首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
It is well established that cholinergic agonists, when injected into the pontine reticular formation in cats, produce a generalized suppression of motor activity (1, 3, 6, 14, 18, 27, 33, 50). The responsible neuronal mechanisms were explored by measuring ventral root activity, the amplitude of the Ia-monosynaptic reflex, and the basic electrophysiological properties of hindlimb motoneurons before and after carbachol was microinjected into the pontine reticular formation of decerebrate cats. Intrapontine microinjections of carbachol (0.25-1.0 microliter, 16 mg/ml) resulted in the tonic suppression of ventral root activity and a decrease in the amplitude of the Ia-monosynaptic reflex. An analysis of intracellular records from lumbar motoneurons during the suppression of motor activity induced by carbachol revealed a considerable decrease in input resistance and membrane time constant as well as a reduction in motoneuron excitability, as evidenced by a nearly twofold increase in rheobase. Discrete inhibitory postsynaptic potentials were also observed following carbachol administration. The changes in motoneuron properties (rheobase, input resistance, and membrane time constant), as well as the development of discrete inhibitory postsynaptic potentials, indicate that spinal cord motoneurons were postsynaptically inhibited following the pontine administration of carbachol. In addition, the inhibitory processes that arose after carbachol administration in the decerebrate cat were remarkably similar to those that are present during active sleep in the chronic cat. These findings suggest that the microinjection of carbachol into the pontine reticular formation activates the same brain stem-spinal cord system that is responsible for the postsynaptic inhibition of alpha-motoneurons that occurs during active sleep.  相似文献   

2.
The present study was undertaken to determine whether the postsynaptic inhibition of motoneurons that occurs following the pontine microinjection of carbachol in the decerebrate cat is due to the activity of Renshaw cells. Thirty-two out of 37 Renshaw cells (86%) were spontaneously active prior to the administration of carbachol, whereas only 2 out of 13 Renshaw cells (15%) discharged during carbachol-induced motor inhibition. In addition, discrete inhibitory synaptic potentials were observed in 33% of the Renshaw cells from which intracellular recordings were obtained after carbachol administration, indicating that these cells were actively inhibited. The finding that a population of Renshaw cells, which inhibit motoneurons, were themselves inhibited during a period of profound motoneuron inhibition was quite unexpected. These results support the conclusion that Renshaw cells are not the inhibitory interneurons that are responsible for the powerful inhibition of motoneurons that occurs following the pontine microinjection of carbachol.  相似文献   

3.
1. The present report describes the relationship that occurs during active sleep between ponto-geniculo-occipital (PGO) waves and changes in spinal cord motoneuron membrane potential. 2. These changes were characterized by the appearance of a complex pattern of motoneuron hyperpolarizing potentials, with a duration of approximately 300 ms, that were centered around the PGO wave. The first hyperpolarizing potential began before the onset of the PGO wave. Emerging from this hyperpolarizing potential was a second, larger-amplitude hyperpolarizing potential; it was followed by a succession of smaller-amplitude hyperpolarizations. 3. All potentials were present in conjunction with PGO waves during active sleep, but they were observed only in some motoneurons when PGO waves occurred during the transition period from quiet sleep to active sleep. 4. The potentials were reversed by chloride, demonstrating that they were inhibitory postsynaptic potentials (IPSPs). 5. These data, combined with the fact that these PGO-related IPSPs are blocked by strychnine, support the hypothesis that they are the result of the phasic enhancement of the activity of the same system that inhibits motoneurons during active sleep.  相似文献   

