首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
Considerable attention has been focused on both highly oxidized low-density lipoprotein (ox-LDL) and mildly oxidized LDL (mox-LDL) as important risk factors for cardiovascular disease. Further, 5-hydroxytryptamine (5-HT) appears to play a crucial role in the development of atherosclerotic plaque. We assessed the interaction of oxidatively modified LDL and its major oxidative components, ie, hydrogen peroxide (H2O2), lysophosphatidylcholine (LPC), and 4-hydroxy-2-nonenal (HNE) with 5-HT on DNA synthesis in vascular smooth muscle cells (VSMCs). Growth-arrested rabbit VSMCs were incubated in serum-free medium with native LDL, mox-LDL, ox-LDL (all 50 ng/mL), H2O2 (0.5 microM), LPC (1 microM), or HNE (0.1 microM) for 24 hours followed by 5-HT (5 microM) for another 24 hours. DNA synthesis in VSMCs was measured by [3H]thymidine incorporation. Significant effects on [3H]thymidine incorporation were observed in VSMCs incubated with mox-LDL (129%), ox-LDL (129%), H2O2 (119%), LPC (115%), HNE (127%), or 5-HT (183%) in contrast with native LDL (113%). The mitogenic effect of 5-HT was potentiated by mox-LDL, ox-LDL, H2O2, LPC, or HNE (183 to 365%, 274%, 304%, 339%, or 273%, respectively) but not by native LDL (240%). The mitogen-activated protein kinase (MAPK) kinase inhibitor PD98059 (10 microM) significantly inhibited the mitogenic effect of 5-HT but did not influence the effects of mox-LDL, ox-LDL, H2O2, LPC, or HNE. The intracellular antioxidant N-acetylcysteine (400 microM) significantly inhibited the mitogenic effects of mox-LDL, ox-LDL, H2O2, LPC, and HNE but not that of 5-HT. Our results suggest that mox-LDL, ox-LDL, and their major components H2O2, LPC, and HNE act synergistically with 5-HT in inducing VSMC DNA synthesis via MAPK and redox-sensitive pathways, contributing to the development of atherosclerotic plaque.  相似文献   

4.
Vascular smooth muscle cell (VSMC) proliferation is a key feature in the development of atherosclerosis and restenosis after angioplasty, which can occur in response to many different humoral and mechanical stimuli. We investigated the growth promoting activities of two potent vasoactive substances, angiotensin II (Ang II) and serotonin (5-HT), on cultured rabbit VSMCs. Growth-arrested VSMCs were incubated with serum-free medium containing different concentrations of Ang II in the presence or absence of 5-HT. [3H]thymidine incorporation into VSMC DNA was measured as an index of cell proliferation. Ang II and 5-HT stimulated DNA synthesis in a dose-dependent manner with a maximal effect at 1.75 microM for Ang II (202%) and 50 microM for 5-HT (205%). When added together, low concentrations of Ang II (1 microM) and 5-HT (5 microM) synergistically induced DNA synthesis (363%). Candesartan (1 microM), an AT(1) receptor antagonist, but not PD 123319 (1 microM), an AT(2) receptor antagonist, inhibited the mitogenic effect on Ang II and its interaction with 5-HT. Sarpogrelate (10 microM), a 5-HT(2A) receptor antagonist, and pertussis toxin (10 ng/ml) inhibited the mitogenic effect of 5-HT and its interaction with Ang II. The protein kinase C inhibitor Ro 31-8220 (0.1 microM), the Raf-1 inhibitor radicicol (10 microM), and the MAPK kinase inhibitor PD 098059 (10 microM) abolished mitogenic effects of Ang II and 5-HT, and also their synergistic interaction. The JAK2 inhibitor AG 490 (10 microM) had only a minimal inhibitory effect of Ang II-induced DNA synthesis but significantly inhibited the interaction of Ang II with 5-HT. The synergistic effect on Ang II (1 microM) with 5-HT (5 microM) on DNA synthesis was completely reversed by the combined use of both candesartan (1 microM) and sarpogrelate (10 microM). Our results suggest that Ang II and 5-HT exert a synergistic interaction on VSMC proliferation via AT(1) and 5-HT(2A) receptors. The activation of MAPK and JAK/STAT pathways may explain the synergistic interaction between Ang II and 5-HT.  相似文献   

