首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Presynaptic CB1 cannabinoid receptors are frequently targets of endogenous cannabinoids (endocannabinoids) released from postsynaptic neurons. It is known that the glutamatergic afferent input to a neuron can trigger endocannabinoid production and that the released endocannabinoid can suppress the glutamatergic input. We tested the hypothesis that activation of the glutamatergic input to a neuron leads to an endocannabinoid-mediated suppression of the GABAergic afferent input to the same neuron. Spontaneous postsynaptic currents (sPSCs) were recorded with patch-clamp techniques in Purkinje cells in mouse cerebellar brain slices. Activation of the climbing fiber-mediated glutamatergic input to Purkinje cells led to a suppression of the sPSCs by 34±3%. This suppression was mostly due to suppression of GABAergic spontaneous inhibitory postsynaptic current (sIPSCs), because 93% of the sPSCs recorded in Purkinje cells were GABAergic sIPSCs. Blockade of ionotropic, but not metabotropic glutamate receptors, prevented the suppression. The climbing fiber activation led to an increase in calcium concentration in the Purkinje cells, and this increase was necessary for the suppression of sPSCs, because the suppression did not occur when the calcium increase was prevented by BAPTA. No sPSC suppression was observed in the presence of the CB1 antagonist rimonabant or the diacylglycerol lipase inhibitor orlistat. In a further series of experiments GABAergic sIPSCs were recorded: these sIPSCs were also suppressed after climbing fiber activation, and the suppression was sensitive to the CB1 antagonist SLV319. Finally, the GABAergic synaptic transmission between molecular layer interneurons and Purkinje cells was directly studied on simultaneously patch-clamped neuron pairs. Climbing fiber activation led to suppression of the interneuron → Purkinje cell synaptic transmission. The results point to a novel form of endocannabinoid-mediated heterosynaptic plasticity. The endocannabinoid production in a neuron is triggered by its glutamatergic synaptic input and is dependent on an increase in intracellular calcium concentration. The produced endocannabinoid, in turn, suppresses the GABAergic synaptic input to the neuron by activating CB1 cannabinoid receptors.  相似文献   

2.
The effect of benzodiazepines (BZs) on GABA(A)-ergic synaptic responses depends on the control receptor occupancy: the BZ-induced enhancement of receptor affinity can lead to greater peak amplitudes of quantal responses only when, under normal conditions, receptors are not fully saturated at peak. Based on this fact, receptor occupancy at the peak of spontaneous miniature inhibitory postsynaptic currents (mIPSCs) has been assessed in various mammalian neuronal preparations. To use the same principle with compound (or multiquantal), action potential-evoked IPSCs, complications introduced by quantal asynchrony in conjunction with the BZ-induced increase in the decay time of the quantal responses have to be overcome. We used a simple analytic convolution model to calculate expected changes in the rise time and amplitude of postsynaptic currents when the decay time constant, but not the peak amplitude, of the underlying quantal responses is increased, this being the expected BZ effect at saturated synapses. Predictions obtained were compared with the effect of the BZ flunitrazepam on IPSCs recorded in paired pre- and postsynaptic whole cell voltage-clamp experiments on striatal neurons in cell culture. In 22 pairs, flunitrazepam (500 nM) reliably prolonged the decay of IPSCs (49 +/- 19%, mean +/- SE) and in 18 of 22 cases produced an enhancement in their peak amplitude that varied markedly between 3 and 77% of control (26.0 +/- 5.3%). The corresponding change in rise time, however (+0.38 +/- 0.11 ms, range -0.8 to +1.3 ms) was far smaller than calculated for the observed changes in peak amplitude assuming fixed quantal size. Because therefore an increase in quantal size is required to explain our findings, postsynaptic GABA(A) receptors were most likely not saturated during impulse-evoked transmission at these unitary connections. The peak amplitudes of miniature IPSCs in these neurons were also increased by flunitrazepam (500 nM, +26.8 +/- 6.6%), and their decay time constant was increased by 26.3 +/- 7.3%. Using these values in our model led to a slight overestimate of the change in compound IPSC amplitude (+28 to +30%).  相似文献   

