首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The purpose of the current study was to evaluate influences of radial tears and partial meniscectomy of lateral meniscus on the knee joint mechanics during normal walking by using computational modeling. A 3D geometry of a knee joint of a healthy patient was obtained from our previous study, whereas the data of normal walking were taken from the literature. Cartilage tissue was modeled as a fibril reinforced poroviscoelastic material, whereas meniscal tissue was modeled as a transverse isotropic elastic material. The realistic gait cycle data were implemented into the computational model and the effects of radial tears and partial meniscectemy of lateral meniscus on the knee joint mechanics were simulated. Middle, posterior, and anterior radial tears in lateral meniscus increased stresses by 300%, 430%, and 1530%, respectively, at the ends of tears compared to corresponding areas in the model with intact lateral meniscus. Meniscus tears did not alter stresses and strains at the tibial cartilage surface, whereas partial meniscectomy increased contact pressures, stresses, strains and pore pressures in the tibial cartilage by 50%, 44%, 21%, and 43%, respectively. Increased stresses and strains were observed primarily during the first ~50% of the stance phase of the gait cycle. The present study suggests that anterior radial tear causes the highest risk for the development of total meniscal rupture, whereas partial meniscectomy increases the risk for the development of OA in lateral tibial cartilage. Highest risks for meniscus and cartilage failures are suggested to occur during the loading response and mid‐stance of the gait cycle. In the future, the present modeling may be further developed to offer a clinical tool for aid in decision making of clinical interventions for patients with knee joint injuries. © 2013 Orthopaedic Research Society Published by Wiley Periodicals, Inc. J Orthop Res 31:1208–1217, 2013  相似文献   

2.
Subject‐specific three‐dimensional finite element models of the knee joint were created and used to study the effect of the frontal plane tibiofemoral angle on the stress and strain distribution in the knee cartilage during the stance phase of the gait cycle. Knee models of three subjects with different tibiofemoral angle and body weight were created based on magnetic resonance imaging of the knee. Loading and boundary conditions were determined from motion analysis and force platform data, in conjunction with the muscle‐force reduction method. During the stance phase of walking, all subjects exhibited a valgus–varus–valgus knee moment pattern with the maximum compressive load and varus knee moment occurring at approximately 25% of the stance phase of the gait cycle. Our results demonstrated that the subject with varus alignment had the largest stresses at the medial compartment of the knee compared to the subjects with normal alignment and valgus alignment, suggesting that this subject might be most susceptible to developing medial compartment osteoarthritis (OA). In addition, the magnitude of stress and strain on the lateral cartilage of the subject with valgus alignment were found to be larger compared to subjects with normal alignment and varus alignment, suggesting that this subject might be most susceptible to developing lateral compartment knee OA. © 2010 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 28:1539–1547, 2010  相似文献   

3.
Muscles induce large forces in the tibiofemoral joint during walking and thereby influence the health of tissues like articular cartilage and menisci. It is possible to walk with a wide variety of muscle coordination patterns, but the effect of varied muscle coordination on tibiofemoral contact forces remains unclear. The goal of this study was to determine the effect of varied muscle coordination on tibiofemoral contact forces. We developed a musculoskeletal model of a subject walking with an instrumented knee implant. Using an optimization framework, we calculated the tibiofemoral forces resulting from muscle coordination that reproduced the subject's walking dynamics. We performed a large set of optimizations in which we systematically varied the coordination of muscles to determine the influence on tibiofemoral force. Model‐predicted tibiofemoral forces arising with minimum muscle activation matched in vivo forces measured during early stance, but were greater than in vivo forces during late stance. Peak tibiofemoral forces during late stance could be reduced by increasing the activation of the gluteus medius, uniarticular hip flexors, and soleus, and by decreasing the activation of the gastrocnemius and rectus femoris. These results suggest that retraining of muscle coordination could substantially reduce tibiofemoral forces during late stance. © 2014 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 32:769–776, 2014.  相似文献   

