首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Recently, a deletion of chromosome 4pter was found in three patients with Pitt-Rogers-Danks syndrome. We investigated two of these patients, by means of DNA and FISH studies, together with two additional patients with Pitt-Rogers-Danks syndrome, to determine the critical region of the deletion in these patients and to compare this with the critical region in Wolf-Hirschhorn syndrome. All four patients showed terminal deletions of chromosome 4p of different sizes. One of them appeared to have an unbalanced karyotype caused by a cryptic translocation t(4;8) in the mother, resulting in a deletion of chromosome 4pter and a duplication of chromosome 8pter. The localisation of the Wolf-Hirschhorn critical region has been confined to approximately 1 Mb between D4S43 and D4S115. Our study shows that the deletions in four patients with the Pitt-Rogers-Danks syndrome overlap the Wolf-Hirschhorn critical region and extend beyond this in both directions. This study, combined with the fact that our third patient, who was previously described as a Pitt-Rogers-Danks patient, but who now more closely resembles a Wolf-Hirschhorn patient, makes it likely that Pitt-Rogers-Danks and Wolf-Hirschhorn syndromes are different clinical phenotypes resulting from a deletion in the same microscopic region on chromosome 4p16.  相似文献   

4.
Chromosome imbalance affecting the short arm of chromosome 4 results in a variety of distinct clinical conditions. Most of them share a number of manifestations, such as mental retardation, microcephaly, pre- and post-natal growth retardation, anteverted and low-set ears, that can be considered as nonspecific signs, generally attributable to gene dosage impairment. On the other hand, more distinctive phenotypic traits correlate with the segmental aneuploidy. Duplications of the distal half of 4p give rise to the partial trisomy 4 syndrome, characterized by a "boxer" nose configuration and deep-set eyes. These signs are usually observed even in cases of small terminal duplications. Haploinsufficiency of 4p16.3 results in the so-called Wolf-Hirschhorn (WH) syndrome, a contiguous gene syndrome characterized by maxillary hypoplasia, large and protruding eyes, high nasal bridge, skeletal abnormalities, and midline defects. The smallest overlapping deletion described so far as a cause of this condition is only 165 kb long, suggesting that one or a few genes in this region act as "master" regulators of different developmental pathways. A "tandem" duplication of 4p16.1p16.3 was detected in association with a subtle deletion of 4p16.3pter on the same chromosome in a patient with the WH phenotype. The 3.2 Mb deletion, spanning the genomic region from the vicinity of D4S43 to the telomere, encompasses the recently delimited "WHS critical region" [Wright et al., 1997: Hum. Mol. Genet. 6:317-324]. This unusual chromosome rearrangement resulted in WH phenotype, clinical manifestations of partial 4p trisomy being mild or absent. This observation led us to speculate that the regulatory gene/genes in the critical WH region affect the expression of other genes in a dose-dependent manner. Haploinsufficiency of this region could be more deleterious than various partial trisomies.  相似文献   

5.
6.
Deletions or rearrangements of human chromosome 22q11 lead to a variety of related clinical syndromes such as DiGeorge syndrome (DGS) and velo--cardiofacial syndrome (VCFS). In addition, patients with 22q11 deletions have an increased incidence of schizophrenia and several studies have mapped susceptibility loci for schizophrenia to this region. Human molecular genetic studies have so far failed to identify the crucial genes or disruption mechanisms that result in these disorders. We have used gene targeting in the mouse to delete a defined region within the conserved DGS critical region (DGCR) on mouse chromosome 16 to prospectively investigate the role of the mouse DGCR in 22q11 syndromes. The deletion spans a conserved portion ( approximately 150 kb) of the proximal region of the DGCR, containing at least seven genes ( Znf74l, Idd, Tsk1, Tsk2, Es2, Gscl and Ctp ). Mice heterozygous for this deletion display no findings of DGS/VCFS in either inbred or mixed backgrounds. However, heterozygous mice display an increase in prepulse inhibition of the startle response, a manifestation of sensorimotor gating that is reduced in humans with schizophrenia. Homozygous deleted mice die soon after implantation, demonstrating that the deleted region contains genes essential for early post-implantation embryonic development. These results suggest that heterozygous deletion of this portion of the DGCR is sufficient for sensorimotor gating abnormalities, but not sufficient to produce the common features of DGS/VCFS in the mouse.  相似文献   

