首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We recorded high-best-frequency single-unit responses to free-field noise bursts that varied in intensity and azimuth to determine whether inferior colliculus (IC) neurons derive directionality from monaural spectral-shape. Sixty-nine percent of the sample was directional (much more responsive at some azimuths than others). One hundred twenty-nine directional units were recorded under monaural conditions (unilateral ear plugging). Binaural directional (BD) cells showed weak monaural directionality. Monaural directional (MD) cells showed strong monaural directionality, i.e., were much more responsive at some directions than others. Some MD cells were sensitive to both monaural and binaural directional cues. MD cells were monaurally nondirectional in response to tone bursts that lack direction-dependent variation in spectral shape. MD cells were unresponsive to noise bursts at certain azimuths even at high intensities showing that particular spectral shapes inhibit their responses. Two-tone inhibition was stronger where MD cells were unresponsive to noise stimulation than at directions where they were responsive. According to the side-band inhibition model, MD cells derive monaural directionality by comparing energy in excitatory and inhibitory frequency domains and thus should have stronger inhibitory side-bands than BD cells. MD and BD cells showed differences in breadth of excitatory frequency domains, strength of nonmonotonic level tuning, and responsiveness to tones and noise that were consistent with this prediction. Comparison of these data with previous findings shows that strength of spectral inhibition increases greatly between the level of the cochlear nucleus and the IC, and there is relatively little change in strength of spectral inhibition among the IC, auditory thalamus, and cortex.  相似文献   

2.
Sound localization depends on multiple acoustic cues such as interaural differences in time (ITD) and level (ILD) and spectral features introduced by the pinnae. Although many neurons in the inferior colliculus (IC) are sensitive to the direction of sound sources in free field, the acoustic cues underlying this sensitivity are unknown. To approach this question, we recorded the responses of IC cells in anesthetized cats to virtual space (VS) stimuli synthesized by filtering noise through head-related transfer functions measured in one cat. These stimuli not only possess natural combinations of ITD, ILD, and spectral cues as in free field but also allow precise control over each cue. VS receptive fields were measured in the horizontal and median vertical planes. The vast majority of cells were sensitive to the azimuth of VS stimuli in the horizontal plane for low to moderate stimulus levels. Two-thirds showed a "contra-preference" receptive field, with a vigorous response on the contralateral side of an edge azimuth. The other third of receptive fields were tuned around a best azimuth. Although edge azimuths of contra-preference cells had a broad distribution, best azimuths of tuned cells were near the midline. About half the cells tested were sensitive to the elevation of VS stimuli along the median sagittal plane by showing either a peak or a trough at a particular elevation. In general receptive fields for VS stimuli were similar to those found in free-field studies of IC neurons, suggesting that VS stimulation provided the essential cues for sound localization. Binaural interactions for VS stimuli were studied by comparing responses to binaural stimulation with responses to monaural stimulation of the contralateral ear. A majority of cells showed either purely inhibitory (BI) or mixed facilitatory/inhibitory (BF&I) interactions. Others showed purely facilitatory (BF) or no interactions (monaural). Binaural interactions were correlated with azimuth sensitivity: most contra-preference cells had either BI or BF&I interactions, whereas tuned cells were usually BF. These correlations demonstrate the importance of binaural interactions for azimuth sensitivity. Nevertheless most monaural cells were azimuth-sensitive, suggesting that monaural cues also play a role. These results suggest that the azimuth of a high-frequency sound source is coded primarily by edges in azimuth receptive fields of a population of ILD-sensitive cells.  相似文献   