4.
To assess the functional significance of late inspiratory (late-I) neurons in inspiratory off-switching (IOS), membrane potential and discharge properties were examined in vagotomized, decerebrate cats. During spontaneous IOS, late-I neurons displayed large membrane depolarization and associated discharge of action potentials that started in late inspiration, peaked at the end of inspiration, and ended during postinspiration. Depolarization was decreased by iontophoresis of dizocilpine and eliminated by tetrodotoxin. Stimulation of the vagus nerve or the nucleus parabrachialis medialis (NPBM) also evoked depolarization of late-I neurons and IOS. Waves of spontaneous chloride-dependent inhibitory postsynaptic potentials (IPSPs) preceded membrane depolarization during early inspiration and followed during postinspiration and stage 2 expiration of the respiratory cycle. Iontophoresed bicuculline depressed the IPSPs. Intravenous dizocilpine caused a greatly prolonged inspiratory discharge of the phrenic nerve (apneusis) and suppressed late-inspiratory depolarization as well as early-inspiratory IPSPs, resulting in a small constant depolarization throughout the apneusis. NPBM or vagal stimulation after dizocilpine produced small, stimulus-locked excitatory postsynaptic potentials (EPSPs) in late-I neurons. Neurobiotin-labeled late-I neurons revealed immunoreactivity for glutamic acid decarboxylase as well as N-methyl-D-aspartate (NMDA) receptors. These results suggest that late-I neurons are GABAergic inhibitory neurons, while the effects of bicuculline and dizocilpine indicate that they receive periodic waves of GABAergic IPSPs and glutamatergic EPSPs. The data lead to the conclusion that late-I neurons play an important inhibitory role in IOS. NMDA receptors are assumed to augment and/or synchronize late-inspiratory depolarization and discharge of late-I neurons, leading to GABA release and consequently off-switching of bulbar inspiratory neurons and phrenic motoneurons.  相似文献   

5.
Cataplexy is usually seen as rapid eye movement (REM) sleep atonia occurring at an inopportune moment. REM sleep atonia is the result of postsynaptic inhibition, i.e. inhibition of alpha motor neurones. Although this may explain the suppression of H-reflexes during REM sleep, cataplexy and laughter, it is not the only explanation. Presynaptic inhibition, in which afferent impulses are prevented from reaching motor neurones, is an alternative. Testing H-reflexes and magnetic-evoked potentials (MEPs) helps to tell them apart: in postsynaptic inhibition MEPs and H-reflexes change in tandem, while H-reflexes may decrease independent of MEPs with other inhibition modes. We studied motor inhibition during laughter, the strongest trigger for cataplexy. H-reflexes were evoked every 2 s in the soleus muscle in 10 healthy subjects watching comical video fragments. MEPs were evoked when H-reflexes decreased during laughter, and, as a control, when subjects did not laugh. Pairs of MEPs and the immediately preceding H-reflexes were studied. Compared with the control condition, laughter caused mean MEP area to increase by 60% (P=0.006) and mean H-reflex amplitude to decrease by 33% (P=0.008). This pattern proves that postsynaptic inhibition cannot have been the sole influence. The findings do not prove which mechanisms are involved; one possibility is that the decrease in H-reflex amplitude was the result of presynaptic inhibition, and that cortical and/or spinal facilitation accounted for increased MEPs. Regardless, the pattern differs fundamentally from the reported mechanism of REM sleep atonia. Existing scanty data on cataplexy suggest a pattern of H-reflexes and MEPs similar to that during laughter, but this needs further study.  相似文献   

6.
The present study was aimed at elucidating the pontomedullary and spinal cord mechanisms of postural atonia induced by microinjection of carbachol and restored by microinjections of serotonin or atropine sulfate into the nucleus reticularis pontis oralis (NRPo). Medullary reticulospinal neurons (n=132) antidromically activated by stimulating the L1 spinal cord segment were recorded extracellularly. Seventy-eight of them were orthodromically activated with mono- or disynaptic latencies by stimulating the NRPo area at the site where carbachol injections effectively induced postural atonia. Most of these reticulospinal neurons (71 of 78) were located in the nucleus reticularis gigantocellularis (NRGc). Following carbachol injection into the NRPo, discharge rates of the NRGc reticulospinal neurons (29 of 34) increased, while the activity of soleus muscles decreased bilaterally. Serotonin or atropine injections into the same NRPo area resulted in a decrease in the discharge rates of the reticulospinal neurons with a concomitant increase in the levels of hindlimb muscle tone. Membrane potentials of hindlimb extensor and flexor alpha motoneurons (MNs) were hyperpolarized and depolarized by carbachol and serotonin or atropine injections, respectively. In all pairs of reticulospinal neurons and MNs (n=11), there was a high correlation between the increase in the discharge rates and the degree of membrane hyperpolarization of the MNs. Spike-triggered averaging during carbachol-induced atonia revealed that inhibitory postsynaptic potentials (IPSPs) were evoked in 15 MNs by the discharges of nine reticulospinal neurons. Four of them evoked IPSPs in more than one MN. The mean segmental delay and the mean time to the peak of IPSPs were 1.6 ms and 2.0 ms, respectively. Axonal trajectories of reticulospinal neurons (n=6), which evoked IPSPs in MNs, were investigated in the lumbosacral segments (L1-S1) by antidromic threshold mapping. The stem axons descended through the ventral (n=2) and ventrolateral (n=4) funiculi in the lumbar segments. All axons projected their collaterals to the intermediate region (laminae V, VI) and ventromedial part (laminae VII, VIII) of the gray matter. All these results suggest that the reticulospinal pathway originating from the NRGc is involved in postural atonia induced by pontine microinjection of carbachol, and that the pathway is inactivated during the postural restoration induced by subsequent injections of serotonin or atropine. It is further suggested that the pontine inhibitory effect is mediated via segmental inhibitory interneurons projecting to MNs.  相似文献   