3.
Stimulation of nociceptive primary afferents elicits pain by promoting glutamatergic transmission in the spinal cord. Little is known about how increased nociceptive input controls GABAergic tone in the spinal dorsal horn. In this study, we determined how increased nociceptive inflow affects GABAergic spontaneous inhibitory postsynaptic currents (sIPSCs) of lamina II neurons by using whole cell recordings in rat spinal cord slices. Bath application of capsaicin for 3 min induced a long-lasting inhibition of sIPSCs in 50% of the neurons tested. In the other half of the neurons, capsaicin either increased the frequency of sIPSCs (34.6%) or had no effect on sIPSCs (15.4%). The GABA(A) current elicited by puff application of GABA was not altered by capsaicin. Capsaicin did not inhibit sIPSCs in rats treated with intrathecal pertussis toxin. Also, capsaicin failed to inhibit sIPSCs in the presence of ionotropic glutamate receptor antagonists or in the presence of both LY341495 and CPPG (group II and group III metabotropic glutamate receptor antagonists, respectively). However, when LY341495 or CPPG was used alone, capsaicin still decreased the frequency of sIPSCs in some neurons. Additionally, bradykinin significantly inhibited sIPSCs in a population of lamina II neurons and this inhibitory effect was also abolished by LY341495 and CPPG. Our study provides novel information that stimulation of nociceptive primary afferents rapidly suppresses GABAergic input to many dorsal horn neurons through endogenous glutamate and activation of presynaptic group II and group III metabotropic glutamate receptors. These findings extend our understanding of the microcircuitry of the spinal dorsal horn involved in nociception.  相似文献   

4.
Basal ganglia are interconnected subcortical nuclei, connected to the thalamus and all cortical areas involved in sensory motor control, limbic functions and cognition. The striatal output neurones (SONs), the major striatal population, are believed to act as detectors and integrators of distributed patterns of cerebral cortex inputs. Despite the key role of SONs in cortico-striatal information processing, little is known about their local interactions. Here, we report the existence and characterization of electrical and GABAergic transmission between SONs in rat brain slices. Tracer coupling (biocytin) incidence was high during the first two postnatal weeks and then decreased (postnatal days (P) 5–25, 60%; P25–30, 29%; n = 61). Electrical coupling was observed between 27% of SON pairs (coupling coefficient: 3.1 ± 0.3%, n = 89 at P15) and as shown by single-cell RT-PCR, several connexin (Cx) mRNAs were found to be expressed (Cx31.1, Cx32, Cx36 and Cx47). GABAergic synaptic transmission (abolished by bicuculline, a GABAA receptor antagonist) observed in 19% of SON pairs ( n = 62) was reliable (mean failure rate of 6 ± 3%), precise (variation coefficient of latency, 0.06), strong (IPSC amplitudes of 38 ± 12 pA) and unidirectional. Interestingly, electrical and chemical transmission were mutually exclusive. These results suggest that preferential networks of electrically and chemically connected SONs, might be involved in the channelling of cortico-basal ganglia information processing.  相似文献   

5.
The globus pallidus plays a critical role in the regulation of movement, and abnormal activity of its neurons is associated with some basal ganglia motor diseases. A relatively high level of zinc has been reported in the globus pallidus, which is increased significantly after 6-OHDA treatments. To elucidate the action of zinc on GABAergic neurotransmission in the globus pallidus, whole-cell patch-clamp recordings were made from rat globus pallidus neurons. Superfusion of zinc significantly reduced both spontaneous and miniature inhibitory postsynaptic currents. The inhibition was selective to the amplitude with no change in the frequency, decay time and rise time. Furthermore, the reduction of spontaneous inhibitory postsynaptic currents (34.1 ± 4.0%) was stronger than that of miniature inhibitory postsynaptic currents (19.7 ± 3.2%). These results suggest that spontaneous inhibitory postsynaptic currents generated mainly by axonal collaterals and miniature inhibitory postsynaptic currents generated mainly by striatopallidal inputs may be mediated by different GABAA receptor combinations.  相似文献   