3.
We tested two hypotheses to determine whether dorsal cochlear nucleus (DCN) neurons are specialized to derive directionality from spectral notches: DCN neurons exhibit greater spectral-dependent directionality than ventral cochlear nucleus (VCN) neurons, and spectral-dependent directionality depends on response minima (nulls) produced by coincidence of best frequency (BF) and spectral-notch center frequency. Single-unit responses to 50-ms noise and tone bursts were recorded in barbiturate-anesthetized cats (BFs: 4-37 kHz). Units were classified using BF tone poststimulus time histograms. Pauser, onset-G (type II interneurons), and some chopper units were recorded from the DCN. Primary-like, onset-CIL (onset other than onset-G), and most choppers in the sample were recorded from the VCN. Many pauser and onset-G units were highly directional to noise. Chopper, onset-CIL, and primary-like units (collectively referred to as C-O-P units) were not. The difference in directionality depends on a monaural mechanism as pausers were more directional to monaural noise than C-O-P units. Contralateral inhibition produced a small increase in pauser directionality to noise simulation but had no effect on directionality of C-O-P units. Pauser and C-O-P units exhibited similar low directionality to BF tone, showing that the difference in noise directionality between groups depends on spectral cues. These results show that spectral-dependent directionality is a DCN specialization. Azimuth functions of highly directional units exhibited response nulls, and there was a linear relationship between BFs in the range of 8-13 kHz and azimuthal locations of nulls. This relationship parallels the known spatial distribution of spectral-notch center frequencies on the horizontal plane. Furthermore spatial receptive fields of pausers show response nulls that follow the expected diagonal trajectory of the spectral notch in this frequency range. These results show that DCN spectral-dependent directionality depends on response nulls produced by coincidence of unit BF and spectral-notch center-frequency.  相似文献   

4.
This paper reports on the acute effects of a monaural plug on directional hearing in the horizontal (azimuth) and vertical (elevation) planes of human listeners. Sound localization behavior was tested with rapid head-orienting responses toward brief high-pass filtered (>3 kHz; HP) and broadband (0.5-20 kHz; BB) noises, with sound levels between 30 and 60 dB, A-weighted (dBA). To deny listeners any consistent azimuth-related head-shadow cues, stimuli were randomly interleaved. A plug immediately degraded azimuth performance, as evidenced by a sound level-dependent shift ("bias") of responses contralateral to the plug, and a level-dependent change in the slope of the stimulus-response relation ("gain"). Although the azimuth bias and gain were highly correlated, they could not be predicted from the plug's acoustic attenuation. Interestingly, listeners performed best for low-intensity stimuli at their normal-hearing side. These data demonstrate that listeners rely on monaural spectral cues for sound-source azimuth localization as soon as the binaural difference cues break down. Also the elevation response components were affected by the plug: elevation gain depended on both stimulus azimuth and on sound level and, as for azimuth, localization was best for low-intensity stimuli at the hearing side. Our results show that the neural computation of elevation incorporates a binaural weighting process that relies on the perceived, rather than the actual, sound-source azimuth. It is our conjecture that sound localization ensues from a weighting of all acoustic cues for both azimuth and elevation, in which the weights may be partially determined, and rapidly updated, by the reliability of the particular cue.  相似文献   

5.
After exposure to a consistent spatial disparity of auditory and visual stimuli, subjective localization of sound sources is usually shifted in the direction of the visual stimuli. This study investigates whether such aftereffects can be observed in humans after exposure to a conflicting bimodal stimulation in virtual reality and whether these aftereffects are confined to the trained locations. Fourteen subjects participated in an adaptation experiment, in which auditory stimuli were convolved with non-individual head-related transfer functions, delivered via headphones. First, we assessed the auditory localization of subjects in darkness. They indicated the perceived direction of a sound using an angular pointer. We then immersed the subjects in a virtual environment by means of a head-mounted display. They were asked to reproduce sequences of movements of virtual objects with a mouse click on the objects. However, we introduced a spatial disparity of 15 degrees between the visual event and the concurrent auditory stimulation. After 20 min of exposure, we tested the subjects again in total darkness to determine whether their auditory localization system had been modified by the conflicting visual signals. We observed a shift of subjective localization towards the left in both dorsal and frontal hemifields of the subject, mainly for auditory stimuli located in the right hemispace. This result suggests that interaural difference cues and monaural spectral cues were not equally adapted, and that visual stimuli mainly influence the processing of binaural directional cues of sound localization.  相似文献   