7.
Eye movements, ponto-geniculo-occipital (PGO) waves, muscular atonia and desynchronized cortical activity are the main characteristics of rapid eye movement (REM) sleep. Although eye movements designate this phase, little is known about the activity of the oculomotor system during REM sleep. In this work, we recorded binocular eye movements by the scleral search-coil technique and the activity of identified abducens (ABD) motoneurons along the sleep–wake cycle in behaving cats. The activity of ABD motoneurons during REM sleep was characterized by a tonic decrease of their mean firing rate throughout this period, and short bursts and pauses coinciding with the occurrence of PGO waves. We demonstrate that the decrease in the mean firing discharge was due to an active inhibition of ABD motoneurons, and that the occurrence of primary and secondary PGO waves induced a pattern of simultaneous but opposed phasic activation and inhibition on each ABD nucleus. With regard to eye movements, during REM sleep ABD motoneurons failed to codify eye position as during alertness, but continued to codify eye velocity. The pattern of tonic inhibition and the phasic activations and inhibitions shown by ABD motoneurons coincide with those reported in other non-oculomotor motoneurons, indicating that the oculomotor system – contrary to what has been accepted until now – is not different from other motor systems during REM sleep, and that all motor systems are receiving similar command signals during this period.  相似文献   

8.
The obstructive sleep apnea syndrome is characterized by the occurrence of cyclic snoring and frequent apneic episodes during sleep, with consequent hypoxia and hypercapnia. Obstructive sleep apnea syndrome is associated with excess daytime sleepiness, depression, and an increased incidence of ischemic cardiopathy, cardiac arrhythmias, systemic hypertension and brain infarction. Hypoglossal motoneurons, which innervate extrinsic and intrinsic muscles of the tongue, play a key role in maintaining the patency of the upper airway and in the pathophysiology of obstructive sleep apnea syndrome. Based on data obtained by using extracellular recording techniques, there is a consensus that hypoglossal motoneurons cease to discharge during rapid eye movement sleep, because they are disfacilitated. Since other somatic motoneurons are known to be postsynaptically inhibited during rapid eye movement sleep, we sought to determine, by the use of intracellular recording techniques during cholinergically induced rapid eye movement sleep, whether postsynaptic inhibitory mechanisms act on hypoglossal motoneurons. We found that, during this state, a powerful glycinergic premotor inhibitory system acts to suppress hypoglossal motoneurons. This finding opens new avenues for the treatment of obstructive sleep apnea syndrome, and provides a foundation to explore the neural and pharmacological control of respiration-related motoneurons during rapid eye movement sleep.  相似文献   