4.
Articular loading is an important factor in the joint degenerative process for individuals with anterior cruciate ligament (ACL) rupture. Evaluation of loading for a population that exhibits neuromuscular compensation for injury requires an approach which can incorporate individual muscle activation strategies in its estimation of muscle forces. The purpose of this study was to evaluate knee joint contact forces for patients with ACL deficiency using an EMG‐driven modeling approach to estimate muscle forces. Thirty athletes with acute, unilateral ACL rupture underwent gait analysis after resolving range of motion, effusion, pain, and obvious gait impairments. Electromyography was recorded bilaterally from 14 lower extremity muscles and input to a musculoskeletal model for estimation of muscle forces and joint contact forces. Gait mechanics were consistent with previous reports for individuals with ACL‐deficiency. Our major finding was that joint loading was altered in the injured limb after acute ACL injury; patients walked with decreased contact force on their injured knee compared to their uninjured knee. Both medial and lateral compartment forces were reduced without a significant change in the distribution of tibiofemoral load between compartments. This is the first study to estimate medial and lateral compartment contact forces in patients with acute ACL rupture using an approach which is sensitive to individual muscle activation patterns. Further work is needed to determine whether this early decreased loading of the injured limb is involved in the development of osteoarthritis in these patients. © 2012 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 31: 458–464, 2013  相似文献   

5.
Knee osteoarthritis (OA) commonly occurs in the medial compartment of the knee and has been linked to overloading of the medial articular cartilage. Gait modification represents a non‐invasive treatment strategy for reducing medial compartment knee force. The purpose of this study was to evaluate the effectiveness of a variety of gait modifications that were expected to alter medial contact force. A single subject implanted with a force‐measuring knee replacement walked using nine modified gait patterns, four of which involved different hiking pole configurations. Medial and lateral contact force at 25, 50, and 75% of stance phase, and the average value over all of stance phase (0–100%), were determined for each gait pattern. Changes in medial and lateral contact force values relative to the subject's normal gait pattern were determined by a Kruskal–Wallis test. Apart from early stance (25% of stance), medial contact force was most effectively reduced by walking with long hiking poles and wide pole placement, which significantly reduced medial and lateral contact force during stance phase by up to 34% (at 75% of stance) and 26% (at 50% of stance), respectively. Although this study is based on data from a single subject, the results provide important insight into changes in medial and lateral contact forces through gait modification. The results of this study suggest that an optimal configuration of bilateral hiking poles may significantly reduce both medial and lateral compartment knee forces in individuals with medial knee osteoarthritis. © 2012 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 31: 434–440, 2013  相似文献   

6.
Internal and external rotation of the femur plays an important role in defining the orientation of the patellofemoral joint, influencing contact areas, pressures, and cartilage stress distributions. The purpose of this study was to determine the influence of femoral internal and external rotation on stresses in the patellofemoral cartilage. We constructed finite element models of the patellofemoral joint using magnetic resonance (MR) images from 16 volunteers (8 male and 8 female). Subjects performed an upright weight‐bearing squat with the knee at 60° of flexion inside an open‐MR scanner and in a gait laboratory. Quadriceps muscle forces were estimated for each subject using an electromyographic‐driven model and input to a finite element analysis. Hydrostatic and octahedral shear stresses within the cartilage were modeled with the tibiofemoral joint in a “neutral” position and also with the femur rotated internally or externally by 5° increments to ±15°. Cartilage stresses were more sensitive to external rotation of the femur, compared with internal rotation, with large variation across subjects. Peak patellar shear stresses increased more than 10% with 15° of external rotation in 75% of the subjects. Shear stresses were higher in the patellar cartilage compared to the femoral cartilage and patellar cartilage stresses were more sensitive to femoral rotation compared with femoral cartilage stress. Large variation in the cartilage stress response between individuals reflects the complex nature of the extensor mechanism and has clinical relevance when considering treatment strategies designed to reduce cartilage stresses by altering femoral internal and external rotation. © 2008 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res  相似文献   