6.
We are regularly exposed to several concurrent sounds, producing a mixture of binaural cues. The neuronal mechanisms underlying the localization of concurrent sounds are not well understood. The major binaural cues for localizing low-frequency sounds in the horizontal plane are interaural time differences (ITDs). Auditory brain stem neurons encode ITDs by firing maximally in response to "favorable" ITDs and weakly or not at all in response to "unfavorable" ITDs. We recorded from ITD-sensitive neurons in the dorsal nucleus of the lateral lemniscus (DNLL) while presenting pure tones at different ITDs embedded in noise. We found that increasing levels of concurrent white noise suppressed the maximal response rate to tones with favorable ITDs and slightly enhanced the response rate to tones with unfavorable ITDs. Nevertheless, most of the neurons maintained ITD sensitivity to tones even for noise intensities equal to that of the tone. Using concurrent noise with a spectral composition in which the neuron's excitatory frequencies are omitted reduced the maximal response similar to that obtained with concurrent white noise. This finding indicates that the decrease of the maximal rate is mediated by suppressive cross-frequency interactions, which we also observed during monaural stimulation with additional white noise. In contrast, the enhancement of the firing rate to tones at unfavorable ITD might be due to early binaural interactions (e.g., at the level of the superior olive). A simple simulation corroborates this interpretation. Taken together, these findings suggest that the spectral composition of a concurrent sound strongly influences the spatial processing of ITD-sensitive DNLL neurons.  相似文献   

7.
We proposed to study and quantify the anteroposterior component, on top of the lateral one, of the body sway induced by different configurations of galvanic vestibular stimulation (GVS) in order to advance the understanding of the orientation of the response. Four stimulation configurations were used in two separate experiments: monaural, binaural, and opposite double monaural in the first experiment (11 subjects); monaural and double monaural in the second (13 subjects). The postural response of the subjects, standing with their eyes closed, to the stimulus (0.6 mA, 4 s) was assessed by measuring the displacement of the center of pressure (CoP) using a force platform. As usual, binaural GVS induced a strictly lateral deviation of the center of pressure. The opposite double monaural condition induced a similar lateral sway to that obtained in the binaural mode, although with a very different stimulation configuration. Monaural GVS induced an oblique, stereotyped deviation in each subject. The anteroposterior component comprised a forward deviation when the anode was on the forehead and a backward deviation when the anode was on the mastoid. The lateral component, directed towards the anode as in the binaural design, was twice as large in the binaural than in the monaural mode. The second experiment showed that double monaural stimulation elicited an anteroposterior deviation (backwards when the anode was on the mastoids and forwards when it was on the forehead) that was equivalent to the addition of two complementary monaural configurations. The present results show that monaural stimulation activates one side of the vestibular apparatus and induces reproducible, stereotyped deviations of the CoP in both the anteroposterior and lateral plane. Secondly, binaural GVS appears to result from the addition of two complementary monaural stimulations. Lateral components of the response to each stimulation, being in the same direction, are summed, whilst anteroposterior components, being in opposite directions, cancel each other out. The opposite happens when both labyrinths are polarized in the same way, as in the double monaural configuration. We suggest that the orientation of the response to GVS is a function of the imbalance between right and left vestibular polarization, rather than a function of the actual position of the electrodes.  相似文献   

8.
Despite decades of research devoted to the study of inferior colliculus (IC) neurons' tuning to sound-source azimuth, there remain many unanswered questions because no previous study has examined azimuth tuning over a full range of 360° azimuths at a wide range of stimulus levels in an unanesthetized preparation. Furthermore, a comparison of azimuth tuning to binaural and contralateral ear stimulation over ranges of full azimuths and widely varying stimulus levels has not previously been reported. To fill this void, we have conducted a study of azimuth tuning in the IC of the unanesthetized rabbit over a 300° range of azimuths at stimulus levels of 10-50 dB above neural threshold to both binaural and contralateral ear stimulation using virtual auditory space stimuli. This study provides systematic evidence for neural coding of azimuth. We found the following: 1) level-tolerant azimuth tuning was observed in the top 35% regarding vector strength and in the top 15% regarding vector angle of IC neurons; 2) preserved azimuth tuning to binaural stimulation at high stimulus levels was created as a consequence of binaural facilitation in the contralateral sound field and binaural suppression in the ipsilateral sound field; 3) the direction of azimuth tuning to binaural stimulation was primarily in the contralateral sound field, and its center shifted laterally toward -90° with increasing stimulus level; 4) at 10 dB, azimuth tuning to binaural and contralateral stimulation was similar, indicating that it was mediated by monaural mechanisms; and 5) at higher stimulus levels, azimuth tuning to contralateral ear stimulation was severely degraded. These findings form a foundation for understanding neural mechanisms of localizing sound-source azimuth.  相似文献   

