having a single α,β-dehydroamino acid residue in the (i+ 2) position and forming a β-bend reveal a type II conformation.  相似文献   

20.
The synthesis and conformational analysis in solution (by FTIR absorption and 1H NMR) and in the crystal state (by X-ray diffraction) of three Hib-containing depsipeptides have been performed. In the crystal state Z-Aib-Hib-Aib-OMe is folded into a type-III β-bend, while the conformation adopted by Z-(Aib-Hib)2-Aib-OMe is a β-bend ribbon spiral, characterized by two type-III β-bends with Aib(1)-Hib(2) and Aib(3)-Hib(4) as corner residues, respectively. Both independent molecules in the asymmetric unit of t-Boc-L-Ala-Hib-L-Ala-OMe crystals are folded into a type-II β-bend. For the Aib-Hib depsipeptides the conformation adopted in the crystal state is also that largely prevailing in solution, whereas for t-Boc-L-Ala-Hib-L-Ala-OMe the β-bend conformation is significantly less populated in solution. A comparison is also made with: (i) the published crystal-state conformations of fully protected -(Aib)3?, -(Aib)5?, and -L-Ala-Aib-L-Ala- sequences and the β-bend ribbon spiral generated by (Aib-L-Pro)n oligomers, and (ii) with the herewith described solution preferred conformation of Z-L-Ala-Aib-L-Ala-OMe. The possible use of Hib as an isosteric replacement for Aib in the design of conformation ally constrained depsipeptides is briefly discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号