6.
Xiao C  Ye JH 《Neuroscience》2008,153(1):240-248
The mesolimbic dopaminergic system, originating from the ventral tegmental area (VTA) is implicated in the rewarding properties of ethanol. VTA dopaminergic neurons are under the tonic control of GABAergic innervations. Application of GABAergic agents changes ethanol consumption. However, it is unclear how acute ethanol modulates GABAergic inputs to dopaminergic neurons in the VTA. This report describes ethanol at clinically relevant concentrations (10-40 mM) dually modulates inhibitory postsynaptic currents (IPSCs). IPSCs were mediated by GABA(A) receptors and were recorded from VTA dopaminergic neurons in acute midbrain slices of rats. Acute application of ethanol reduced the amplitude and increased the paired pulse ratio of evoked IPSCs. Ethanol lowered the frequency but not the amplitude of spontaneous IPSCs. Nevertheless, ethanol had no effect on miniature IPSCs recorded in the presence of tetrodotoxin. These data indicate that ethanol inhibits GABAergic synaptic transmission to dopaminergic neurons by presynaptic mechanisms, and that ethanol inhibition depends on the firing of GABAergic neurons. Application of CGP 52432, a GABA(B) receptor antagonist, did not change ethanol inhibition of IPSCs. Tyr-d-Ala-Gly-N-Me-Phe-Gly-ol enkephalin (DAMGO), a mu-opioid receptor agonist, conversely, silenced VTA GABAergic neurons and inhibited IPSCs. Of note, in the presence of a saturating concentration of DAMGO (3 microM), ethanol potentiated the remaining IPSCs. Thus, ethanol dually modulates GABAergic transmission to dopaminergic neurons in the VTA. Ethanol modulation depends on the activity of VTA GABAergic neurons, which were inhibited by the activation of mu-opioid receptors. This dual modulation of GABAergic transmission by ethanol may be an important mechanism underlying alcohol addiction.  相似文献   

7.
There is a large body of evidence about the short- and long-term changes in GABAergic transmission in the hippocampus produced by the action of different endogenous neuromodulators and in particular neurotransmitters. Both intrinsic hippocampal cells and afferent fibres coming into the hippocampus from various parts of the CNS release substances that are capable of changing inhibitory transmission. This review surveys current understanding of the action of glutamate on the inhibitory transmission mediated in the hippocampus via GABA(A) receptors. Here we pay special attention to the molecular and cellular mechanisms leading to spatio-temporal changes of the glutamate concentration in the extracellular space and to the localization and identity of glutamate receptors involved in this direct modulation of inhibition.  相似文献   

8.
9.
J Guo  V A Chiappinelli 《Neuroscience》2001,104(4):1057-1066
The effects of muscarinic agonists on GABAergic synaptic transmission were examined using whole-cell patch-clamp recording in chick brain slices containing the lateral spiriform nucleus. Bath application of muscarine (10 microM) both increased the frequency of spontaneous GABAergic postsynaptic currents and reduced the amplitude of evoked GABAergic polysynaptic postsynaptic currents elicited by focal afferent fiber electrical stimulation. Both of these muscarinic actions were reversible and dose-dependent. Two M(1) antagonists, telenzepine and pirenzipine, and to a lesser extent the M(2) antagonist methoctramine, protected against muscarine's inhibition of the evoked polysynaptic currents. Other M(2) antagonists (tripitramine and gallamine) as well as the M(3) antagonist 4-DAMP mustard (4-diphenylacetoxy-N-(2-chloroethyl)-piperidine hydrochloride) and an M(4) antagonist (tropicamide) provided little or no protection against muscarine in this assay. In contrast, 4-diphenylacetoxy-N-(2-chloroethyl)-piperidine hydrochloride, tropicamide and telenzepine, but not pirenzepine, methoctramine, tripitramine and gallamine, blocked muscarine's enhancement of spontaneous GABAergic currents. McN-A-343 [(4-hydroxy-2-butynyl)-1-trimethylammonium-m-chlorocarbanilate chloride] and CDD-0097 (5-propargyloxycarbonyl-1,4,5,6-tetrahydropyrimidine hydrochloride), two M(1) agonists, mimicked muscarine's inhibition of the evoked polysynaptic GABAergic currents but did not mimic muscarine's enhancement of spontaneous GABAergic currents. Both actions of muscarine persisted when slices were pretreated with pertussis toxin or N-ethylmaleimide, which inactivate G-proteins coupled to M(2) and M(4) receptors while leaving G-proteins coupled to M(1), M(3) and M(5) receptors intact. Muscarine had no significant effect on the amplitude of the direct postsynaptic current elicited by exogenous GABA in the presence of tetrodotoxin.The results demonstrate that distinct muscarinic receptors oppositely modulate GABAergic transmission in the lateral spiriform nucleus. The receptor mediating the inhibition of evoked GABAergic polysynaptic currents is pharmacologically similar to an M(1) receptor, while the enhancement of spontaneous GABAergic currents appears to be mediated by an M(3) receptor.  相似文献   