9.
A cytophotometric study of sections stained with gallocyanin and chrome alum showed that monaural stimulation for 2 h and binaural stimulation for 1.5 h with rhythmic noise signals led to a marked increase in the cytoplasmic RNA content per cell in the principal and large multipolar neurons of the dorsal and ventral parts of the ventrolateral region of the central nucleus of the inferior colliculus. The increase in cytoplasmic RNA content in the principal cells of the ipsiand contralateral parts of this nucleus relative to the stimulated ear in the case of monaural stimulation and the increase in RNA content in response to binaural stimulation suggests a uniform distribution of bilaterally converging connections from the lower nuclei of the auditory system on the principal cells. The increase in cytoplasmic RNA in the large multipolar cells of the contralateral central nucleus in response to monaural stimulation is evidence of the predominantly contralateral projection to these cells. The results are evidence of convergence of binaural influences on the principal and large multipolar cells of the central nucleus of the inferior colliculus.Translated from Neirofiziologiya, Vol. 10, No. 6, pp. 598–605, November–December, 1978.  相似文献   

10.
The effect of eccentric eye position on the localization of sound in rear space was investigated, using a two-alternative forced-choice method in combination with a visual fixation task. The azimuthal position of the rear sound was perceived as shifted slightly (mean 1.2 degrees ) to the left of the subjects' median plane when fixation was 30 degrees to the right, or to the right when fixation was 30 degrees to the left. Combined with previous studies on localization in frontal space, this finding suggests that eye-position signals influence processing of binaural, but not monaural spectral, cues for directional hearing.  相似文献   

11.
1. Discharge properties of olivocochlear efferent neurons were measured in anesthetized cats. Previous studies of these neurons concentrated on monaural stimulation with tones and found sound-evoked discharge rates rarely exceeded 60 spikes/s (16, 20). In the present study, rates as high as 140 spikes/s were achieved by binaural stimulation and/or the addition of noise. Based on studies on the known effects of electrically stimulating the efferents such high rates of sound-evoked efferent activity probably have significant feedback effects on the auditory periphery. 2. Spontaneous discharge rate (SR) was weakly correlated with threshold among efferent neurons: those with SRs greater than 1 spikes/s were generally more sensitive than spontaneously inactive fibers. The discharge rate measured in the absence of acoustic stimulation was shown to be dependent on stimulation history: some units with zero SR became spontaneously active after several minutes of continuous noise stimulation. 3. For stimulation with monaural tones, efferent excitability varied with characteristic frequency (CF): units with CF less than 10 kHz tended to have lower thresholds, higher discharge rates, and shorter latencies than higher CF units. These differences could be minimized by the addition of broadband noise (see below). 4. When tones were presented to one ear at a time, most efferent units appeared monaural (91%), with roughly two-thirds excited by ipsilateral stimuli and one-third by contralateral stimuli. However, the effects of simultaneous stimulation of the two ears suggested that the great majority of efferent units have binaural inputs: the addition of opposite-ear noise or tones, which presented alone were not excitatory, typically enhanced the response to main-ear stimulation. This type of binaural facilitation was strongest among low-CF efferents when the opposite-ear stimuli were tones, and strongest among high-CF units when the opposite-ear stimulus was broadband noise. 5. The binaural facilitation seen using opposite-ear noise both lowered the threshold (by as much as 40 dB) and increased the discharge rate (by as much as 80%) to tones presented in the main ear. Significant facilitation was seen with noise levels as low as 25 dB SPL or tone levels as low as 30 dB SPL. In general, the weaker the response to monaural stimuli, the stronger the binaural facilitation. 6. The facilitatory effects of stimulation with continuous noise could outlast the stimulus. Persistent increases in efferent sensitivity were documented following 10-min exposures to broadband noise at 85-115 dB SPL.  相似文献   