5.
6.
Human urotensin-II (U-II) is the most potent vasoactive peptide identified to date, and may be involved in hypertension and atherosclerosis. We investigated the effects of the interactions between U-II or other vasoactive agents and mildly oxidized low-density lipoprotein (mox-LDL) or hydrogen peroxide (H2O2) on the induction of vascular smooth muscle cell (VSMC) proliferation. Growth-arrested rabbit VSMCs were incubated with vasoactive agents (U-II, endothelin-1, angiotensin-II, serotonin, or thromboxane-A2) in the presence or absence of mox-LDL or H2O2. [3H]Thymidine incorporation into DNA was measured as an index of VSMC proliferation. On interaction with mox-LDL or H2O2, U-II induced the greatest increase in [3H]thymidine incorporation among these vasoactive agents. A low concentration of U-II (10 nmol/l) enhanced the potential mitogenic effect of low concentrations of mox-LDL (120 to 337%) and H2O2 (177 to 226%). U-II at 50 nmol/l showed the maximal mitogenic effect (161%), which was abolished by G protein inactivator (GDP-beta-S), c-Src tyrosine kinase inhibitor (radicicol), protein kinase C (PKC) inhibitor (Ro31-8220), extracellular signal-regulated kinase (ERK) kinase inhibitor (PD98059), or Rho kinase inhibitor (Y27632). Mox-LDL at 5 microg/ml showed the maximal mitogenic effect (211%), which was inhibited by free radical scavenger (catalase), intracellular and extracellular antioxidants (N-acetylcysteine and probucol), nicotinamide adenine dinucleotide phosphate oxidase inhibitor (diphenylene iodonium), or c-Jun N-terminal kinase (JNK) inhibitor (SP600125). These results suggested that U-II acts in synergy with mox-LDL in inducing VSMC DNA synthesis at the highest rate among these vasoactive agents. Activation of the G protein/c-Src/PKC/ERK and Rho kinase pathways by U-II together with the redox-sensitive JNK pathway by mox-LDL may explain the synergistic interaction between these agents.  相似文献   

7.
碱性纤维母细胞生长因子对血管平滑肌细胞增殖的影响   总被引:1,自引:1,他引:1  
应用^3H-RdR掺入实验,RNA印迹分析和反转录-多降酶链反应等方法观察碱性纤维母细胞生长因子对大鼠血管平滑肌细胞DNA合成及细胞增殖相关基因表达的影响,结果发现,碱性纤维母细胞增殖相关基因表达的影响,结果发现,碱性纤维母细胞生长因子作用于血管平滑肌细胞6h后,^3H-TdR掺入开始增加,24h达到高峰,在一定浓度范围内,碱性纤维母细胞生长因子以血管平滑肌细胞的促增殖效应与浓度呈正相关。碱性纤维  相似文献   

8.
Reactive oxygen species (ROS) including nitric oxide (NO) and superoxide anion (O(2)(-)) are associated with cell migration, proliferation and many growth-related diseases. The objective of this study was to determine whether there was a reciprocal relationship between rat coronary microvascular endothelial cell (CMEC) growth and activity/expressions (mRNA and protein) of endothelial NO synthase (eNOS) and NAD(P)H oxidase enzymes. Proliferating namely, 50% confluent CMEC possessed approximately threefold increased activity and expression of both enzymes compared to 100% confluent cells. Treatment of CMEC with an inhibitor of eNOS (L-NAME, 100 microM) increased cell proliferation as assessed via three independent methods, i.e. cell counting, determination of total cellular protein levels and [(3)H]-thymidine incorporation. Similarly, treatment of CMEC with pyrogallol (0.3-3 mM), a superoxide anion (O(2)(-)) generator, also increased CMEC growth while spermine NONOate (SpNO), a NO donor, significantly reduced cell growth. Co-incubation of CMEC with a cell permeable superoxide dismutase mimetic (Mn-III-tetrakis-4-benzoic acid-porphyrin; MnTBAP) plus either pyrogallol or NO did not alter cell number and DNA synthesis thereby dismissing the involvement of peroxynitrite (OONO(-)) in CMEC proliferation. Specific inhibitors of NAD(P)H oxidase but not other ROS-generating enzymes including cyclooxygenase and xanthine oxidase, attenuated cell growth. Transfection of CMEC with antisense p22-phox cDNA, a membrane-bound component of NAD(P)H oxidase, resulted in substantial reduction in [(3)H]-thymidine incorporation, total cellular protein levels and expression of p22-phox protein. These data demonstrate a cross-talk between CMEC growth and eNOS and NAD(P)H oxidase enzyme activity and expression, thus suggesting that the regulation of these enzymes may be critical in preventing the initiation and/or progression of coronary atherosclerosis.  相似文献   