7.
We present clinical and cytogenetic data on a family with a t(4;13)(p16;q11) translocation present in four generations. The balanced translocation resulted in one individual with monosomy 4p and one individual with trisomy 4p, due to 3:1 segregation. The male patient with trisomy 4p was fertile and transmitted the extra chromosome to his daughter.  相似文献   

8.
We present the perinatal findings of a fetus with a de novo unbalanced chromosome translocation that resulted in monosomy for proximal 14q and monosomy for distal 4p. Prenatal sonographic examination at 27 weeks of gestation showed intrauterine growth retardation, microcephaly, cardiomegaly with arrhythmia, and asymmetry of the upper limbs. Genetic amniocentesis showed an abnormal karyotype of 45,XX,der(4)t(4;14)(p16.3;q12),-14. Linkage analysis of the family confirmed the maternal origin of the deletions. Molecular refinement of the deletion breakpoints indicated that the breakpoints at 4p16.3 and 14q12 were located between loci D4S403 (present) and D4S394 (absent), and between loci D14S252 (present) and D14S64 (absent), respectively. Necropsy showed dysmorphic features compatible with Wolf-Hirschhorn syndrome, hypertrophic cardiomyopathy, partial hemihypoplasia, and a normal brain without evidence of holoprosencephaly. Our case adds to the list of clinical phenotypes associated with the proximal regions of 14q.  相似文献   

9.
10.
Wolf-Hirschhorn syndrome (WHS) caused by 4p16.3 deletions comprises growth and mental retardation, distinct facial appearance and seizures. This study characterized a subtle interstitial deletion of 4p16.3 in a girl with mild retardation and possessing facial traits characteristic of WHS. The patient had generalized seizures in conjunction with fever at 3 and 5 years of age. Fluorescence in situ hybridization (FISH) with a series of markers in the 4p16.3 region showed that the interstitial deletion in this patient was between the probes D4S96 and D4S182, enabling the size of the deletion to be estimated as less than 1.9 Mb. This is the smallest interstitial deletion of 4p16.3 which has been reported. The patient contributes to a refinement of the phenotypic map of the WHS region in 4p16.3. The critical region for the characteristic facial changes of WHS, failure to thrive and developmental delay is now localized to a region of less than 700 kb. The mental retardation of this patient was mild suggesting that small interstitial deletion may have less severe phenotypic consequences. Am. J. Med. Genet. 71:453–457, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

11.
Wolf-Hirschhorn syndrome (WHS) results from a deletion of part of chromosome 4p. The region of 4p consistently deleted in WHS is near the tip of 4p. Two loci in this region D4S95 and D4S125 are associated with highly informative VNTR polymorphisms and were recently converted to allow PCR-based screening. PCR analysis was used successfully to identify a small de novo deletion of 4p in a patient suspected of having WHS. This procedure allows a rapid and accurate confirmation of 4p deletions in cases where cytogenetics alone cannot provide a clear answer.  相似文献   

12.
A 7 7/12-year-old girl with a de novo deletion 4p15.32----pter without the typical Wolf-Hirschhorn syndrome (WHS) is presented. This observation and others from medical literature suggest that monosomy 4p15.31----4p15.32, rather than 4p16, is the cause of the typical WHS.  相似文献   

13.
Within recent years, numerous individuals have been identified with terminal 4p microdeletions distal to the currently described critical regions for the Wolf-Hirschhorn syndrome (WHS). Some of these individuals do not display features consistent with WHS whereas others have a clinical phenotype with some overlap to the WHS phenotype. In this review we discuss the genetic and clinical presentation of these cases in an attempt to understand the consequence of monosomy of the genes distal to the proposed critical regions and identify the distal boundary for pathogenic genes involved in components of the WHS phenotype.  相似文献   