12.
The aim of the present study was to evaluate how hemispherectomized subjects localize sounds in free field using residual auditory structures under monaural testing conditions. The main objective of using a monaural condition with these subjects, who lack the terminal fields of auditory projections on one side, was to evaluate how the crossed and uncrossed pathways compare, with the aim of resolving this biologically critical function. In this model, crossed and uncrossed inputs refer to auditory stimulation presented to the unobstructed ear on the contralateral and the ipsilateral side of the intact hemisphere, respectively. Three hemispherectomized subjects (Hs) and ten control subjects (Cs) were tested for their accuracy to localize broad band noise bursts (BBNBs) of fixed intensity presented on the horizontal plane. BBNBs were delivered randomly through 16 loudspeakers mounted at 10 degrees intervals on a calibrated perimeter frame located inside an anechoic chamber. Subjects had to report the apparent stimulus location by pointing to its perceived position on the perimeter. Hs were less accurate than Cs in the baseline binaural condition, confirming the finding that with a single hemisphere and/or residual (subcortical) structures they cannot analyze binaural cues to sound localization as efficiently as with two fully functional hemispheres. In the monaural condition, Hs localized poorly when they had to depend on the uncrossed input, but performed as well or even better than the Cs with the crossed input. These findings suggest that monaural spectral cues, which constitute the only residual cue to localization under the monaural testing condition, are treated more efficiently, that is, they lead to better localization performance when relayed to the cortex via crossed pathways than through uncrossed pathways.  相似文献   

13.
The goal of the present study was to investigate how monaural sound localization on the horizontal plane in blind humans is affected by manipulating spectral cues. As reported in a previous study (Lessard et al. 1998), blind subjects are able to calibrate their auditory space despite their congenital lack of vision. Moreover, the performance level of half of the blind subjects was superior to that of sighted subjects under monaural listening conditions. Here, we first tested ten blind subjects and five controls in free-field (1) binaural and (2) monaural sound localization tasks. Results showed that, contrary to controls and half the blind subjects, five of the blind listeners were able to localize the sounds with one ear blocked. The blind subjects who showed good monaural localization performances were then re-tested in three additional monaural tasks, but we manipulated their ability to use spectral cues to carry out their discrimination. These subjects thus localized these same sounds: (3) with acoustical paste on the pinna, (4) with high-pass sounds and unobstructed pinna and (5) with low-pass sounds and unobstructed pinna. A significant increase in localization errors was observed when their ability to use spectral cues was altered. We conclude that one of the reasons why some blind subjects show supra-normal performances might be that they more effectively utilize auditory spectral cues.  相似文献   

14.
In the natural acoustic environment sounds frequently arrive at the two ears in quick succession. The responses of a cortical neuron to acoustic stimuli can be dramatically altered, usually suppressed, by a preceding sound. The purpose of this study was to determine if the binaural interaction evoked by a preceding sound is involved in subsequent suppressive interactions observed in auditory cortex neurons. Responses of neurons in the primary auditory cortex (AI) exhibiting binaural suppressive interactions (EO/I) were studied in barbiturate-anesthetized cats. For the majority (72.5%) of EO/I neurons studied, the response to a monaural contralateral stimulus was suppressed by a preceding monaural contralateral stimulus, but was not changed by a preceding monaural ipsilateral stimulus. For this subset of EO/I neurons, when a monaural contralateral stimulus was preceded by a binaural stimulus, the level of both the ipsilateral and the contralateral component of the binaural stimulus influenced the response to the subsequent monaural contralateral stimulus. When the contralateral level of the binaural stimulus was constant, increasing its ipsilateral level decreased the suppression of the response to the subsequent monaural contralateral stimulus. When the ipsilateral level of the binaural stimulus was constant, increasing its contralateral level increased the suppression of the response to the subsequent monaural contralateral stimulus. These results demonstrate that the sequential inhibition of responses of AI neurons is a function of the product of a preceding binaural interaction. The magnitude of the response to the contralateral stimulus is related to, but not determined by the magnitude of the response to the preceding binaural stimulus. Possible mechanisms of this sequential interaction are discussed.  相似文献   