9.
We examined the mechanism of action of lysophosphatidylcholine (lyso-PC), which is suggested to be involved in the pathogenesis of atherosclerosis and inflamatory disorders, and its interaction with well-known vasoactive compounds such as hydrogen peroxide (H2O2), thromboxane A2 (TX-A2), serotonin (5-HT), angiotensin II (Ang-II), endothelin-1 (ET-1), or urotensin II (U-II) on VSMC proliferation. Growth-arrested rabbit VSMCs were incubated with given concentrations of lyso-PC with H202, TX-A2, 5-HT, Ang-II, ET-1, or U-II. [3H]Thymidine incorporation into DNA was measured as an index of VSMC proliferation. Lyso-PC induced a maximal effect on [3H]thymidine incorporation at a concentration of 15 microM (156%), and its effect was significantly inhibited by the phospholipase C inhibitor U73122 (10 microM), the intracellular antioxidant NAC (400 microM), and the NADPH oxidase inhibitor diphenylene iodonium (1 microM), but not by the MAPK kinase inhibitor (10 microM). H2O2, TX-A2, 5-HT, Ang-II, ET-1, or U-II also stimulated [3H]thymidine incorporation in a dose-dependent manner. A non-mitogenic concentration of lyso-PC (5 microM) significantly potentiated the effect of low concentrations of H2O2 (0.1 microM, 110 to 222%), TX-A2 (5 microM, 120 to 202%), 5-HT (5 microM, 182 to 259%), Ang-II (0.5 microM, 167 to 304%), ET-1 (0.01 microM, 139 to 297%), or U-II (0.025 microM, 120 to 332%) on [3H]thymidine incorporation. The results suggest that lyso-PC acts synergistically with the vasoactive compounds H2O2, TX-A2, 5-HT, Ang-II, ET-1, or U-II in inducing VSMC proliferation, which may play an important role in the progression of atherosclerosis.  相似文献   

10.
BACKGROUND: We reported that insulin stimulates NAD(P)H oxidase activity but not migration of cultured rat vascular smooth muscle cells (VSMCs). Because angiotensin II (Ang II) increases NAD(P)H oxidase activity in these cells, we wished to determine whether insulin stimulates migration of Ang II-treated VSMCs by synergistically stimulating enzyme activity. METHODS: Cultured rat VSMC superoxide anion (O2-) production, cyclic GMP production, and migration were measured by lucigenin luminescence, immunoassay, and wound closure rate, respectively. Nitric oxide (NO) scavenging was measured by inhibition of NO-induced fluorescence of 4-5-diaminofluorescin. RESULTS: Insulin (1 nmol/L) did not affect and Ang II (100 nmol/L) stimulated VSMC migration by 65% (P < .05), but together stimulated it by 150% (P < .05 versus Ang II) by a mechanism inhibited by the NAD(P)H oxidase inhibitors, diphenyleneiodonium (DPI) or gp91ds-tat. Insulin and Ang II stimulated O2- production by 34% and 35%, respectively (both P < .05), but together synergistically stimulated it by 143% (P < .05 versus insulin or Ang II) in a DPI or gp91ds-tat-sensitive manner. Neither insulin nor Ang II measurably affected NO scavenging, but together reduced NO availability by 46% in a DPI-sensitive manner (P < .05) and significantly inhibited NO-stimulated cyclic GMP production. CONCLUSIONS: Insulin synergestically stimulates NAD(P)H oxidase activity in Ang II-treated cultured rat VSMCs causing increased migration.  相似文献   