7.
Patients with hip pathology present alterations in gait which have an effect on joint moments and loading. In knee osteoarthritic patients, the relation between medial knee contact forces and the knee adduction moment are currently being exploited to define gait retraining strategies to effectively reduce pain and disease progression. However, the relation between hip contact forces and joint moments has not been clearly established. Therefore, this study aims to investigate the effect of changes in hip and pelvis kinematics during gait on internal hip moments and contact forces which is calculated using muscle driven simulations. The results showed that frontal plane kinetics have the largest effect on hip contact forces. Given the high correlation between the change in hip adduction moment and contact force at initial stance (R2 = 0.87), this parameter can be used to alter kinematics and predict changes in contact force. At terminal stance the hip adduction and flexion moment can be used to predict changes in contact force (R2 = 0.76). Therefore, gait training that focuses on decreasing hip adduction moments, a wide base gait pattern, has the largest potential to reduce hip contact forces. © 2015 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 33:1094–1102, 2015.  相似文献   

8.
OBJECTIVE: Patients with medial compartment knee osteoarthritis (OA) adopt an abnormal gait pattern, and often develop frontal plane laxity at the knee. The purpose of this study was to quantify the extent of frontal plane knee joint laxity in patients with medial knee OA and genu varum and to assess the effect of joint laxity on knee joint kinetics, kinematics and muscle activity during gait. DESIGN: Twelve subjects with genu varum and medial compartment knee osteoarthritis (OA group) and 12 age-matched uninjured subjects underwent stress radiography to determine the presence and magnitude of frontal plane laxity. All subjects also went through gait analysis with surface electromyography of the medial and lateral quadriceps, hamstrings, and gastrocnemius to calculate knee joint kinematics and kinetics and co-contraction levels during gait. RESULTS: The OA group showed significantly greater knee instability (P = 0.002), medial joint laxity (P = 0.001), greater medial quadriceps-medial gastrocnemius (VMMG) co-contraction (P = 0.043), and greater knee adduction moments (P = 0.019) than the control group. Medial joint laxity contributed significantly to the variance in both VMMG and the knee adduction moment during early stance. CONCLUSION: The presence of medial laxity in patients with knee OA is likely contributing to the altered gait patterns observed in those with medial knee OA. Greater medial co-contraction and knee adduction moments bodes poorly for the long-term integrity of the articular cartilage, suggesting that medial joint laxity should be a focus of interventions aimed at slowing the progression of disease in individuals with medial compartment knee OA.  相似文献   

9.
Inverse dynamics analysis is commonly used to estimate the net loads at a joint during human motion. Most lower‐limb models of movement represent the knee as a simple hinge joint when calculating muscle forces. This approach is limited because it neglects the contributions from tibiofemoral joint contact forces and may therefore lead to errors in estimated muscle forces. The aim of this study was to quantify the contributions of tibiofemoral joint contact loads to the net knee loads calculated from inverse dynamics for multiple subjects and multiple gait patterns. Tibiofemoral joint contact loads were measured in four subjects with instrumented implants as each subject walked at their preferred speed (normal gait) and performed prescribed gait modifications designed to treat medial knee osteoarthritis. Tibiofemoral contact loads contributed substantially to the net knee extension and knee adduction moments in normal gait with mean values of 16% and 54%, respectively. These findings suggest that knee‐contact kinematics and loads should be included in lower‐limb models of movement for more accurate determination of muscle forces. The results of this study may be used to guide the development of more realistic lower‐limb models that account for the effects of tibiofemoral joint contact at the knee. © 2015 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 33:1054–1060, 2015.  相似文献   