10.
Zinc enhances GABAergic transmission in rat neocortical neurons   总被引:2,自引:0,他引:2  
  相似文献   

11.
Maturation of some brain stem and spinal inhibitory systems is characterized by a shift from GABAergic to glycinergic transmission. Little is known about how this transition is expressed in terms of individual axonal inputs and synaptic sites. We have explored this issue in the rat medial nucleus of the trapezoid body (MNTB). Synaptic responses at postnatal days 5-7 (P5-P7) were small, slow, and primarily mediated by GABA(A) receptors. By P8-P12, an additional, faster glycinergic component emerged. At these ages, GABA(A), glycine, or both types of receptors mediated transmission, even at single synaptic sites. Thereafter, glycinergic development greatly accelerated. By P25, evoked inhibitory postsynaptic currents (IPSCs) were 10 times briefer and 100 times larger than those measured in the youngest group, suggesting a proliferation of synaptic inputs activating fast-kinetic receptors. Glycinergic miniature IPSCs (mIPSCs) increased markedly in size and decay rate with age. GABAergic mIPSCs also accelerated, but declined slightly in amplitude. Overall, the efficacy of GABAergic inputs showed little maturation between P5 and P20. Although gramicidin perforated-patch recordings revealed that GABA or glycine depolarized P5-P7 cells but hyperpolarized P14-P15 cells, the young depolarizing inputs were not suprathreshold. In addition, vesicle-release properties of inhibitory axons also matured: GABAergic responses in immature rats were highly asynchronous, while in older rats, precise, phasic glycinergic IPSCs could transmit even with 500-Hz stimuli. Thus development of inhibition is characterized by coordinated modifications to transmitter systems, vesicle release kinetics, Cl- gradients, receptor properties, and numbers of synaptic inputs. The apparent switch in GABA/glycine transmission was predominantly due to enhanced glycinergic function.  相似文献   

12.
The effect of 5-hydroxytryptamine (serotonin) on neuromuscular transmission in frog skeletal muscle was studied using voltage clamp technique. Serotonin produced no effect on end-plate currents during low frequency electrical stimulation of the motor nerve, but increased the amplitude depression of multiquantal currents during high-frequency stimulation similar to motor commands fired by motoneurons. It was shown that the inhibitory effect of serotonin on neuromuscular transmission is determined by slow potential-dependent block of open ionic channels in the postsynaptic membrane accumulating during rhythmic activation of the synapse.  相似文献   

13.
Li T  Qadri F  Moser A 《Neuroscience letters》2004,371(2-3):117-121
Electrical high frequency deep brain stimulation (DBS) of the globus pallidus internus (GPi) or the subthalamic nucleus (STN) has dramatic beneficial motor effects in advanced Parkinson's disease (PD). However, the mechanisms underlying these clinical results remain unclear. It is proposed that the gamma-aminobutyric acid (GABA) system is involved in the effectiveness of DBS. To prove this hypothesis, rat striatal slices were stimulated electrically (130 Hz) in vitro; GABA and glutamate (GLU) outflow from striatal slices of normal or kainic acid-lesioned rats were measured after o-phthaldialdehyde sulphite derivatization using HPLC with electrochemical detection. Our results could demonstrate that high frequency stimulation (HFS) did not modulate basal GABA outflow in the perfusate. In the presence of submaximal concentrations of the voltage-gated sodium channel opener veratridine, HFS significantly enhanced GABA outflow. When the GABA transporter inhibitor, nipecotic acid, was added to the incubation medium, the HFS effects decreased to nearly control values. Destruction of striatal GABAergic neurons by kainic acid completely reversed the effects of HFS on GABA outflow. In the present study no effect of HFS on glutamate outflow was observed under any condition. These results suggest that HFS has a specific effect on GABAergic neuronal terminals resulting in an enhancement of extracellular GABA in the caudate nucleus. This effect is probably due to an inhibitory effect of HFS on the GABA uptake system rather than to stimulation of vesicular GABA release from GABAergic neurons, which are both associated with the presynaptic GABAergic physiology.  相似文献   