11.
Band CJ  Mounier C  Posner BI 《Endocrinology》1999,140(12):5626-5634
The mitogenic response to insulin and epidermal growth factor (EGF) was studied in subconfluent and confluent cultures of primary rat hepatocytes. In subconfluent cultures, wortmannin, LY294002, and rapamycin reversed insulin- and EGF-induced [3H]thymidine incorporation into DNA. The mitogen-activated protein kinase (MAPK) kinase 1 (MEK1) inhibitor PD98059 was without significant effect on either insulin- or EGF-induced [3H]thymidine incorporation. Insulin treatment did not alter levels of messenger RNAs (mRNAs) for c-fos, c-jun, and c-myc. EGF induced an increase in c-myc, but not c-fos or c-jun, mRNA levels in subconfluent hepatocyte cultures. This increase in c-myc mRNA was abolished by PD98059. In confluent cells that could not be induced to synthesize DNA, EGF treatment also promoted an increase in c-myc mRNA to levels seen in subconfluent cultures. This increase was also abrogated by PD98059. These data indicate that in primary rat hepatocyte cultures, 1) the phosphoinositol 3-kinase pathway, perhaps through p70s6k activation, regulates DNA synthesis in response to insulin and EGF; 2) the MAPKpathway is not involved in insulin- and EGF-induced DNA synthesis; and 3) p44/42 MAPKs are involved the induction of c-myc mRNA levels, although this induction is not required for DNA synthesis. These studies define two distinct signal transduction pathways that independently mediate growth-related responses in a physiologically relevant, normal cell system.  相似文献   

12.
Zhang M  Dong Y  Xu J  Xie Z  Wu Y  Song P  Guzman M  Wu J  Zou MH 《Circulation research》2008,102(3):328-337
Thromboxane A2 receptor (TPr) stimulation induces cellular hypertrophy in vascular smooth muscle cells (VSMCs); however, regulation of VSMC hypertrophy remains poorly understood. Here we show that TPr stimulation activates AMP-activated kinase (AMPK), which in turn limits TPr-induced protein synthesis in VSMCs. Exposure of cultured VSMCs to either TPr agonists, IBOP and U46619, or exogenous hydrogen peroxide (H2O2) caused time- and dose-dependent AMPK activation, as evidenced by increased phosphorylation of both AMPK-Thr172 and acetyl-coenzyme A carboxylase-Ser79, a downstream enzyme of AMPK, whereas SQ29548, a selective TPr antagonist, significantly attenuated TPr-enhanced AMPK activation. In parallel, both IBOP and U46619 significantly increased the production of reactive oxygen species such as H2O2. Furthermore, adenoviral overexpression of catalase (an H2O2 scavenger) abolished, whereas superoxide dismutase (which catalyzes H2O2 formation) enhanced, IBOP-induced AMPK activation, suggesting that TPr-activated AMPK was mediated by H2O2. Consistently, exposure of VSMCs to either TPr agonists or exogenous H2O2 dose-dependently increased the phosphorylation of LKB1 (at serines 428 and 307), an AMPK kinase, as well as coimmunoprecipitation of AMPK with LKB1. In addition, direct mutagenesis of either Ser428 or Ser307 of LKB1 into alanine, like the kinase-dead LKB1 mutant, abolished both TPr-stimulated AMPK activation and coimmunoprecipitation. Finally, genetic inhibition of AMPK significantly accentuated IBOP-enhanced protein synthesis, whereas adenoviral overexpression of constitutively active AMPK abolished IBOP-enhance protein synthesis in VSMCs. We conclude that TPr stimulation triggers reactive oxygen species-mediated LKB1-dependent AMPK activation, which in return inhibits cellular protein synthesis in VSMCs.  相似文献   

