首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Structure and innervation of the cochlea   总被引:14,自引:0,他引:14  
The role of the cochlea is to transduce complex sound waves into electrical neural activity in the auditory nerve. Hair cells of the organ of Corti are the sensory cells of hearing. The inner hair cells perform the transduction and initiate the depolarization of the spiral ganglion neurons. The outer hair cells are accessory sensory cells that enhance the sensitivity and selectivity of the cochlea. Neural feedback loops that bring efferent signals to the outer hair cells assist in sharpening and amplifying the signals. The stria vascularis generates the endocochlear potential and maintains the ionic composition of the endolymph, the fluid in which the apical surface of the hair cells is bathed. The mechanical characteristics of the basilar membrane and its related structures further enhance the frequency selectivity of the auditory transduction mechanism. The tectorial membrane is an extracellular matrix, which provides mass loading on top of the organ of Corti, facilitating deflection of the stereocilia. This review deals with the structure of the normal mature mammalian cochlea and includes recent data on the molecular organization of the main cell types within the cochlea.  相似文献   

2.
Congenital cytomegalovirus (CMV) infection is the leading cause of non-hereditary congenital sensorineural hearing loss (SNHL). The natural course and the pathophysiology of inner ear lesions during human fetal CMV infection have not yet been reported. Inner ear lesions were investigated in six CMV-infected fetuses aged 19-35 postconceptional weeks and correlated with central nervous system (CNS) lesions. All the fetuses had high viral loads in the amniotic fluid and severe visceral and CNS lesions visible by ultrasound. Diffuse lesions consisting of both cytomegalic cells containing inclusion bodies and inflammation were found within all studied structures including the inner ear, brain, other organs, and placenta, suggesting hematogenous dissemination. Cochlear infection was consistently present and predominated in the stria vascularis (5/6), whereas the supporting cells in the organ of Corti were less often involved (2/6). Vestibular infection, found in 4/6 cases, was florid; the non-sensory epithelia, including the dark cells, were extensively infected. The endolymphatic sac was infected in 1 of 3 cases. The severity of inner ear infection was correlated with the CNS lesions, confirming the neurotropism of CMV. This study documenting infection of the structures involved in endolymph secretion and potassium homeostasis in fetuses with high amniotic fluid viral loads suggests that potassium dysregulation in the endolymphatic compartment of the inner ear may lead to secondary degeneration of the sensory structures. In addition, the occurrence of SNHL depends on the intensity and duration of the viral infection and inflammation.  相似文献   

3.
Programmed cell death (apoptosis) in the inner ear of senescence-accelerated mouse was identified using specific labeling of fragmented DNA (the TUNEL method). In spite of some inter-individual differences, the apoptotic cells were predominantly found in the phylogenetically newer part of the inner ear, the cochlea and the saccules. In the saccules, sensory hair cells as well as supporting cells were positively labeled. In the cochlea, positive staining was detected in inner and outer hair cells, pillar cells, Deiters' cells, interdental cells, the stria vascularis (marginal cells, intermediate cells, basal cells), and cells in Reissner's membrane. The present results suggest that age-related cell death, which may cause hearing impairment and dysequilibrium, is due to apoptosis occurring in the inner ear.  相似文献   

4.
We have demonstrated the cellular localization of Na+/myo-inositol cotransporter (SMIT) mRNA in the rat inner ear by in situ hybridization. In the cochlea, the most intense SMIT mRNA signals were observed in fibrocytes of the spiral ligament, moderate signals were found in the spiral limbus, inner hair cells and spiral ganglion cells, while the hybridization signals were almost undetectable in the marginal cells of the stria vascularis and outer hair cells. In the vestibular system, moderate hybridization signals were found in the sensory epithelium, fibrocytes and vestibular ganglion cells. These findings suggest that SMIT plays an important role in maintenance of intracellular ionic balance and cell volume in the inner ear, especially in the fibrocytes associated with generation of the ion gradients between the endolymph and perilymph.  相似文献   