9.
1. Recurrent inhibitory postsynaptic potentials (IPSPs) were recorded intracellularly from chloride-loaded motoneurons in the isolated lumbar spinal cord of neonatal rats (day 5-day 12). This in vitro preparation exhibited an intact and functional recurrent inhibitory pathway that displayed characteristics previously described for this pathway in other species. 2. Although strychnine (1-5 microM) depressed the chloride-dependent recurrent synaptic potentials evoked by ventral root stimulation by 48.2 +/- 2.7% (mean +/- SE, n = 13), confirming that part of the recurrent IPSP is mediated by a glycinergic mechanism, in every case a residual strychnine-resistant synaptic potential was observed. 3. The gamma-aminobutyric acid (GABA) antagonist bicuculline, in low concentrations (2-10 microM), depressed the recurrent synaptic potentials in a dose-dependent manner by 27.0 +/- 4.3% (range 0-49%, n = 19). Application of bicuculline almost eliminated the strychnine-resistant component of the IPSP. However, in some motoneurons, a small synaptic potential remained after combined application of strychnine and bicuculline. 4. The selective antagonists of GABA uptake, (+/-)-nipecotic acid (1 mM) and guvacine (1 mM), increased the amplitude of recurrent synaptic potentials in 12 of 16 motoneurons by 37.2 +/- 7.2% (range 12.6-84.2%). 5. The excitatory amino acid antagonists kynurenic acid (1 mM), 6-cyano-7-nitroquinoxaline-2,3-dione [CNQX (10 microM)] and 6,7-dinitroquinoxaline-2,3-dione (10 microM) potentiated recurrent synaptic potentials in 5 of 7 motoneurons. However, CNQX (10-15 microM) in the presence of strychnine and bicuculline virtually abolished the synaptic potential remaining after application of the inhibitory amino acid antagonists. It is concluded that ventral root stimulation evokes a small excitatory amino acid-mediated synaptic potential in neonatal rat motoneurons. 6. An antidromic synaptic potential due to electrotonic coupling between motoneurons was unaffected by changes in membrane potential, chloride loading, or antagonists of glycine, GABA, excitatory amino acid, and acetylcholine receptors. 7. The results suggest that a major portion of the strychnine-resistant component of the IPSP is mediated by a GABAergic mechanism. It is concluded that both glycinergic and GABAergic mechanisms play a role in recurrent inhibition of motoneurons in the mammalian spinal cord. It is unknown whether these inhibitory amino acids are released by a single pool of Renshaw cells or by neurochemically distinct populations.  相似文献   

10.
Most of the phasically occurring periods of rapid eye movements (REMs) of active sleep are accompanied by enhanced suppression of somatomotor activity; however, during some of the REM episodes there are muscular twitches and jerks. The membrane potential changes underlying these motor processes were examined by recording intracellularly from lumbar motoneurons in cats that were undrugged, unanesthetized and normally respiring. Summated hyperpolarizing potentials were evident during REM episodes in conjunction with a decrease in motoneuron excitability. During other episodes of REMs there occurred summated depolarizing potentials which occasionally produced action potentials. These depolarizing events were in most cases preceded by a brief period of hyperpolarization. Thus, it appears that there is inhibitory input to lumbar motoneurons during all REM periods of active sleep; in some episodes the simulataneous coactivation of excitatory input leads to depolarization of the membrane and action potential generation.  相似文献   

11.
We describe the phasic reduction of motor activity occurring with horizontal rapid eye movements (REMs) during active sleep in 15 children (12 healthy children and 3 patients with severe brain damage). A REM-related decrease in intercostal muscle activity was demonstrated by averaging integrated surface electromyograms. In the healthy subjects, this reduction had a mean latency from the REM onset of 37.1 ms and a duration of 225.9 ms. This phenomenon was also observed in the 3 patients who had lost cerebral function. We hypothesized a brainstem origin for the effect. A REM-related mentalis muscle activity loss, detected by averaging mentalis muscle twitches, was observed in 10 healthy children among the subjects. This loss began at 59.1 ms before the onset of REMs and lasted for 230.2 ms on average. In addition, a transient decrease in integrated REM activity surrounding mentalis muscle twitches (a twitch-related reduction of REMs) was observed. We discuss the similarity between REM-related phasic reduction of muscle activity obtained for intercostal and mentalis muscles and pontogeniculo-occipital (PGO) wave-related inhibitory postsynaptic potentials reported for feline lumbar and trigeminal motoneurons, respectively. We then assume the presence of a phasic event generator, functioning during active sleep in healthy humans, which triggers at least three generators; that is, the generator of PGO waves (or REMs), motor inhibition, and of motor excitation including muscle twitches.  相似文献   