13.
Lysophosphatidylcholine (lysoPC) acts on vascular smooth muscle cells (VSMCs) to produce a mitogenic response through the activation of extracellular signal-regulated kinases 1/2 (ERK1/2). In the present study, we examined the importance of reactive oxygen species (ROS) in lysoPC-stimulated ERK1/2 activation in cultured rat VSMCs. Treatment with lysoPC for 3 minutes caused a 2-fold increase in intracellular ROS that was blocked by the NADH/NADPH oxidase inhibitor, diphenylene iodonium (DPI). Antioxidants, N-acetyl-L-cysteine, glutathione monoester, or alpha -tocopherol, inhibited ERK1/2 activation by lysoPC. Almost identical results were obtained in the VSMC line A10. Pretreatment of VSMCs with DPI but not allopurinol or potassium cyanide (KCN) abrogated the activation of ERK1/2. The Flag-tagged p47phox expressed in A10 cells was translocated from the cytosol to the membrane after 2 minutes of stimulation with lysoPC. The overexpression of dominant-negative p47phox in A10 cells suppressed lysoPC-induced ERK activation. The ROS-dependent ERK activation by lysoPC seems to involve protein kinase C- and Ras-dependent raf-1 activation. Induction of c-fos expression and enhanced AP-1 binding activity by lysoPC were also inhibited by DPI and NAC. Taken together, these data suggest that ROS generated by NADH/NADPH oxidase contribute to lysoPC-induced activation of ERK1/2 and subsequent growth promotion in VSMCs.  相似文献   

14.
15.
BACKGROUND: To explore the role of intracellular oxidative stress in high glucose-induced atherogenesis, we examined the effect of probucol and/or alpha-tocopherol on the migration and growth characteristics of cultured rabbit coronary vascular smooth muscle cells (VSMCs). METHODS AND RESULTS: Chronic high-glucose-medium (22. 2 mmol/L) treatment increased platelet-derived growth factor (PDGF)-BB-mediated VSMC migration, [3H]thymidine incorporation, and cell number compared with VSMCs treated with normal-glucose medium (5.6 mmol/L+16.6 mmol/L mannose). Probucol and alpha-tocopherol significantly suppressed high glucose-induced increase in VSMC migration, cell number, and [3H]thymidine incorporation. Probucol and alpha-tocopherol suppressed high glucose-induced elevation of the cytosolic ratio of NADH/NAD+, phospholipase D, and membrane-bound protein kinase C activation. Probucol, alpha-tocopherol, and calphostin C improved the high glucose-induced suppression of insulin-mediated [3H]deoxyglucose uptake. Chronic high-glucose treatment increased the oxidative stress, which was significantly suppressed by probucol, alpha-tocopherol, suramin, and calphostin C. CONCLUSIONS: These findings suggest that probucol and alpha-tocopherol may suppress high glucose-induced VSMC migration and proliferation via suppression of increases in the cytosolic ratio of free NADH/NAD+, phospholipase D, and protein kinase C activation induced by high glucose, which result in reduction in intracellular oxidative stress.  相似文献   

16.
Oxygen radicals can cause endothelial and epithelial permeability changes and mucosal injury of the small intestine. There is no clear consensus concerning the relative injurious potential of individual oxygen radicals. In this study, the small intestinal cell line IEC-18 was used as an in vitro model to study the relative injurious effects of reactive oxygen metabolites. By introducing different combinations of oxygen metabolite-producing enzymes, xanthine oxidase, superoxide dismutase, and catalase, and an iron chelator, deferoxamine, to the fully confluent monolayers and to proliferating IEC-18 cells, the differential injurious effects of the oxygen metabolites O2-, H2O2, and OH. could be evaluated. The extent of cellular injury was assessed using [3H]thymidine uptake, 51Cr release, and morphological evaluations. Our results suggest that OH. produced as a by-product of O2- and H2O2 via the Haber-Weiss reaction was the most injurious oxygen species involved in cellular injury of IEC-18 monolayers induced by xanthine oxidase. O2- produced by xanthine oxidase appeared to be only minimally injurious, and H2O2 produced by xanthine oxidase and as a result of conversion of O2- by superoxide dismutase was moderately injurious. Superoxide dismutase and deferoxamine at appropriate concentrations were protective against xanthine/xanthine oxidase-induced monolayer injury. H2O2 added directly or produced indirectly by glucose oxidase was very injurious to the intestinal monolayers, and this injury was mitigated by catalase.  相似文献   