5.
This study investigates the correlation between the formation of reactive oxygen species (ROS) and auditory damage in noise-induced hearing loss. The noise exposure (4-kHz octave band, 115 dB SPL, 5 h) created permanent threshold shifts at frequencies from 2 to 20 kHz. The lipid peroxidation product, 8-isoprostane, was determined biochemically and histochemically as an indicator of ROS. Noise exposure increased 8-isoprostane levels in the cochlea in a time-dependent manner. After 5 h of exposure, 8-isoprostane levels were more than 30-fold greater than baseline, and decreased rapidly after the termination of noise. The immunoreactivity to 8-isoprostane was increased in the stria vascularis, spiral ganglion cells and the organ of Corti. In the organ of Corti, immunostaining was restricted to the second turn in a region 10-12 mm from the apex. This region sustained most of the permanent hair cell damage as revealed in surface preparations. Outer hair cells were more heavily immunostained than inner hair cells while Hensen's cells showed still less immunostain. These data are consistent with the view that ROS are involved in noise-induced damage. However, the relationship between ROS formation and tissue damage appears complex. In the organ of Corti, the pattern of noise-induced lipid peroxidation correlates well with subsequent morphological damage. The stria vascularis, however, does not sustain permanent damage despite intense lipid peroxidation. Differences in endogenous antioxidant levels and commitment to different apoptotic or survival pathways may underlie such differential responses.  相似文献   

6.
The late prenatal and early postnatal development of the organ of Corti were studied in the horseshoe bat (Rhinolophus rouxi) by using scanning and transmission electron microscopy. Arrangements and dimensions of stereocilia bundles, together with their contacts with the tectorial membrane, were found to be adult-like shortly before birth, and thus before the biological onset of hearing (3–5 days after birth). During the first postnatal week, there were baso-apical gradients in disappearing kinocilia on inner hair cells (IHC), microvillis of supporting cells, and marginal pillars. The lower basal cochlear turn was mature with respect to these regressing structures at 3 days after birth, the apical turn at 10 days after birth. At birth, cytodifferentiation was found to be completed, and the tunnel of Corti and innermost spaces of Nuel had opened. The ultrastructure of IHCs was not markedly different from that at later ages. In outer hair cells (OHC), the adult-like regular arrangement of a single layer of subsurface cisternae and pillars was seen as soon as protrusions of supporting cells had withdrawn from the lateral wall of OHCs (basal turn at birth and throughout the cochlea 2 days after birth). Numerous efferent endings contacted the somata of IHCs up to the second postnatal week. Since the medial olivocochlear system is absent in horseshoe bats, the adult-like innervation pattern of OHCs was established at the biological onset of hearing. During the first 2 postnatal weeks, the cytoskeleton of pillar and Deiters cells, and the specialized Deiters cups developed. The organ of Corti appeared adult-like at 14 days, apart from the persistence of a reduced tympanic cover layer attached to the basilar membrane. Morphological data support physiological findings that the first broadly tuned auditory responses arise from the basal turn. The distinct low to high frequency gradient in development of sensitivity during the first 2 postnatal weeks of the horseshoe bat was not, however, matched by morphological gradients, and it would appear that the development of the cytoskeleton of supporting cells contributed to the establishment of tuning in the auditory fovea. Adult-like morphology of the organ of Corti coincided with the emergence of sharply tuned responses from the auditory fovea, but there was no clear-cut correlate for the shift in tuned foveal frequency representation that occurred during the following 3 weeks. J. Comp. Neurol. 377:520–534, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

7.
TRPML3 is a member of the mucolipin branch of the transient receptor potential cation channel family. A dominant missense mutation in Trpml3 (also known as Mcoln3) causes deafness and vestibular impairment characterized by stereocilia disorganization, hair cell loss, and endocochlear potential reduction. Both marginal cells of the stria vascularis and hair cells express Trpml3 mRNA. Here we used in situ hybridization, quantitative RT-qPCR, and immunohistochemistry with several antisera raised against TRPML3 to determine the expression and subcellular distribution of TRPML3 in the inner ear as well as in other sensory organs. We also use Trpml3 knockout tissues to distinguish TRPML3-specific from nonspecific immunoreactivities. We find that TRPML3 localizes to vesicles of hair cells and strial marginal cells but not to stereociliary ankle links or pillar cells, which nonspecifically react with two antisera raised against TRPML3. Upon cochlear maturation, TRPML3 protein is redistributed to perinuclear vesicles of strial marginal cells and is augmented in inner hair cells vs. outer hair cells. Mouse somatosensory neurons, retinal neurons, and taste receptor cells do not appear to express physiologically relevant levels of TRPML3. Finally, we found that vomeronasal and olfactory sensory receptor cells do express TRPML3 mRNA and protein, which localizes to vesicles in their somas and dendrites as well as at apical dendritic knobs.  相似文献   

