首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Background: Amitriptyline, a tricyclic antidepressant, is frequently used orally for the management of chronic pain. To date there is no report of amitriptyline producing peripheral nerve blockade. The authors therefore investigated the local anesthetic properties of amitriptyline in rats and in vitro.

Methods: Sciatic nerve blockade was performed with 0.2 ml amitriptyline or bupivacaine at selected concentrations, and the motor, proprioceptive, and nociceptive blockade was evaluated. Cultured rat GH3 cells were externally perfused with amitriptyline or bupivacaine, and the drug affinity toward inactivated and resting Na+ channels was assessed under whole-cell voltage clamp conditions. In addition, use-dependent blockade of these drugs at 5 Hz was evaluated.

Results: Complete sciatic nerve blockade for nociception was obtained with amitriptyline for 217 +/- 19 min (5 mm, n = 8, mean +/- SEM) and for 454 +/- 38 min (10 mm, n = 7) versus bupivacaine for 90 +/- 13 min (15.4 mm, n = 6). The time to full recovery of nociception for amitriptyline was 353 +/- 12 min (5 mm) and 656 +/- 27 min (10 mm) versus 155 +/- 9 min for bupivacaine (15.4 mm). Amitriptyline was approximately 4.7-10.6 times more potent than bupivacaine in binding to the resting channels (50% inhibitory concentration [IC50] of 39.8 +/- 2.7 vs. 189.6 +/- 22.3 [mu]m) at -150 mV, and to the inactivated Na+ channels (IC50 of 0.9 +/- 0.1 vs. 9.6 +/- 0.9 [mu]m) at -60 mV. High-frequency stimulation at 3 [mu]m caused an additional approximately 14% blockade for bupivacaine, but approximately 50% for amitriptyline.  相似文献   


2.
Background: Chiral local anesthetics, such as ropivacaine and levobupivacaine, have the potential advantage over racemic mixtures in showing reduced toxic side effects. However, these S-(levo, or "-")isomers also have reportedly lower potency than their optical antipode, possibly resulting in no advantage in therapeutic index. Potency for local anesthetics inhibiting Na+ channels or action potentials depends on the pattern of membrane potential and so also does the stereopotency ratio. Here the authors have quantitated the stereopotencies of R-, S-, and racemic bupivacaine, comparing several in vitro assays of neuronal Na+ channels with those from in vivo functional nerve block, to establish relative potencies and to understand better the role of different modes of channel inhibition in overall functional anesthesia.

Methods: The binding of bupivacaine to Na+ channels was assessed indirectly by its antagonism of [3H]-batrachotoxin binding to rat brain synaptosomes. Inhibition of Na+ currents by bupivacaine was directly assayed in voltage-clamped GH-3 neuroendocrine cells. Neurobehavioral functions were disrupted by bupivacaine percutaneously injected (0.1 ml; 0.0625-1.0%) at the rat sciatic nerve and semiquantitatively assayed. Concentration-dependent actions of R-, S-, and racemic bupivacaine were compared for their magnitude and duration of action.

Results: Competitive batrachotoxin displacement has a stereopotency ratio of R :S = 3:1. Inhibition of Na+ currents with different prepulse potentials shows that S > R potency when the membrane is hyperpolarized, and R >S potency when it is depolarized from normal resting values. Functional deficits assayed in vivo usually demonstrate no consistent enantioselectivity and only a modest stereopotency (R :S = 1.2-1.3) for peak analgesia achieved at the lowest doses. Other functions display no significant stereopotency in either the degree, the duration, or their product (area under the curve) at any dose.  相似文献   


3.
Background: Bulleyaconitine A (BLA) is an active ingredient of Aconitum bulleyanum plants. BLA has been approved for the treatment of chronic pain and rheumatoid arthritis in China, but its underlying mechanism remains unclear.

Methods: The authors examined (1) the effects of BLA on neuronal voltage-gated Na+ channels in vitro under the whole cell patch clamp configuration and (2) the sensory and motor functions of rat sciatic nerve after single BLA injections in vivo.

Results: BLA at 10 [mu]m did not affect neuronal Na+ currents in clonal GH3 cells when stimulated infrequently to +50 mV. When stimulated at 2 Hz for 1,000 pulses (+50 mV for 4 ms), BLA reduced the peak Na+ currents by more than 90%. This use-dependent reduction of Na+ currents by BLA reversed little after washing. Single injections of BLA (0.2 ml at 0.375 mm) into the rat sciatic notch not only blocked sensory and motor functions of the sciatic nerve but also induced hyperexcitability, followed by sedation, arrhythmia, and respiratory distress. When BLA at 0.375 mm was coinjected with 2% lidocaine (approximately 80 mm) or epinephrine (1:100,000) to reduce drug absorption by the bloodstream, the sensory and motor functions of the sciatic nerve remained fully blocked for approximately 4 h and regressed completely after approximately 7 h, with minimal systemic effects.  相似文献   


4.
5.
6.
Background: A new pulmonary drug delivery system produces aerosols from disposable packets of medication. This study compared the pharmacokinetics and pharmacodynamics of morphine delivered by an AERx prototype with intravenous morphine.