17.
OBJECTIVE: Endothelin-1 (ET-1) has been reported to stimulate the expression of the proto-oncogenes c-fos and c-myc, and to cause DNA synthesis in vascular smooth muscle cells (VSMC). The purpose of this study was to clarify the signalling pathway from ET receptors to the nucleus. DESIGN: Mitogen-activated protein (MAP) kinase, which is activated by various growth factors via phosphorylation of tyrosine and threonine residues, plays important roles as an intermediate in the signalling pathways from growth factor receptors to the ribosomes and nucleus. We examined the effect of ET-1 on the phosphorylation and activation of MAP kinase in cultured VSMC. METHODS: Extracts of ET-1-stimulated VSMC were analysed by one- and two-dimensional gel electrophoresis and anion-exchange column chromatography. Tyrosine-phosphorylated proteins and MAP kinases were detected by immunoblot analyses with anti-phosphotyrosine and anti-MAP kinase antibodies, respectively. The MAP kinase activity was measured using myelin basic protein as a substrate. The MAP kinases were isolated from 32P-labelled VSMC and subjected to phosphoamino acid analysis. RESULTS: ET-1 induced tyrosine phosphorylation of at least five proteins of about 79, 77, 73, 45 and 40 kDa in VSMC. The mobilities of the tyrosine-phosphorylated 45- and 40-kDa proteins were identical with those of the two proteins that were recognized by anti-MAP kinase antibody upon one- and two-dimensional gel electrophoresis. ET-1 stimulated MAP kinase activity in a time-course similar to that of the tyrosine phosphorylation of the 45- and 40-kDa proteins. The ET-1-stimulated MAP kinase activity was resolved almost equally into two peaks upon Mono Q column chromatography (kinase 1 and kinase 2). Kinase 1 and kinase 2 were co-eluted with the tyrosine-phosphorylated 40- and 45-kDa proteins, respectively. The apparent molecular masses of kinase 1 and kinase 2 estimated by MAP kinase assay in polyacrylamide gel were identical with those of tyrosine-phosphorylated 40- and 45-kDa proteins, respectively. Upon phosphoamino acid analysis, ET-1 stimulated phosphorylation of MAP kinases not only on tyrosine but also on threonine residues. CONCLUSIONS: ET-1 induces tyrosine and threonine phosphorylation and the activation of two species of MAP kinases of 40 and 45 kDa in VSMC.  相似文献   

18.
Vascular smooth muscle cells (VSMCs) are the stromal cells of the vascular wall, continually exposed to mechanical signals and biochemical components generated in the blood compartment. They are involved in all the physiological functions and the pathological changes taking place in the vascular wall. Owing to their contractile tonus, VSMCs of resistance vessels participate in the regulation of blood pressure and also in hypertension. VSMCs of conduit arteries respond to hypertension-induced increases in wall stress by an increase in cell protein synthesis (hypertrophy) and extracellular matrix secretion. These responses are mediated by complex signalling pathways, mainly involving RhoA and extracellular signal-regulated kinase1/2. Serum response factor and miRNA expression represent main mechanisms controlling the pattern of gene expression. Ageing also induces VSMC phenotypic modulation that could have influence on cell senescence and loss of plasticity and reprogramming. In the early stages of human atheroma, VSMCs support the lipid overload. Endocytosis/phagocytosis of modified low-density lipoproteins, free cholesterol, microvesicles, and apoptotic cells by VSMCs plays a major role in the progression of atheroma. Migration and proliferation of VSMCs in the intima also participate in plaque progression. The medial VSMC is the organizer of the inwardly directed angiogenic response arising from the adventitia by overexpressing vascular endothelial growth factor in response to lipid-stimulated peroxisome proliferator-activated receptor-γ, and probably also the organizer of the adventitial immune response by secreting chemokines. VSMCs are also involved in the response to proteolytic injury via their ability to activate blood-borne proteases, to secrete antiproteases, and to clear protease/antiprotease complexes.  相似文献   