12.
13.
Summary Excitation and inhibition of jaw-closing motoneurons (Masseteric and Temporal Motoneurons, Mass. and Temp. Mns) during transient jaw closing, the so-called jaw-closing reflex, and prolonged jaw opening elicited by palatal stimulation were studied. By pressing the anterior palatal surfaces sustained jaw opening was elicited, suggesting that sustained jaw opening results from inhibition of tonic background activity of jaw-closing motoneurons by inhibitory postsynaptic potentials (IPSPs) elicited by mechanical stimulation of the anterior palatal mucosa. Recordings showed that the onset of IPSPs was 80 ms earlier than the onset of jaw opening. Application of diffuse pressure stimulation to the posterior palatal surfaces elicited bursts of spikes triggered on excitatory postsynaptic potentials (EPSPs), suggesting that mechanosensory receptors from the posterior palatal mucosa send excitatory synaptic inputs to jaw-closing motoneurons. Furthermore, it is suggested that mechanosensory inputs from the posterior palatal mucosa may excite neurons in the central pattern generator and provide the motor patterns responsible for jaw closure during the jaw-closing reflex. We have demonstrated that excitation of Mass. Mns innervating the deep masseter muscle mainly contributed to maintaining the occlusal phase of jaw closure during the jaw-closing reflex. However, the onset of EPSPs was 100 to 160 ms (n = 27) earlier than the onset of jaw closure. In studies on spontaneously occurring jaw closure it was demonstrated that there was a proportional increase in the number of spikes of the Temp. Mn and the mechanical response (jaw closure).  相似文献   

14.
1. The effects of repetitive stimulation of the nucleus pontis caudalis and nucleus gigantocellularis (PnC-Gi) of the reticular formation on jaw opener and closer motoneurons were examined. The PnC-Gi was stimulated at 75 Hz at current intensities less than 90 microA. 2. Rhythmically occurring, long-duration, depolarizing membrane potentials in jaw opener motoneurons [excitatory masticatory drive potential (E-MDP)] and long-duration hyperpolarizing membrane potentials [inhibitory masticatory drive potentials (I-MDP)] in jaw closer motoneurons were evoked by 40-Hz repetitive masticatory cortex stimulation. These potentials were completely suppressed by PnC-Gi stimulation. PnC-Gi stimulation also suppressed the short-duration, stimulus-locked depolarizations [excitatory postsynaptic potentials (EPSPs)] in jaw opener motoneurons and short-duration, stimulus-locked hyperpolarizations [inhibitory postsynaptic potentials (IPSPs)] in jaw closer motoneurons, evoked by the same repetitive cortical stimulation. 3. Short pulse train (3 pulses; 500 Hz) stimulation of the masticatory area of the cortex in the absence of rhythmical jaw movements activated the short-latency paucisynaptic corticotrigeminal pathways and evoked short-duration EPSPs and IPSPs in jaw opener and closer motoneurons, respectively. The same PnC-Gi stimulation that completely suppressed rhythmical MDPs, and stimulus-locked PSPs evoked by repetitive stimulation to the masticatory area of the cortex, produced an average reduction in PSP amplitude of 22 and 17% in jaw closer and opener motoneurons, respectively. 4. PnC-Gi stimulation produced minimal effects on the amplitude of the antidromic digastric field potential or on the intracellularly recorded antidromic digastric action potential. Moreover, PnC-Gi stimulation had little effect on jaw opener or jaw closer motoneuron membrane resting potentials in the absence of rhythmical jaw movements (RJMs). PnC-Gi stimulation produced variable effects on conductance pulses elicited in jaw opener and closer motoneurons in the absence of RJMs. 5. These results indicate that the powerful suppression of cortically evoked MDPs in opener and closer motoneurons during PnC-Gi stimulation is most likely not a result of postsynaptic inhibition of trigeminal motoneurons. It is proposed that this suppression is a result of suppression of activity in neurons responsible for masticatory rhythm generation.  相似文献   