8.
9.
Studies of sensorineural hearing loss have long suggested that survival of spiral ganglion neurons (SGNs) depends on trophic support provided by their peripheral targets, the inner hair cells (IHCs): following ototoxic drugs or acoustic overexposure, IHC death is rapid whereas SGN degeneration is always delayed. However, recent noise-trauma studies show that SGNs can die even when hair cells survive, and transgenic mouse models show that supporting cell dysfunction can cause SGN degeneration in the absence of IHC pathology. To reexamine this issue, we studied a model of IHC loss that does not involve noise or ototoxic drugs. Mice lacking the gene for the high-affinity thiamine transporter (Slc19a2) have normal cochlear structure and function when fed a regular (thiamine-rich) diet. However, dietary thiamine restriction causes widespread, rapid (within 10 d) loss of IHCs. Using this model, we show that SGNs can survive for months after IHC loss, indicating that (1) IHCs are not necessary for neuronal survival, (2) neuronal loss in the other hearing loss models is likely due to effects of the trauma on the sensory neurons or other inner ear cells, and (3) that other cells, most likely supporting cells of the organ of Corti, are the main source of SGN survival factors. These results overturn a long-standing dogma in the study of sensorineural hearing loss and highlight the importance of cochlear supporting cells in neuronal survival in the adult inner ear.  相似文献   

10.
The 2-deoxy-d-glucose (2-DG) autoradiographic technique was adapted for application to the inner ear. The uptake of [14C]2-DG during silence was compared with that observed during exposure to wide band noise (WBN) or pure tones at an intensity level of 85 dB SPL. In silence, the highest levels of 2-DG uptake were observed in the spiral ligament, spiral prominence and stria vascularis, with approximately equal levels of uptake in each structure. The high levels of 2-DG uptake observed in the ligament and prominence are suprising, and suggest a more active role for these structures in cochlear function than has previously been suspected. Levels of uptake in the organ of Corti, spiral ganglion and VIIIth nerve were much lower, although well above background. During exposure to WBN, 2-DG uptake increased markedly in the VIIIth nerve, and spiral ganglion throughout the cochlea, and in the organ of Corti in the lower basal turn. 2-DG uptake did not change significantly in the spiral ligament or stria vascularis. During pure tone exposure, increased 2-DG uptake was noted in localized regions of the VIIIth nerve and spiral ganglion.  相似文献   

11.
Mutations in the human KCNQ4 gene were recently found by Kubisch et al. [Cell 96 (1999) 437-446] to cause a non-syndromic, autosomal dominant, progressive hearing loss, DFNA2. The mouse Kcnq4 orthologue was previously localized to the outer hair cells (OHCs) of the inner ear, suggesting the pathophysiological effects were due to dysfunctional OHCs. Yet, OHC dysfunction does not provide a plausible explanation for the progressive nature of the frequency specific hearing loss. We have re-examined and extended the expression analyses of KCNQ4 in the murine inner ear using RT-PCR and whole mount in situ hybridization. Our results confirmed that the rat KCNQ4 orthologue is expressed in both inner and outer hair cells. Reciprocal longitudinal gradients were found in inner hair cells (IHCs) and OHCs. The strongest expression of KCNQ4 in IHCc was in the base of the cochlea and in the apex for OHCs. Similar to the IHCs, a basal to apical gradient was present in the spiral sensory neurons. IHCs mediate hearing via their afferent sensory neurons, whereas OHCs function as active cochlear amplifiers. The complete absence of OHCs leads only to severe sensitivity reduction, but not complete hearing loss. Our data suggest that the primary defect leading to initial high frequency loss and subsequent progressive hearing loss for all frequencies may be due to spiral ganglion and/or IHC dysfunction, rather than an OHC aberration.  相似文献   