19.
Insulin-like growth factor-I (IGF-I) plays an important role in regulating vascular smooth muscle cell (VSMC) proliferation, directed migration, differentiation, and apoptosis. The signaling mechanisms used by IGF-I to elicit these actions, however, are not well defined. In this study, we examined the role(s) of protein kinase C (PKC) in mediating the IGF-I actions in cultured porcine VSMCs. Out of the eleven known members of PKC family, PKC-alpha, -betaI, -epsilon, -eta, -lambda, -theta, and -zeta, were detectable by Western immunoblot analysis in these cells. Further analysis indicated that the subcellular distribution of several PKC isoforms is regulated by IGF-I. While IGF-I stimulated membrane translocation of PKC-eta, -epsilon, and -zeta and regulated the cytosolic levels of PKC-betaI, it had no such effect on PKC-alpha and -lambda. To examine whether PKC activation is required for the IGF-I-regulated biological responses, phorbol myristate acetate (PMA) and GF109203X were used to down-regulate or inhibit PKC activity. Both PMA (1 microM) and GF109203X (20 microM) nearly completely suppressed the total PKC activity after a 30-min incubation (> 90%), and this inhibition lasted for at least 24 h. Down-regulation or inhibition of PKC activity abolished the IGF-I-induced DNA synthesis, migration and IGFBP-5 gene expression. In contrast, the IGFBP-5 expression induced by forskolin was unaffected by PKC down-regulation or inhibition, suggesting that PKC activation is required for the IGF-regulated but not the cAMP-regulated events. Because the actions of IGF-I on DNA synthesis and IGFBP-5 gene expression in VSMCs have been shown to be mediated through the phosphatidylinositol 3-kinase (PI3 kinase) signaling pathway in porcine VSMCs, the potential role of PKC in IGF-I-induced activation of PI3 kinase and PKB/Akt were examined. Treatment with either PMA or GF109203X did not significantly affect the effects of IGF-I on PI3 kinase activation or PKB/Akt phosphorylation. These results indicated that PKC-betaI, -eta, -epsilon, and -zeta may play an essential role(s) in IGF-I regulation of VSMC migration, DNA synthesis and gene expression, and that these PKC isoforms may either act independently of the PI3 kinase pathway or act further downstream of PKB/Akt in the IGF signaling network.  相似文献   

20.
Haque NS  Fallon JT  Pan JJ  Taubman MB  Harpel PC 《Blood》2004,103(4):1296-1304
The response of the arterial vascular wall to injury is characterized by vascular smooth muscle cell (VSMC) migration, a process requiring metalloproteinase production. This migration is induced by cytokines, however the agonists involved are not fully defined. The CC chemokine receptor 8 (CCR8) is expressed on monocytes and T lymphocytes and is the sole receptor for the human CC chemokine 1 (CCL1, I-309) and for the viral chemokine, vCCL1 (viral macrophage inflammatory protein 1 [vMIP-1]). We have reported that CCR8 is expressed on human umbilical vein endothelial cells (HUVECs) and mediates chemotaxis induced by CCL1. The conditioned medium from incubation mixtures of lipoprotein(a) (Lp(a)) and HUVECs (LCM) contained CCL1 and stimulated both monocyte and HUVEC chemotaxis, providing novel mechanisms for the atherogenicity of Lp(a). We now report that CCL1, vCCL1, and LCM stimulate chemotaxis of human VSMCs that is blocked by murine monoclonal antibody against CCR8 and by the G-protein inhibitor pertussis toxin. The effect of anti-CCR8 was specific, as this antibody failed to effect the chemotaxis of VSMCs in response to CCL3 or by platelet-derived growth factor BB (PDGF-BB). VSMCs contained CCR8 mRNA and CCR8 antigen coprecipitated with VSMC membranes. Antibodies against metalloproteinase-2 (MMP-2) inhibited the CCL1-induced chemotaxis of VSMCs, whereas anti-MMP-9 was less effective. CCL1 induced VSMC pro-MMP-2 mRNA and protein secretion. Poxvirus MC148 inhibited the increase in MMP-2 induced by CCL1, documenting that CCR8 was the receptor responsible. In mouse femoral arteries, CCR8 and TCA3 antigen colocalized with VSMCs and were up-regulated after injury. The induction of CCR8 and CCL1/TCA3 under conditions associated with VSMC proliferation and migration raises the possibility that CCR8 may play an important role in vessel wall pathology.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号