15.
We have investigated the contribution of GABA(A) receptor activation to swimming in Xenopus tadpoles during the first day of postembryonic development. Around the time of hatching stage (37/8), bicuculline (10-50 microM) causes a decrease in swim episode duration and cycle period, suggesting that GABA(A) receptor activation influences embryonic swimming. Twenty-four hours later, at stage 42, GABA(A) receptor activation plays a more pronounced role in modulating larval swimming activity. Bicuculline causes short, intense swim episodes with increased burst durations and decreased cycle periods and rostrocaudal delays. Conversely, the allosteric agonist, 5beta-pregnan-3alpha-ol-20-one (1-10 microM) or the uptake inhibitor, nipecotic acid (200 microM) cause slow swimming with reduced burst durations and increased cycle periods. These effects appear to be mainly the result of GABA release from the spinal terminals of midhindbrain reticulospinal neurons but may also involve spinal GABAergic neurons. Intracellular recordings were made using KCl electrodes to reverse the sign and enhance the amplitude of chloride-dependent inhibitory postsynaptic potentials (IPSPs). Recordings from larval motoneurons in the presence of strychnine (1-5 microM), to block glycinergic IPSPs, provided no evidence for any GABAergic component to midcycle inhibition. GABA potentials were observed during episodes, but they were not phase-locked to the swimming rhythm. Bicuculline (10-50 microM) abolished these sporadic potentials and caused an apparent decrease in the level of tonic depolarization during swimming activity and an increase in spike height. Finally, in most larval preparations, GABA potentials were observed at the termination of swimming. In combination with the other evidence, our data suggest that midhindbrain reticulospinal neurons become involved in an intrinsic pathway that can prematurely terminate swim episodes. Thus during the first day of larval development, endogenous activation of GABA(A) receptors plays an increasingly important role in modulating locomotion, and GABAergic neurons become involved in an intrinsic descending pathway for terminating swim episodes.  相似文献   

16.
The aim of this study was to investigate the inhibitory components of a resistance reflex in the walking system of the crayfish. This study was performed using an in vitro preparation of several thoracic ganglia including motor nerves and the proprioceptor that codes movements of the second joint (coxo-basipodite chordotonal organ-CBCO). Sinusoidal movements were imposed on the CBCO, and intracellular responses were recorded from levator (Lev) and depressor (Dep) motoneurons (MNs). We found that in MNs that oppose the imposed movements (e.g., the Lev MNs during the imposed downward movement), the response consists in a depolarization resulting from the summation of excitatory postsynaptic potentials (EPSPs). A movement in the opposite direction resulted in hyperpolarization during which inhibitory postsynaptic potentials (IPSPs) summated. The inhibitory pathway to each MN is oligosynaptic (i.e., composed of a small number of neurons in series) and involves spiking interneurons because it was blocked in the presence of a high-divalent cation solution. The IPSPs were mediated by a chloride conductance because their amplitude was sensitive to the chloride concentration of the bathing solution and because they were blocked by the chloride channel blocker, picrotoxin. Resistance reflex IPSPs related to single CBCO neurons could be identified. These unitary IPSPs were blocked in the presence of 3-mercapto-propionic acid, an inhibitor of gamma-amino-butyric acid (GABA) synthesis, indicating that they are mediated by GABA. In addition to this GABAergic pathway, electrical stimulation of the CBCO sensory nerve induced compound IPSPs that were blocked by glutamate pyruvate transaminase (GPT), indicating the presence of glutamatergic inhibitory pathways. These glutamatergic interneurons do not appear to be involved in the resistance reflex, however, as GPT did not block the unitary IPSPs. Functionally, the resistance reflex is mainly supported by movement-coding CBCO sensory neurons. We demonstrate that such movement-coding CBCO neurons produce both monosynaptic EPSPs in the MNs opposing imposed movements and oligosynaptic IPSPs in the antagonistic motoneurons. These results highlight the similarities between the inhibitory pathways in resistance reflex of the crayfish and in the stretch reflex of vertebrates mediated by Ia inhibitory interneurons.  相似文献   

17.
In high spinal paralyzed cats the effect of cutaneous nerve stimulation on lumbar motoneurons was investigated during fictive locomotion. EPSPs evoked from the cutaneous afferents were generally larger during the active phase of the motoneurones, while IPSPs tended to increase during the reciprocal phase. In some cases EPSPs occurred during the active phase, while IPSPs dominated during the reciprocal phase. Apparently, the transmission in the excitatory and inhibitory segmental reflex pathways from cutaneous afferents to α-motoneurones depends on the phase of the step cycle, but there is no general phase dependent alternating switching between these two pathways.  相似文献   