14.
Anabolic androgenic steroids are synthetic derivatives of testosterone designed for therapeutic purposes, but now taken predominantly as drugs of abuse. The most common behavioral effects associated with anabolic androgenic steroid use are changes in anxiety, aggression and reproductive behaviors, including the onset of puberty and sexual receptivity. GABAergic circuits in the forebrain underlie these behaviors and are regulated by gonadal steroids. Work from our laboratories has shown that the expression and function of GABA(A) receptors in the rat and mouse forebrain varies between the sexes and across the estrous cycle. We have also shown that there are significant changes in GABA(A) receptor expression that occur with the progression through puberty to adulthood. Because GABAergic systems are both steroid-sensitive and critical for the expression of behaviors altered with anabolic androgenic steroid use, forebrain GABA(A) receptors are an attractive candidate to assess how molecular actions of anabolic androgenic steroids may be translated to known behavioral outcomes. Our studies demonstrate that anabolic androgenic steroids elicit both acute modulation of GABA(A) receptor-mediated currents, as well as chronic regulation of GABA(A) receptor expression and forebrain GABAergic transmission. Because anabolic androgenic steroid use has now become prevalent not only among adolescent boys, but in an increasing number of adolescent girls, we have also been particularly interested in determining age- and sex-specific effects of anabolic androgenic steroids. Our data show that the effects of chronic anabolic androgenic steroid exposure can be greater for adolescent than adult animals and are more marked in females than in males. These data have particularly important implications with respect to studies we have done demonstrating that chronic anabolic androgenic steroid exposure alters the onset of puberty, estrous cyclicity and sexual receptivity.  相似文献   

15.
Whereas the entorhinal cortex (EC) receives noradrenergic innervations from the locus coeruleus of the pons and expresses adrenergic receptors, the function of norepinephrine (NE) in the EC is still elusive. We examined the effects of NE on GABA(A) receptor-mediated synaptic transmission in the superficial layers of the EC. Application of NE dose-dependently increased the frequency and amplitude of spontaneous inhibitory postsynaptic currents (IPSCs) recorded from the principal neurons in layer II/III through activation of alpha(1) adrenergic receptors. NE increased the frequency and not the amplitude of miniature IPSCs (mIPSCs) recorded in the presence of TTX, suggesting that NE increases presynaptic GABA release with no effects on postsynaptic GABA(A) receptors. Application of Ca(2+) channel blockers (Cd(2+) and Ni(2+)), omission of Ca(2+) in the extracellular solution, or replacement of extracellular Na(+) with N-methyl-D-glucamine (NMDG) failed to alter NE-induced increase in mIPSC frequency, suggesting that Ca(2+) influx through voltage-gated Ca(2+) or other cationic channels is not required. Application of BAPTA-AM, thapsigargin, and ryanodine did not change NE-induced increase in mIPSC frequency, suggesting that Ca(2+) release from intracellular stores is not necessary for NE-induced increase in GABA release. Whereas alpha(1) receptors are coupled to G(q/11) resulting in activation of the phospholipase C (PLC) pathway, NE-mediated facilitation of GABAergic transmission was independent of PLC, protein kinase C, and tyrosine kinase activities. Our results suggest that NE-mediated facilitation of GABAergic function contributes to its antiepileptic effects in the EC.  相似文献   

16.
Summary 1. Synaptic transmission in the mammalian brain is probably mediated by excitatory or inhibitory substances released from nerve endings.2. Excitatory transmitters may act by increasing the movement of Na+ into cells, or by reducing the membrane permeability to K+.3. Glutamic acid is likely to be one of the main fast-acting excitatory transmitters in the central nervous system.4. Acetylcholine has a slower excitatory action tending to promote repetitive discharges. This action is limited to certain types of cells; it appears to be mediated by a reduction in K+ permeabity.5. The strongest inhibitory effects are probably mediated by-aminobutyric acid (GABA) and possibly some related amino-acids. They are caused by a large increase in Cl permeability.6. Both excitatory and depressant effects have been observed at various sites with monoamines (noradrenaline, dopamine and 5-HT).
Zusammenfassung 1. Die synaptische Erregungsleitung im Gehirn des Säugetieres wird wahrscheinlich durch exzitatorische und inhibitorische Substanzen vermittelt, die von den Nervenendigungen freigesetzt werden.2. Exzitatorische Überträgersubstanzen können ihre Wirkung dadurch ausüben, daß sie die Bewegung von Natriumionen in die Zelle steigern, oder daß sie die Membranpermeabilität gegenüber Kaliumionen herabsetzen.3. Glutaminsäure ist wahrscheinlich eine der hauptsächlichen raschwirkenden exzitatorischen Überträgersubstanzen des zentralen Nervensystems.4. Acetylcholin hat eine langsamere exzitatorische Wirkung und tendiert dazu, wiederholte Entladungen zu begünstigen. Diese Wirkung ist auf gewisse Zelltypen beschränkt; der Mechanismus scheint in einer Reduzierung der Kaliumpermeabilität zu bestehen.5. Die stärksten inhibitorischen Wirkungen werden wahrscheinlich durch-Aminobuttersäure (GABA) und möglicherweise einige verwandte Aminosäuren vermittelt. Sie sind durch eine starke Zunahme der Chlorpermeabilität bedingt.6. Sowohl exzitatorische wie depressorische Wirkungen wurden an verschiedenen Substraten mit Monoaminen (Noradrenalin, Dopamin und 5-Hydroxytryptamin) beobachtet.