10.
This study quantified the contributions by muscles, gravity, and inertia to the tibiofemoral compartment forces in the symptomatic (SYM) and asymptomatic (ASYM) limbs of varus mal‐aligned medial knee osteoarthritis (OA) patients, and compared the results with healthy controls (CON). Muscle forces and tibiofemoral compartment loads were calculated using gait data from 39 OA patients and 15 controls aged 49 ± 7 years. Patients exhibited lower knee flexion angle, higher hip abduction, and knee adduction angles, lower internal knee flexion torque but higher external knee adduction moment. Muscle forces were highest in CON except hamstrings, which was highest in SYM. ASYM muscle forces were lowest for biceps femoris short head and gastrocnemius but otherwise intermediate between SYM and CON. In all subjects, vasti, hamstrings, gastrocnemius, soleus, gluteus medius, gluteus maximus, and gravity were the largest contributors to medial compartment force (MCF). Inertial contributions were negligible. Highest MCF was found in SYM throughout stance. Small increases in contributions from hamstrings, gluteus maximus, gastrocnemius, and gravity at the first peak; soleus and rectus femoris at the second peak; and soleus, gluteus maximus, gluteus medius, and gravity during mid‐stance summed to produce significantly higher total MCF. Compared to CON, the ASYM limb exhibited similar peak MCF but higher mid‐stance MCF. In patients, diminished non‐knee‐spanning muscle forces did not produce correspondingly diminished MCF contributions due to the influence of mal‐alignment. Our findings emphasize consideration of muscle function, lower‐limb alignment, and mid‐stance loads in developing interventions for OA, and inclusion of the asymptomatic limb in clinical assessments. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 35:321–330, 2017.
  相似文献   

11.
To identify the biomechanical risk factors associated with symptomatic progression at 1‐year follow‐up in persons with patellofemoral joint (PFJ) osteoarthritis (OA). Patients’ self‐reported Knee Injury and Osteoarthritis Outcome Score questionnaires, magnetic resonance (MR) imaging, and three‐dimensional gait analysis were obtained in 53 subjects with PFJ OA at baseline and after 1 year. Joint OA was diagnosed on knee MR images if cartilage lesions existed. Progression was defined by worsening of patients’ self‐reported symptoms from baseline to 1 year exceeding the minimal detectable change score. Analysis of covariance was used to compare peak knee flexion moment, knee flexion moment impulse, and vertical ground reaction force loading rate between progressors and non‐progressors. Seven (13.2%) subjects exhibited progression in self‐reported symptoms at 1‐year follow‐up. When comparing to non‐progressors, significantly higher peak knee flexion moment during first half of stance (p = 0.017) and higher moment impulse during the both halves of stance were observed among progressors (p = 0.020–0.040). Persons with symptomatic PFJ OA progression with or without concurrent tibiofemoral OA exhibited abnormal joint loading mechanics when compared with individuals who did not progress. Further work is needed to determine if modification to these loading variables results in a change in the symptomatic progression in these individuals. © 2019 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 37:2593–2600, 2019  相似文献   

12.
《Acta orthopaedica》2013,84(4):650-656
Background?Impulsive forces in the knee joint have been suspected to be a co-factor in the development and progression of knee osteoarthritis. We thus evaluated the impulsive sagittal ground reaction forces (iGRF), shock waves and lower extremity joint kinematics at heel strike during walking in knee osteoarthritis (OA) patients and compared them to those in healthy subjects.

Subjects and methods?We studied 9 OA patients and 10 healthy subjects using three-dimensional gait analyses concentrated on the heel strike. Impulse GRF (iGRF) was measured together with peak accelerations (PA) at the tibial tuberosity and sacrum. Sagittal lower extremity joint angles at heel strike were extracted from the gait analyses. As OA is painful and pain might alter movement strategies, the patient group was also evaluated following pain relief by intraarticular lidocaine injections.

Results?The two groups showed similar iGRF, similar tibial and sacral PA, and similar joint angles at heel strike. Following pain relief, the OA patients struck the ground with more extended hip and knee joints and lower tibial PA compared to the painful condition. Although such changes occurred after pain relief, all parameters were within their normal ranges.