12.
MYH9 encoding a nonmuscle myosin heavy chain has been linked to nonsyndromic and syndromic forms of autosomal dominant hereditary hearing loss, suggesting a critical biological role of this motor protein in the auditory organ. While Myh9 expression has been described in the adult mouse, critical parameters pertaining to its developmental expression remain to be characterized. The current study describes cloning of the mouse Myh9 cDNA and the temporal onset and spatial distribution of Myh9 expression in the inner ear of the developing fetus, the neonate, and the adult. The cloned Myh9 cDNA contained two single-base-pair differences from the published genomic sequence: T990C (G330G) and T5198A (L1733Q). Immunoblotting of embryonic (E15.5) and adult tissues from several organs, including the cochlea, identified a single 250-kDa anti-Myh9-immunoreactive band, supporting an absence of Myh9 splice variants in the fetus and the adult. In situ expression analysis identified Myh9 distributed within the epithelial layer of the otic vesicle at E10.5. Myh9 expression was found to persist within the epithelia surrounding the cochlear duct at E13.5 and E16.5. The sensory cells of the developing cochlea were positive for Myh9 expression at E16.5. Within the neonate and the adult cochlea, Myh9 expression was observed within the sensory hair cells and the supporting hair cells of the organ of Corti, the spiral ligament, and the spiral limbus, but not in the stria vascularis. Identification of Myh9 in the developing and mature inner ear suggests a role for this protein in the development and maintenance of auditory function.  相似文献   

13.
The uncoupling protein 4 (UCP4) belongs to the mitochondrial anion transporter family. Protein tissue distribution and functions are still a matter of debate. Using an antibody we have previously shown that UCP4 appears in neurons and to a lesser extent in astrocytes of murine neuronal tissue as early as days 12-14 of embryonic development (Smorodchenko et al., 2009). Here we demonstrated for the first time that neurosensory cells such as hair cells of the inner ear and mechanosensitive Merkel cells in skin also express a significant amount of UCP4. We tested the hypothesis about whether UCP4 contributes to the regulation of oxidative stress using the model of oxygen deprivation. For this we compared the protein expression level in freshly isolated explants of organ of Corti, modiolus and stria vascularis from neonatal rats with explants cultured under hypoxia. Western blot analysis revealed that the UCP4 level was not increased under hypoxic conditions, when compared to the mitochondrial outer membrane protein VDAC or to the anti-oxidative enzyme SOD2. We moreover demonstrated that UCP4 expression is differently regulated during postnatal stages and is region-specific. We hypothesized that UCP4 may play an important role in functional maturation of the rat inner ear.  相似文献   

14.
Inhibition of inner ear ornithine decarboxylase by neomycin in-vitro   总被引:2,自引:0,他引:2  
We quantitated the activity of ornithine decarboxylase (ODC) in homogenates and subcellular fractions of inner ear tissues from the rat and guinea pig and demonstrate inhibition of cochlear ODC by the aminoglycoside neomycin. Subcellular fractionation showed the enzyme associated with the post-mitochondrial supernatant fraction in each of the tissues: Specific activities of ODC, defined as alpha-difluoromethylornithine (DFMO)-sensitive decarboxylation of ornithine, in the supernatant fractions of combined inner ear tissues were: guinea pig = 44 +/- 4 pmoles CO2 produced/hour/mg protein, and rat = 133 +/- 30. In the guinea pig, supernatant fractions of the lateral wall tissues (stria vascularis and spiral ligament) had specific activities of 62 +/- 25, those of the organ of Corti (plus VIIIth nerve) 64 +/- 41. The ototoxic aminoglycoside neomycin produced a dose-dependent inhibition of ODC with half-maximal inhibition observed at 50 microM drug and almost complete inhibition at 100 microM. This is the first report of the presence of ODC in the inner ear and its inhibition by neomycin. Since both the ODC-inhibitors, DFMO and neomycin, can cause hearing loss in patients and experimental animals it is suggested that inhibition of ODC may be an important factor in the ototoxicity of these drugs.  相似文献   