15.
We investigated the properties of human saccadic eye movements evoked by acoustic stimuli in the two-dimensional frontal plane. These movements proved to be quite accurate, both in azimuth and in elevation, grovided the sound source spectrum had a broad bandwidth and a sufficiently long duration. If the acoustic target was a tone, the azimuth of the saccadic end points remained equally accurate, whereas the elevation of the response was related to the frequency of the tone, rather than to the physical position of the target. Saccade elevation accuracy also declined substantially for short-duration noise bursts, although response elevation remained highly correlated with target elevation. The latencies of auditory saccades depended on the amplitude, but not on the direction of the eye movement, suggesting a polar coordinate origin of auditory saccade initiation. We also observed that the trajectories of auditory saccades were often substantially curved. Both a qualitative and a model-based analysis showed that this curvature corrected for errors in the initial direction of the saccade. The latter analysis also suggested that the kinematic properties of auditory saccades could be described by the superposition of two overlapping saccadic eye movements, hypothesized to be based on binaural difference cues and monaural spectral cues in the auditory signal, respectively. It is argued that, although the audio-oculomotor system has to operate in a feedforward way, it must nevertheless have access to an accurate representation of actual and desired eye position. Different models underlying the generation of auditory saccades are discussed.  相似文献   

16.
We examined whether monaural prepulses produce more prepulse inhibition (PPI) because they might be more attention capturing (unambiguous to locate) than binaural prepulses. Monaural and binaural PPI was tested under normal and verbal and visuospatial attention manipulation conditions in 55 healthy men, including 29 meditators. Attention manipulations abolished monaural PPI superiority, similarly in meditators and meditation‐naïve individuals, and this was most strongly evident for right ear PPI under visuospatial attention manipulation. Meditators performed better than meditation‐naïve individuals on attention tasks (verbal: more targets detected; visuospatial: faster reaction time). Spatial attention processes contribute to monaural PPI, particularly with the right ear. Better attentional performance, with similar attentional modulation of PPI, may indicate a stronger attentional capacity in meditators, relative to meditation‐naïve individuals.  相似文献   

17.
1. Preliminary to extending a point process model of lateral superior olive (LSO) unit activity to describe the units' binaural responses, the statistical properties of their discharges to binaural tone bursts were studied. The hypothesis that stimulation of the contralateral ear results in the simple reduction of the ipsilateral input was also examined. Single-unit activity was recorded extracellularly from the LSO of the anesthetized cat. The sustained discharges to characteristic frequency (CF) tone bursts presented simultaneously to the two ears were examined to determine whether the fine temporal (statistical) properties of these discharges differed from those of the discharges elicited by stimulating the ipsilateral ear alone. 2. The major effect of simultaneously stimulating the contralateral ear was the inhibition (i.e., the reduction in the mean discharge rate) of the sustained discharges to the ipsilateral control stimulus. The temporal pattern of discharges to the ipsilateral stimulus was also affected by stimulation of the contralateral ear. The discharges to binaural stimulation were more irregular in pattern: they often produced bimodal or multimodal interval histograms where unimodal interval histograms had been produced by the discharges to the ipsilateral control stimulus alone. The hazard function, an estimate of the unit recovery function, also often differed in form for the binaural and monaural discharges. 3. The binaural discharges could be distinguished from an ipsilaterally elicited discharge of comparable mean rate: there was a greater incidence of "short" interspike intervals in the binaural discharge. These short interspike intervals occurred most frequently in the discharges to the ipsilateral control stimulus alone and infrequently in the discharges to an ipsilateral stimulus that produced a mean rate similar to that of the binaural discharge. Thus the dead time estimates derived from the binaural discharges were more similar to the estimates derived from the ipsilateral control discharges than to those derived from the comparable-rate ipsilaterally elicited discharges. 4. Although the measures of the recovery properties of LSO unit discharges differed under monaural and binaural stimulus conditions, the serial dependence observed between successive interspike intervals in the binaurally elicited discharges was similar to that in the ipsilaterally elicited discharges. The conditional mean function, an estimate of the serial dependence or unit shifting function, did not differ greatly in form for the monaural and binaural discharges.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