Interpretation?OA patients and healthy subjects show similar impulse-forces and joint kinematics at heel strike. Following pain relief in the patient group, changes in tibial PA and in hip and knee joint angles were observed but these were still within the normal range. Our findings make us question the hypothesis that impulse-forces generated at heel strike during walking contribute to progression of OA.  相似文献   

13.
Background Impulsive forces in the knee joint have been suspected to be a co-factor in the development and progression of knee osteoarthritis. We thus evaluated the impulsive sagittal ground reaction forces (iGRF), shock waves and lower extremity joint kinematics at heel strike during walking in knee osteoarthritis (OA) patients and compared them to those in healthy subjects.

Subjects and methods We studied 9 OA patients and 10 healthy subjects using three-dimensional gait analyses concentrated on the heel strike. Impulse GRF (iGRF) was measured together with peak accelerations (PA) at the tibial tuberosity and sacrum. Sagittal lower extremity joint angles at heel strike were extracted from the gait analyses. As OA is painful and pain might alter movement strategies, the patient group was also evaluated following pain relief by intraarticular lidocaine injections.

Results The two groups showed similar iGRF, similar tibial and sacral PA, and similar joint angles at heel strike. Following pain relief, the OA patients struck the ground with more extended hip and knee joints and lower tibial PA compared to the painful condition. Although such changes occurred after pain relief, all parameters were within their normal ranges.

Interpretation OA patients and healthy subjects show similar impulse-forces and joint kinematics at heel strike. Following pain relief in the patient group, changes in tibial PA and in hip and knee joint angles were observed but these were still within the normal range. Our findings make us question the hypothesis that impulse-forces generated at heel strike during walking contribute to progression of OA.  相似文献   

14.
Musculoskeletal modeling and optimization theory are often used to determine muscle forces in vivo. However, convincing quantitative evaluation of these predictions has been limited to date. The present study evaluated model predictions of knee muscle forces during walking using in vivo measurements of joint contact loading acquired from an instrumented implant. Joint motion, ground reaction force, and tibial contact force data were recorded simultaneously from a single subject walking at slow, normal, and fast speeds. The body was modeled as an 8‐segment, 21‐degree‐of‐freedom articulated linkage, actuated by 58 muscles. Joint moments obtained from inverse dynamics were decomposed into leg‐muscle forces by solving an optimization problem that minimized the sum of the squares of the muscle activations. The predicted knee muscle forces were input into a 3D knee implant contact model to calculate tibial contact forces. Calculated and measured tibial contact forces were in good agreement for all three walking speeds. The average RMS errors for the medial, lateral, and total contact forces over the entire gait cycle and across all trials were 140 ± 40 N, 115 ± 32 N, and 183 ± 45 N, respectively. Muscle coordination predicted by the model was also consistent with EMG measurements reported for normal walking. The combined experimental and modeling approach used in this study provides a quantitative framework for evaluating model predictions of muscle forces in human movement. © 2009 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 27:1326–1331, 2009  相似文献   

15.
The Atlas? unicompartmental knee system is a second‐generation extra‐articular unloading implant for patients with mild to moderate medial knee osteoarthritis. The technology acts to reduce a portion of the weight‐bearing load exerted on the medial knee during physical activity thereby, reducing the mechanical stress imposed on a degenerative joint. The purpose of the present study was to evaluate the effects of the Atlas? on tibiofemoral joint mechanics during walking. A computer‐aided design assembly of the Atlas? was virtually implanted on the medial aspect of a previously validated finite element tibiofemoral joint model. Data for knee joint forces and moments from an anthropometrically matched male were applied to the model to quasi‐statically simulate the stance phase of gait. Predictions of tibiofemoral joint mechanics were computed pre‐ and post‐virtual implantation of the Atlas?. Compressive force in the medial tibiofemoral compartment was reduced by a mean of 53%, resulting in the decrement of mean cartilage–cartilage and cartilage–meniscus von Mises stress by 31% and 32%, respectively. The Atlas? was not predicted to transfer net loading to the lateral compartment. The tibiofemoral joint model exhibited less internal–external rotation and anterior–posterior translation post‐Atlas?, indicating a change in the kinematic environment of the knee. From a biomechanical perspective, extra‐articular joint unloading may serve as a treatment option for patients recalcitrant to conservative care. Evaluation of mechanical changes in the tibiofemoral joint demonstrate the potential treatment mechanism of the Atlas?, in accordance with the available clinical data. © 2019 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 37:2149–2156, 2019  相似文献   