Methods: Fifteen healthy volunteers were enrolled. Two subjects were administered four inhalations of 2.2 mg morphine each at 1-min intervals or 4.4 mg over 3 min by intravenous infusion. Thirteen subjects were given twice the above doses, i.e., eight inhalations or 8.8 mg intravenously over 7 min. Arterial blood sampling was performed every minute during administration and at 2, 5, 7, 10, 15, 20, 45, 60, 90, 120, 150, 180, and 240 min after administration. The effect of morphine was assessed by measuring pupil diameter and ventilatory response to a hypercapnic challenge. Pharmacokinetic and pharmacodynamic analyses were performed simultaneously using mixed-effect models.

Results: The pharmacokinetic data after intravenous administration were described by a three-exponent decay model preceded by a lag time. The pharmacokinetic model for administration by inhalation consisted of the three-exponent intravenous pharmacokinetic model preceded by a two-exponent absorption model. The authors found that, with administration by inhalation, the total bioavailability was 59%, of which 43% was absorbed almost instantaneously and 57% was absorbed with a half-life of 18 min. The median times to the half-maximal miotic effects of morphine were 10 and 5.5 min after inhalation and intravenous administration, respectively (P < 0.01). The pharmacodynamic parameter ke0 was approximately 0.003 min-1.  相似文献   


7.
Background: Pulmonary surfactant is a complex mixture of proteins and phospholipids synthetized by alveolar type II cells. Volatile anesthetics have been shown to reduce surfactant phospholipid biosynthesis by rat alveolar type II cells. Surfactant-associated protein C (SP-C) is critical for the alveolar surfactant functions. Our goal was to evaluate the effects of halothane and thiopental on SP-C messenger RNA (mRNA) expression in vitro in rat alveolar type II cells and in vivo in mechanically ventilated rats.

Methods: In vitro, freshly isolated alveolar type II cells were exposed to halothane during 4 h (1, 2, 4%) and 8 h (1%), and to thiopental during 4 h (10, 100 [mu]m) and 8 h (100 [mu]m). In vivo, rats were anesthetized with intraperitoneal thiopental or inhaled 1% halothane and mechanically ventilated for 4 or 8 h. SP-C mRNA expression was evaluated by ribonuclease protection assay.

Results: In vitro, 4-h exposure of alveolar type II cells to thiopental 10 and 100 [mu]m increased their SP-C mRNA content to 145 and 197%, respectively, of the control values. In alveolar type II cells exposed for 4 h to halothane 1, 2, and 4%, the SP-C mRNA content increased dose-dependently to 160, 235, and 275%, respectively, of the control values. In vivo, in mechanically ventilated rats, 4 h of halothane anesthesia decreased the lung SP-C mRNA content to 53% of the value obtained in control (nonanesthetized, nonventilated) animals; thiopental anesthesia increased to 150% the lung SP-C mRNA content.  相似文献   


8.
Background: HERG (human ether-a-gogo related gene) encodes the cardiac rapidly activating delayed rectifier potassium currents (Ikr), which play an important role in cardiac action potential repolarization. General anesthetics, like halothane, can prolong Q-T interval, suggesting that they act on myocellular repolarization, possibly involving HERG channels. Evidence for direct modulation of HERG channels by halothane is still lacking. To gain insight on HERG channel modulation by halothane the authors recorded macroscopic currents expressed in Xenopus oocytes and conducted non-stationary noise analysis to evaluate single channel parameters modified by the anesthetic.

Methods: Macroscopic currents were recorded in 120 mm K+ internal-5 mm K+ external solutions with the cut open oocyte technique. Macropatch recordings for non-stationary noise analysis of HERG tail currents were made in symmetrical 120 mm K+ solutions. Pulse protocols designed for HERG current recording were elicited from a holding potential of -80 mV. Halothane was delivered via gravity-fed perfusion.

Results: Halothane (0.7%, 1.5%, and 3%) decreased macroscopic HERG currents in a concentration-dependent manner (average reduction by 14%, 22%, and 35% in the range of -40 mV to 40 mV) irrespective of potential. HERG currents had slower activation and accelerated deactivation and inactivation. Non-stationary noise analysis revealed that halothane, 1.5%, decreased channel Po by 27%, whereas single-channel current amplitudes and number of channels in the patch remained unchanged.  相似文献   


9.
10.
11.
12.
Background: In 1992, Medicare changed its method for calculating physician payments. The resulting fee schedules have contained low payments for anesthesiologists. Now, other third-party (insurance) payers are using these schedules. The financial impact on anesthesiologists if all payers pay Medicare rates is unknown.