Vortrag auf der 106. Versammlung deutscher Naturforscher und Ärzte, Düsseldorf 1970.

Supported by the Canadian Medical Research Council.Material for Lecture given on 7 October 1970 to the Gesellschaft Deutscher Naturforscher und Ärzte, at its meeting in Düsseldorf.  相似文献   

17.
The action of somatostatin on GABA-mediated transmission was investigated in cat and rat thalamocortical neurons of the dorsal lateral geniculate nucleus and ventrobasal thalamus in vitro. In the cat thalamus, somatostatin (10 microM) had no effect on the passive membrane properties of thalamocortical neurons and on the postsynaptic response elicited in these cells by bath or iontophoretic application of (+/-)baclofen (5-10 microM) or GABA, respectively. However, somatostatin (1-10 microM) decreased by a similar amount (45-55%) the amplitude of electrically evoked GABA(A) and GABA(B) inhibitory postsynaptic potentials in 71 and 50% of neurons in the lateral geniculate and ventrobasal nucleus, respectively. In addition, the neuropeptide abolished spontaneous bursts of GABA(A) inhibitory postsynaptic potentials in 85% of kitten lateral geniculate neurons, and decreased (40%) the amplitude of single spontaneous GABA(A) inhibitory postsynaptic potentials in 87% of neurons in the cat lateral geniculate nucleus. Similar results were obtained in the rat thalamus. Somatostatin (10 microM) had no effect on the passive membrane properties of thalamocortical neurons in this species, or on the outward current elicited by puff-application of (+/-)baclofen (5-10 microM). However, in 57 and 22% of neurons in the rat lateral geniculate and ventrobasal nuclei, respectively, somatostatin (1 microM) reduced the frequency, but not the amplitude, of miniature GABA(A) inhibitory postsynaptic currents by 31 and 37%, respectively. In addition, the neuropeptide (1 microM) decreased the amplitude of evoked GABA(A) inhibitory postsynaptic currents in 20 and 55% of rat ventrobasal neurons recorded in normal conditions and during enhanced excitability, respectively: this effect was stronger on bursts of inhibitory postsynaptic currents(100% decrease) than on single inhibitory postsynaptic currents (41% decrease).These results demonstrate that in the sensory thalamus somatostatin inhibits GABA(A)- and GABA(B)-mediated transmission via a presynaptic mechanism, and its action is more prominent on bursts of GABAergic synaptic currents/potentials.  相似文献   

18.
19.
20.
The present study investigated the effect of morphine on synaptic transmission and long-term potentiation (LTP) in the dentate gyrus using rat hippocampal slice preparations. Field excitatory postsynaptic potential (fEPSP) and population spike (PS), evoked by stimulation of the perforant path, were recorded from the dentate molecular layer and the stratum granulosum, respectively. Following application of 10 microM morphine, PS amplitude increased gradually in 10 min and was eventually potentiated by approximately 50%. The phenomenon showed a concentration-dependent manner and was completely canceled by naloxone, a mu opioid receptor antagonist. Furthermore, morphine-induced PS augmentation was not detected in disinhibited hippocampal slices, which suggests that the inhibitory input to the dentate granule cells was required for the facilitatory effect of morphine. Neither fEPSP nor tetanus-induced LTP of PS was altered by morphine application. The data support the hypothesis that mu opioid receptor activity modulates inhibitory recurrent circuits in the dentate gyrus and thereby, indirectly plays a regulatory role for hippocampal excitatory neurotransmission.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号