16.
Knee osteoarthritis (OA) is a cause of decline in function and the medial compartment is often affected. Intraarticular injection of hyaluronic acid (HA) is indicated as a symptom modifying treatment with at least 6 months passing between consecutive injection series. The effects of HA injection on gait variables have not been extensively examined. Therefore, our objective was to investigate the effects of HA injection on gait in people with medial knee OA. Twenty‐seven subjects were included; each was tested prior to treatment (baseline), no later than 3 weeks following the last injection (post‐HA), and again 5 months after treatment ended (follow‐up). Responder criteria were defined to identify responders and non‐responders. Subjects underwent 3D gait analysis, muscle activity was sampled, and co‐contraction indices were calculated. Responders experienced increased peak knee adduction moments post‐HA, whereas non‐responders did not. Improved self‐report scores were associated with increased knee adduction moments and increased medial co‐contraction. Pain relief may result in higher loading onto the already vulnerable medial compartment due to changes in lower limb mechanics and muscle activation patterns. Eventually this may result in a more rapid progression of joint deterioration. © 2009 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 27:1420–1425, 2009  相似文献   

17.
The aim of this study was twofold: first, to determine which muscles and ligaments resist the adduction moment at the knee during normal walking; and second, to describe and explain the contributions of muscles, ligaments, and the ground reaction force to medial and lateral compartment loading. Muscle forces, ground reaction forces, and joint motions obtained from a dynamic optimization solution for normal walking were used as input to a three-dimensional model of the lower limb. A static equilibrium problem was solved at each instant of the gait cycle to determine tibiofemoral joint loading at the knee. Medial compartment loading was determined mainly by the orientation of the ground reaction force. Because this force vector passed medial to the knee, it applied an adduction moment about the joint during stance. In contrast, all of the force transmitted by the lateral compartment was due to muscle and ligament action. The muscles that contributed most to support and forward propulsion during normal walking (quadriceps and gastrocnemius) also contributed most to knee stability in the frontal plane. The knee ligaments, particularly those of the posterior lateral corner, provided stability to the knee at certain periods of the stance phase, when activity of the important stabilizing muscles was low.  相似文献   

18.
Mechanical loading is believed to be a critical factor in the development and treatment of knee osteoarthritis. However, the contact forces to which the knee articular surfaces are subjected during daily activities cannot be measured clinically. Thus, the ability to predict internal knee contact forces accurately using external measures (i.e., external knee loads and muscle electromyographic [EMG] signals) would be clinically valuable. We quantified how well external knee load and EMG measures predict internal knee contact forces during gait. A single subject with a force‐measuring tibial prosthesis and post‐operative valgus alignment performed four gait patterns (normal, medial thrust, walking pole, and trunk sway) to induce a wide range of external and internal knee joint loads. Linear regression analyses were performed to assess how much of the variability in internal contact forces was accounted for by variability in the external measures. Though the different gait patterns successfully induced significant changes in the external and internal quantities, changes in external measures were generally weak indicators of changes in total, medial, and lateral contact force. Our results suggest that when total contact force may be changing, caution should be exercised when inferring changes in knee contact forces based on observed changes in external knee load and EMG measures. Advances in musculoskeletal modeling methods may be needed for accurate estimation of in vivo knee contact forces. © 2012 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 31: 921–929, 2013  相似文献   