14.
We report on a patient with developmental delay and several facial characteristics reminiscent of Wolf-Hirschhorn syndrome, who carries a terminal 4p16.3 deletion of minimally 1.691 Mb and maximally 1.698 Mb. This deletion contains the FGFRL1 gene, but does not include the WHSC1 gene. Given its expression pattern and its involvement in bone and cartilage formation during embryonic development, the FGFRL1 gene represents a plausible candidate gene for part of the facial characteristics of Wolf-Hirshhorn syndrome in 4p16.3 deletion patients.  相似文献   

15.
We report a 40-year-old female with mild mental retardation and behavior problems and her 6-year-old daughter. Chromosome analysis showed that both patients had a proximal duplication in the short arm of chromosome 16. The aberration was characterized further with band-specific probes, resulting in a 46,XX,dir dup(16)(pter --> p11.2::p12.1 --> qter) karyotype. The clinical and cytogenetical findings are compared to other patients with partial trisomy 16p reported in the literature.  相似文献   

16.
17.
The Wolf-Hirschhorn syndrome (WHS (MIM 194190)), which is characterized by growth delay, mental retardation, epilepsy, facial dysmorphisms, and midline fusion defects, shows extensive phenotypic variability. Several of the proposed mutational and epigenetic mechanisms in this and other chromosomal deletion syndromes fail to explain the observed phenotypic variability. To explain the complex phenotype of a patient with WHS and features reminiscent of Wolfram syndrome (WFS (MIM 222300)), we performed extensive clinical evaluation and classical and molecular cytogenetic (GTG banding, FISH and array-CGH) and WFS1 gene mutation analyses. We detected an 8.3 Mb terminal deletion and an adjacent 2.6 Mb inverted duplication in the short arm of chromosome 4, which encompasses a gene associated with WFS (WFS1). In addition, a nonsense mutation in exon 8 of the WFS1 gene was found on the structurally normal chromosome 4. The combination of the 4p deletion with the WFS1 point mutation explains the complex phenotype presented by our patient. This case further illustrates that unmasking of hemizygous recessive mutations by chromosomal deletions represents an additional explanation for the phenotypic variability observed in chromosomal deletion disorders.  相似文献   

18.
In a series of 25 Japanese patients with Rubinstein-Taybi syndrome, we screened, by high-resolution GTG banding and fluorescence in situ hybridization of a cosmid probe (RT1, D16S237), for microdeletions associated with this syndrome. In one patient, a microdeletion was demonstrated by in situ hybridization, but none were detected by high-resolution banding. © 1994 Wiley-Liss, Inc.  相似文献   

19.
20.
Opitz G/BBB syndrome (OS) is a congenital midline malformation syndrome characterized by hypertelorism, hypospadias, cleft lip/palate, laryngotracheoesophageal abnormalities, imperforate anus, developmental delay and cardiac defects. The X-linked form is caused by mutations in the MID1 gene, while no gene has yet been identified for the autosomal dominant form. Here, we report on a 15-year-old boy who was referred for MID1 mutation analysis with findings typical of OS, including apparent hypertelorism, hypospadias, a history of feeding difficulties, dysphagia secondary to esophageal arteria lusoria, growth retardation and developmental delay. No MID1 mutation was found, but subsequent sub-megabase resolution array CGH unexpectedly documented a 2.34 Mb terminal 4p deletion, suggesting a diagnosis of WHS, and a duplication in Xp22.31. Wolf-Hirschhorn syndrome (WHS) is a contiguous gene deletion syndrome involving terminal chromosome 4p deletions, in particular 4p16.3. WHS is characterized by typical facial appearance ("Greek helmet facies"), mental retardation, congenital hypotonia, and growth retardation. While the severity of developmental delay in this patient supports the diagnosis of WHS rather than OS, this case illustrates the striking similarities of clinical findings in seemingly unrelated syndromes, suggesting common or interacting pathways at the molecular and pathogenetic level. This is the first report of arteria lusoria (esophageal vascular ring) in a patient with WHS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号