18.
The topographical response of a portion of an isofrequency contour in primary cat auditory cortex (AI) to a series of monaural and binaural stimuli was studied. Responses of single neurons to monaural and a matrix of binaural characteristic frequency tones, varying in average binaural level (ABL) and interaural level differences (ILD), were recorded. The topography of responses to monaural and binaural stimuli was appreciably different. Patches of cells that responded monotonically to increments in ABL alternated with patches that responded nonmonotonically to ABL. The patches were between 0.4 and 1 mm in length along an isofrequency contour. Differences were found among monotonic patches and among nonmonotonic patches. Topographically, activated and silent populations of neurons varied with both changes in ILD and changes in ABL, suggesting that the area of responsive units may underlie the coding of sound level and sound location.  相似文献   

19.
To date, most physiological studies that investigated binaural auditory processing have addressed the topic rather exclusively in the context of sound localization. However, there is strong psychophysical evidence that binaural processing serves more than only sound localization. This raises the question of how binaural processing of spatial cues interacts with cues important for feature detection. The temporal structure of a sound is one such feature important for sound recognition. As a first approach, we investigated the influence of binaural cues on temporal processing in the mammalian auditory system. Here, we present evidence that binaural cues, namely interaural intensity differences (IIDs), have profound effects on filter properties for stimulus periodicity of auditory midbrain neurons in the echolocating big brown bat, Eptesicus fuscus. Our data indicate that these effects are partially due to changes in strength and timing of binaural inhibitory inputs. We measured filter characteristics for the periodicity (modulation frequency) of sinusoidally frequency modulated sounds (SFM) under different binaural conditions. As criteria, we used 50% filter cutoff frequencies of modulation transfer functions based on discharge rate as well as synchronicity of discharge to the sound envelope. The binaural conditions were contralateral stimulation only, equal stimulation at both ears (IID = 0 dB), and more intense at the ipsilateral ear (IID = -20, -30 dB). In 32% of neurons, the range of modulation frequencies the neurons responded to changed considerably comparing monaural and binaural (IID =0) stimulation. Moreover, in approximately 50% of neurons the range of modulation frequencies was narrower when the ipsilateral ear was favored (IID = -20) compared with equal stimulation at both ears (IID = 0). In approximately 10% of the neurons synchronization differed when comparing different binaural cues. Blockade of the GABAergic or glycinergic inputs to the cells recorded from revealed that inhibitory inputs were at least partially responsible for the observed changes in SFM filtering. In 25% of the neurons, drug application abolished those changes. Experiments using electronically introduced interaural time differences showed that the strength of ipsilaterally evoked inhibition increased with increasing modulation frequencies in one third of the cells tested. Thus glycinergic and GABAergic inhibition is at least one source responsible for the observed interdependence of temporal structure of a sound and spatial cues.  相似文献   

20.
Human sound localization relies on binaural difference cues for sound-source azimuth and pinna-related spectral shape cues for sound elevation. Although the interaural timing and level difference cues are weighted to produce a percept of sound azimuth, much less is known about binaural mechanisms underlying elevation perception. This problem is particularly interesting for the frontal hemifield, where binaural inputs are of comparable strength. In this paper, localization experiments are described in which hearing for each ear was either normal, or spectrally disrupted by a mold fitted to the external ear. Head-fixed saccadic eye movements were used as a rapid and accurate indicator of perceived sound direction in azimuth and elevation. In the control condition (both ears free) azimuth and elevation components of saccadic responses were well described by a linear regression line for the entire measured range. For unilateral mold conditions, the azimuth response components did not differ from controls. The influence of the mold on elevation responses was largest on the ipsilateral side, and declined systematically with azimuth towards the side of the free ear. Near the midsagittal plane the elevation responses were clearly affected by the mold, suggesting a systematic binaural interaction in the neural computation of perceived elevation that straddles the midline. A quantitative comparison of responses from the unilateral mold, the bilateral mold and control condition provided evidence that the fusion process can be described by binaural weighted averaging. Two different conceptual schemes are discussed that could underlie the observed responses. Electronic Publication  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号