19.
Anatomic and mechanical factors that affect loading in the knee joint can contribute to pathologic changes seen at the knee in degenerative joint disease and should be considered in treatment planning. The objectives of this study were to quantify the relationships between the alignment of the bones of the lower extremity, foot progression angle, and knee adduction moment, and to determine the reliability of our gait measurements. Gait analysis and complete radiographic evaluation of the lower extremity were performed on 11 healthy subjects. The gait measurements were recorded with an optoelectronic digitizer and a multicomponent force plate. The subjects who had radiographic measurements indicative of varus alignment of the lower extremity had statistically higher peaks in knee adduction moment in early stance. Conversely, those with valgus alignment of the lower extremity had statistically lower peaks in knee adduction moment in early stance. The subjects who had a large toe-out angle and low ankle inversion moment peaks in late stance had significantly lower peaks in knee adduction moment in late stance. These significant (low to moderate) correlations suggest that the limbs with more valgus alignment and those with a toe-out gait exhibited a reduced peak adduction moment at the knee. To verify the reproducibility of the data, gait analysis testing was performed on each lower limb on 2 separate days for each subject. Analysis of variance showed that there was no significant difference between test limbs or test days for each subject. Our results suggest that the alignment of the lower limb and the foot progression angle, which can be readily measured in a clinical setting, can serve as predictors of knee joint loading in healthy individuals. These findings may have important implications for both surgical and nonsurgical treatment of abnormalities of the knee joint.  相似文献   

20.
BACKGROUND: Empirical observations of subjects with an equinus gait have suggested that there is coupled motion between the ankle and knee such that, during single-limb stance, the ankle moves into equinus as the knee extends. Since the gastrocnemius-soleus muscle-tendon unit spans both joints, we hypothesized that this muscle-tendon unit may be responsible for the coupling and that lengthening of the gastrocnemius-soleus muscle alone would result in greater ankle dorsiflexion as well as greater knee extension in single-limb stance, effectively uncoupling these joints. The concept that gastrocnemius-soleus lengthening may promote knee extension is counter to the popular notion that crouch gait may result if the hamstrings are not lengthened concomitantly. METHODS: A retrospective review identified thirty-four subjects with specific kinematic characteristics of equinus gait, and their gait was compared with that of normal children. Of the thirty-four subjects, eleven (twenty-two limbs) subsequently underwent isolated midcalf lengthening of the gastrocnemius and soleus muscles with use of a recession technique. Gait analysis including joint kinematics and joint kinetics, electromyography, and physical examination were performed to test the hypothesis. RESULTS: We found that, unlike the normal subjects, the patients with an equinus gait pattern had a positive correlation (r = 0.7) between ankle and knee motion during single-limb stance. As hypothesized, ankle plantar flexion occurred while the knee moved into extension during single-limb stance. Calculations of the lengths of the gastrocnemius-soleus muscle-tendon units showed them to be short throughout the gait cycle (p < 0.0001). After gastrocnemius-soleus recession, peak ankle dorsiflexion (p < 0.001) and peak ankle power (p < 0.001) shifted to occur later in stance than they did in the preoperative gait cycle. Furthermore, the magnitude of peak power increased (p < 0.001) in late stance despite the added length of the gastrocnemius-soleus muscle-tendon unit. The electromyographic amplitude of the gastrocnemius-soleus was reduced during loading (p < 0.02), and this finding, together with the kinetic changes, suggested that muscle tension was reduced. Changes at the knee were less pronounced but included greater knee extension at foot contact (p < 0.01). No increase in the knee flexion angle or extension moment occurred in midstance after the surgery. CONCLUSIONS: Patients with an equinus gait pattern function with a shortened gastrocnemius-soleus muscle-tendon unit, and this results in coupled motion between the ankle and knee during single-limb stance. Lengthening, with use of a recession technique, shifted ankle power generation and dorsiflexion to a later time in stance with no tendency to increase midstance knee flexion. Knee extension did increase at foot contact, but excessive midstance knee flexion persisted and was likely due to concomitant contracture of the hamstrings.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号