15.
Developmental expression of two-pore domain potassium (2P K) channels, TASK-1 and TREK-1, was investigated in the rat cochlea at onset of hearing and after maturity using RT-PCR and immunocytochemistry. TASK-1 and TREK-1 mRNAs were detected by RT-PCR at postnatal day (P) 9-12. TASK-1 like immunoreactivity (LIR) in the P13 cochlea was observed in Deiters', pillar, Claudius' and outer sulcus cells, spiral limbus fibrocytes, and neuroglia. At P13, TREK-1-LIR was more wide-spread, and included sensory and supporting cells of the organ of Corti, spiral ganglion, stria vascularis, Reissner's membrane, inner and outer sulcus cells, connective and support tissues surrounding modiolus. By P105 the pattern of TASK-1- and TREK-1-LIR became limited to a subset of the above structures, suggesting developmental regulation. During postnatal development, TASK-1 may be important in the onset (around P11) and maturation (by P22) of endocochlear potential and hearing. The distribution of TASK-1 and TREK-1 suggest a role in K cycling and homeostasis. As TASK-1 and TREK-1 are inhibited by local anesthetics at doses used to treat tinnitus, 2P K channels may also be important in cochlear dysfunction.  相似文献   

16.
To elucidate whether ischemia-reperfusion can cause delayed cell death in the cochlea, the effects of transient cochlear ischemia on hearing and on neuronal structures in the cochlea were studied in Mongolian gerbils. Ischemia was induced by bilaterally occluding the vertebral arteries for 5 minutes in gerbils, which lack posterior cerebral communicating arteries. In gerbils, the labyrinthine arteries are fed solely by the vertebral arteries. Occlusion of the vertebral arteries caused a remarkable increase in the threshold of compound action potentials (CAPs), which recovered over the following day. However, 7 days after the onset of reperfusion, the threshold began to increase again. Morphologic changes in the hair cell stereocilia were revealed by electron microscopy. The number of nuclear collapses was counted in cells stained for DNA and F-actin to evaluate the degree of cell death in the organ of Corti. Changes in spiral ganglion cell (SGC) neuron number were detected, whether or not progressive neuronal death occurred in the SGC. These studies showed that sporadic fusion of hair cells and the disappearance of hair cell stereocilia did not begin until 4 days after ischemia. On subsequent days, the loss of hair cells, especially inner hair cells (IHCs), and the degeneration of SGC neurons became apparent. Ten days after ischemia, the mean percentage cell loss of IHCs was 6.4% in the basal turn, 6.4% in the second turn, and 0.8% in the apical turn, respectively, and the number of SGC neurons had decreased to 89% of preischemic status. These results indicate that transient ischemia causes delayed hearing loss and cell death in the cochlea by day 7 after ischemia.  相似文献   

17.
Cochlear endolymph contains 150 mm K+ and has a highly positive potential of approximately +80 mV. The specialized ionic composition and high potential in endolymph are essential for hearing and maintained by circulation of K+ from perilymph to endolymph through the cochlear lateral wall. Various types of K+ channel such as Kir4.1 and KCNQ1/KCNE1 are expressed in stria vascularis of the lateral wall and play essential roles in K+ circulation. In this study, we examined a distribution of another K+ channel, Kir5.1, and found it specifically expressed in the spiral ligament of the cochlear lateral wall. Specific immunoreactivity for Kir5.1 was detected in type II, IV and V fibrocytes of the ligament and spiral limbus, all of which are directly involved in K+ circulation. Kir5.1 was not found in either type I or III fibrocytes. Although Kir5.1 assembles with Kir4.1 to form a functional Kir channel in renal epithelia and retinal Müller cells, double-immunolabelling revealed that they were expressed in distinct regions in the cochlea lateral wall, i.e. Kir4.1 only in stria vascularis vs. Kir5.1 in spiral ligament. During development, the expression of Kir5.1 subunits started significantly later than Kir4.1 and was correlated with the 'rapid' phase of the elevation of endocochlear potential (EP). Kir5.1 and Kir4.1 channel-subunits may therefore play distinct functional roles in K+ circulation in the cochlear lateral wall.  相似文献   