Methods: Payments from Medicare were compared with payments from other third parties in each clinical procedural terminology (CPT) grouping used by the West Virginia University Department of Anesthesiology during 1998. Changes in total Department of Anesthesiology receipts were determined if non-Medicare third-party payers paid Medicare rates. Then, the effect of adding payments at Medicare rates from patients without insurance was determined. Finally, potential changes in receipts of the Departments of Anesthesiology, Radiology, Surgery, and Medicine were compared by considering only patients with insurance and recalculating total payments to the departments using Medicare rates.

Results: Medicare paid less than other third-party payers in every clinical procedural terminology group. Total Department of Anesthesiology payments would decrease by 31% if all non-Medicare third-parties paid Medicare rates. Adding payments at Medicare rates from patients without insurance still leads to a 21% decrease in total Department of Anesthesiology receipts. Considering only patients with third-party coverage, Medicare-rate payments would decrease total Department of Anesthesiology payments by 37%, whereas radiology, surgery, and medicine payments would decrease by 26, 22, and 13% respectively.  相似文献   


13.
14.
15.
Background: Xenon, the "inert" gaseous anesthetic, is an antagonist at the N-methyl-d-aspartate (NMDA)-type glutamate receptor. Because of the pivotal role that NMDA receptors play in neuronal injury, the authors investigated the efficacy of xenon as a neuroprotectant in both in vitro and in vivo paradigms.

Methods: In a mouse neuronal-glial cell coculture, injury was provoked either by NMDA, glutamate, or oxygen deprivation and assessed by the release of lactate dehydrogenase into the culture medium. Increasing concentrations of either xenon or nitrogen (10-75% of an atmosphere) were coadministered and maintained until injury was assessed. In separate in vivo experiments, rats were administered N-methyl-dl-aspartate and killed 3 h later. Injury was quantified by histologic assessment of neuronal degeneration in the arcuate nucleus of the hypothalamus.

Results: Xenon exerted a concentration-dependent protection against neuronal injury provoked by NMDA (IC50 = 19 +/- 6% atm), glutamate (IC50 = 28 +/- 8% atm), and oxygen deprivation (IC50 = 10 +/- 4% atm). Xenon (60% atm) reduced lactate dehydrogenase release to baseline concentrations with oxygen deprivation, whereas xenon (75% atm) reduced lactate dehydrogenase release by 80% with either NMDA- or glutamate-induced injury. In an in vivo brain injury model in rats, xenon exerted a concentration-dependent protective effect (IC50 = 78 +/- 8% atm) and reduced the injury by 45% at the highest xenon concentration tested (75% atm).  相似文献   


16.
Background: Lipid emulsion infusion reverses cardiovascular compromise due to local anesthetic overdose in laboratory and clinical settings. The authors compared resuscitation with lipid, epinephrine, and saline control in a rat model of bupivacaine-induced cardiac toxicity to determine whether lipid provides a benefit over epinephrine.

Methods: Bupivacaine, 20 mg/kg, was infused in rats anesthetized with isoflurane, producing asystole in all subjects. Ventilation with 100% oxygen and chest compressions were begun immediately, along with intravenous treatment with 30% lipid emulsion or saline (5-ml/kg bolus plus continuous infusion at 0.5 ml [middle dot] kg-1 [middle dot] min-1) or epinephrine (30 [mu]g/kg). Chest compressions were continued and boluses were repeated at 2.5 and 5 min until the native rate-pressure product was greater than 20% baseline. Electrocardiogram and arterial pressure were monitored continuously and at 10 min, arterial blood gas, central venous oxygen saturation, and blood lactate were measured. Effect size (Cohen d) was determined for comparisons at 10 min.

Results: Lipid infusion resulted in higher rate-pressure product (P < 0.001, d = 3.84), pH (P < 0.01, d = 3.78), arterial oxygen tension (P < 0.05, d = 2.8), and central venous oxygen saturation (P < 0.001, d = 4.9) at 10 min than did epinephrine. Epinephrine treatment caused higher lactate (P < 0.01, d = 1.48), persistent ventricular ectopy in all subjects, pulmonary edema in four of five rats, hypoxemia, and a mixed metabolic and respiratory acidosis by 10 min.  相似文献   


17.
Background: The cardiac safety of droperidol given at antiemetic doses is a matter of debate. Although droperidol potently inhibits human ether-a-go-go-related gene (HERG) channels, the molecular mode of this interaction is unknown. The role of amino acid residues typically mediating high-affinity block of HERG channels is unclear. It is furthermore unresolved whether droperidol at antiemetic concentrations induces action potential prolongation and arrhythmogenic early afterdepolarizations in cardiac myocytes.