18.
Presbycusis, or age-related hearing loss (ARHL), occurs in most mammals with variations in the age of onset, rate of decline, and magnitude of degeneration in the central nervous system and inner ear. The affected cochlear structures include the stria vascularis and its vasculature, spiral ligament, sensory hair cells and auditory neurons. Dysfunction of the stria vascularis results in a reduced endocochlear potential. Without this potential, the cochlear amplification provided by the electro-motility of the outer hair cells is insufficient, and a high-frequency hearing-loss results. Degeneration of the sensory cells, especially the outer hair cells also leads to hearing loss due to lack of amplification. Neuronal degeneration, another hallmark of ARHL, most likely underlies difficulties with speech discrimination, especially in noisy environments. Noise exposure is a major cause of ARHL. It is well-known to cause sensory cell degeneration, especially the outer hair cells at the high frequency end of the cochlea. Even loud, but not uncomfortable, sound levels can lead to synaptopathy and ultimately neuronal degeneration. Even in the absence of a noisy environment, aged cells degenerate. This pathology most likely results from damage to mitochondria and contributes to degenerative changes in the stria vascularis, hair cells, and neurons. The genetic underpinnings of ARHL are still unknown and most likely involve various combinations of genes. At present, the only effective strategy for reducing ARHL is prevention of noise exposure. If future strategies can improve mitochondrial activity and reduce oxidative damage in old age, these should also bring relief.  相似文献   

19.
The predominant conceptual framework for understanding human age-related hearing loss (ARHL, or presbycusis) holds that three different cochlear elements (organ of Corti, afferent neurons, and stria vascularis) can degenerate independently, and exert independent influences on hearing. Within this framework, temporal bones from subjects with ARHL may be classified as exemplifying sensory (referring to organ of Corti), "primary" neural (loss of afferent neurons without loss of their hair cell targets), strial, or mixed ARHL. While there is general agreement as to the types of cochlear cells most affected by aging, there is less agreement about how to classify ARHL, and whether contributions of particular structures to hearing loss can be isolated. The cochlear apex of humans and animals is particularly prone to apparent primary loss of neurons that may represent an aspect of neural ARHL. We recently reported that in 129S6/SvEv mice apical neuronal loss is often accompanied by abnormalities of spiral limbus, pillar cells, and Reissner's membrane (Ohlemiller and Gagnon [2004] J Comp Neurol 469:377-390). We proposed that the initial pathology occurs within limbus, leading to disruption of perilymphatic ion homeostasis, and eventual loss of neurons as one consequence. We have now examined this issue quantitatively in young and old mice of four different strains (129S6/SvEv, CBA/J, C57BL/6, and BALB/c). Abnormalities of apical spiral limbus were found to correlate only weakly with neuronal loss. Strong correlations were found between neuronal loss and abnormalities of both pillar cells and Reissner's membrane, however. Apical neuronal loss and apical-to-basal progression of pathology of limbus, pillar cells, and Reissner's membrane run counter to most reported age-related cochlear trends. Our findings suggest that these changes share a common triggering influence.  相似文献   

20.
Wolfram syndrome or DIDMOAD (diabetes insipidus, diabetes mellitus, optic atrophy and deafness) is a neurodegenerative disorder characterized by diabetes mellitus and optic atrophy as well as diabetes insipidus and deafness in many cases. We report the post-mortem neuropathologic findings of a patient with Wolfram syndrome and correlate them with his clinical presentation. In the hypothalamus, neurons in the paraventricular and supraoptic nuclei were markedly decreased and minimal neurohypophyseal tissue remained in the pituitary. The pontine base and inferior olivary nucleus showed gross shrinkage and neuron loss, while the cerebellum was relatively unaffected. The visual system had moderate to marked loss of retinal ganglion neurons, commensurate loss of myelinated axons in the optic nerve, chiasm and tract, and neuron loss in the lateral geniculate nucleus but preservation of the primary visual cortex. The patient’s inner ear showed loss of the organ of Corti in the basal turn of the cochleae and mild focal atrophy of the stria vascularis. These findings correlated well with the patient’s high-frequency hearing loss. The pathologic findings correlated closely with the patient’s clinical symptoms and further support the concept of Wolfram syndrome as a neurodegenerative disorder. Our findings extend prior neuropathologic reports of Wolfram syndrome by providing contributions to our understanding of eye, inner ear and olivopontine pathology in this disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号