Methods: Molecular mechanisms of HERG current inhibition by droperidol were established using two-electrode voltage clamp recordings of Xenopus laevis oocytes expressing wild-type and mutant channels. The mutants T623A, S624A, V625A, Y652A, and F656A were generated by site-directed mutagenesis. The effect of droperidol on action potentials was investigated in cardiac myocytes isolated from guinea pig hearts using the patch clamp technique.

Results: Droperidol inhibited currents through HERG wild-type channels with a concentration of half-maximal inhibition of 0.6-0.9 [mu]m. Droperidol shifted the channel activation and the steady state inactivation toward negative potentials while channel deactivation was not affected. Current inhibition increased with membrane potential and with increasing duration of current activation. Inhibition of HERG channels was similarly reduced by all mutations. Droperidol at concentrations between 5 and 100 nm prolonged whereas concentrations greater than 300 nm shortened action potentials. Early afterdepolarizations were not observed.  相似文献   


18.
Background: Occupational exposure of healthcare workers to natural rubber latex has led to sensitization and potentially life-threatening anaphylaxis. Although environmental exposure to natural rubber latex products is necessary for sensitization, it is not sufficient. A number of genetic factors also seem to contribute to the latex sensitization; however, the multigenic nature of the allergic phenotype has made the identification of susceptibility genes difficult. The current study tests the hypothesis that known functional polymorphisms in genes encoding interleukin 4, interleukin 13, and interleukin 18 occur in a higher frequency in healthcare workers with natural rubber latex allergy.

Methods: Four hundred thirty-two healthcare workers with occupational exposure to natural rubber latex were screened using a clinical history questionnaire and latex-specific immunoglobulin E serology. Genomic DNA was extracted from peripheral blood lymphocytes and analyzed for single-nucleotide polymorphisms in candidate genes of interest. Data from cases and controls were analyzed by nominal logistic regression, with P < 0.05 considered significant.

Results: The latex allergy phenotype was significantly associated with promoter polymorphisms in IL13 -1055 (P = 0.02), IL18 -607 (P = 0.02), and IL18 -656 (P = 0.02) compared with nonatopic controls.  相似文献   


19.
Background: In human skeletal muscles, the phosphodiesterase-III inhibitor enoximone induces in vitro contracture development, and it has been suggested that enoximone could trigger malignant hyperthermia (MH). In this study, the in vitro and in vivo effects of enoximone in MH-normal (MHN) and MH-susceptible (MHS) swine were investigated.

Methods: Malignant hyperthermia trigger-free general anesthesia was performed in MHS and MHN swine. Skeletal muscle specimens were excised for an in vitro contracture test with 0.6 mm enoximone. Thereafter, MHS and MHN swine were exposed to cumulative administration of 0.5, 1, 2, 4, 8, 16, and 32 mg/kg enoximone intravenously. Clinical occurrence of MH was defined by a Pco2 greater than 70 mmHg, a pH less than 7.20, and an increase in body temperature of more than 2.0[degrees]C.

Results: Enoximone induced marked contractures in all MHS muscle specimens in vitro. In contrast, only small or no contracture development was observed in MHN muscle specimens, without an overlap in contractures between MHS and MHN muscles. However, in vivo, no clinical differences were found between MHS and MHN swine following cumulative enoximone doses. According to the defined criteria, none of the swine developed MH during the experiment. Furthermore, high enoximone doses induced progressive circulatory insufficiency, and after receiving 32 mg/kg enoximone, all animals died of cardiovascular failure.  相似文献   


20.
Background: Electrophysiologic experiments in rodents have found that nitrous oxide and xenon inhibit N-methyl-d-aspartate (NMDA)-type glutamate receptors. These findings led to the hypothesis that xenon and nitrous oxide along with ketamine form a class of anesthetics with the identical mechanism, NMDA receptor antagonism. Here, the authors ask in Caenorhabditis elegans whether xenon, like nitrous oxide, acts by a NMDA receptor-mediated mechanism.

Methods: Xenon:oxygen mixtures were delivered into sealed chambers until the desired concentration was achieved. The effects of xenon on various behaviors were measured on wild-type and mutant C. elegans strains.

Results: With an EC50 of 15-20 vol% depending on behavioral endpoint, xenon altered C. elegans locomotion in a manner indistinguishable from that of mutants in glutamatergic transmission. Xenon reduced the frequency and duration of backward locomotion without altering its speed or other behaviors tested. Mutation of glr-1, encoding a non-NMDA glutamate receptor subunit, abolished the behavioral effects of xenon; however, mutation of nmr-1, which encodes the pore-forming subunit of an NMDA glutamate receptor previously shown to be required for nitrous oxide action, did not significantly alter xenon response. Transformation of the glr-1 mutant with the wild-type glr-1 gene partially restored xenon sensitivity, confirming that glr-1 was necessary for the full action of xenon.  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号