18.
1. Steady-state inhibitory postsynaptic potentials (IPSPs) were evoked in tibialis anterior and extensor digitorum longus motoneurons of the cat by using tendon vibration to activate Ia-afferent fibers from the antagonist medial gastrocnemius muscle. 2. The effective synaptic currents (IN) underlying the steady-state IPSPs were measured by the use of a modified voltage-clamp technique. The amplitudes of the effective synaptic currents (1.62 +/- 0.66 nA, mean +/- SD; n = 20) extended over a fivefold range (0.5-2.7 nA) but were not correlated with the intrinsic properties of the motoneurons or with putative motor unit type. 3. We calculated the synaptic conductance (GS) underlying the steady-state Ia IPSPs from measurements of motoneuron input conductance during the activation of the Ia synaptic input. As was expected from Ohm's law, the Ia-inhibitory GS and IN were correlated (r = 0.49; P less than 0.05). Like IN, GS (175 +/- 202 nS, mean +/- SD; n = 20) was not correlated with the intrinsic properties of the motoneurons. 4. As has been reported previously for transient Ia IPSPs, the amplitudes of the steady-state IPSPs were correlated with motoneuron input resistance (r = 0.74; P less than 0.001) and homonymous Ia excitatory postsynaptic synaptic potential (EPSP) amplitude (r = 0.72; P less than 0.001). 5. The amplitudes of the steady-state Ia IPSPs and the homonymous Ia EPSPs were plotted on logarithmic axes. The slope (0.59) was significantly less than 1, which indicates that the gradient of Ia inhibition across the motoneuron pool is less steep than that of Ia excitation.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
In juvenile flatfish the vestibuloocular reflex (VOR) circuitry that underlies compensatory eye movements adapts to a 90 degrees relative displacement of vestibular and oculomotor reference frames during metamorphosis. VOR pathways are rearranged to allow horizontal canal-activated second-order vestibular neurons in adult flatfish to control extraocular motoneurons innervating vertical eye muscles. This study describes the anatomy and physiology of identified flatfish-specific excitatory and inhibitory vestibular pathways. In antidromically identified oculomotor and trochlear motoneurons, excitatory postsynaptic potentials (EPSPs) were elicited after electrical stimulation of the horizontal canal nerve expected to provide excitatory input. Electrotonic depolarizations (0.8-0.9 ms) preceded small amplitude (<0.5 mV) chemical EPSPs at 1.2-1.6 ms with much larger EPSPs (>1 mV) recorded around 2.5 ms. Stimulation of the opposite horizontal canal nerve produced inhibitory postsynaptic potentials (IPSPs) at a disynaptic latency of 1.6-1.8 ms that were depolarizing at membrane resting potentials around -60 mV. Injection of chloride ions increased IPSP amplitude, and current-clamp analysis showed the IPSP equilibrium potential to be near the membrane resting potential. Repeated electrical stimulation of either the excitatory or inhibitory horizontal canal vestibular nerve greatly increased the amplitude of the respective synaptic responses. These observations suggest that the large terminal arborizations of each VOR neuron imposes an electrotonic load requiring multiple action potentials to maximize synaptic efficacy. GABA antibodies labeled axons in the medial longitudinal fasciculus (MLF) some of which were hypothesized to originate from horizontal canal-activated inhibitory vestibular neurons. GABAergic terminal arborizations were distributed largely on the somata and proximal dendrites of oculomotor and trochlear motoneurons. These findings suggest that the species-specific horizontal canal inhibitory pathway exhibits similar electrophysiological and synaptic transmitter profiles as the anterior and posterior canal inhibitory projections to oculomotor and trochlear motoneurons. Electron microscopy showed axosomatic and axodendritic synaptic endings containing spheroidal synaptic vesicles to establish chemical excitatory synaptic contacts characterized by asymmetrical pre/postsynaptic membrane specializations as well as gap junctional contacts consistent with electrotonic coupling. Another type of axosomatic synaptic ending contained pleiomorphic synaptic vesicles forming chemical, presumed inhibitory, synaptic contacts on motoneurons that never included gap junctions. Altogether these data provide electrophysiological, immunohistochemical, and ultrastructural evidence for reciprocal excitatory/inhibitory organization of the novel vestibulooculomotor projections in adult flatfish. The appearance of unique second-order vestibular neurons linking the horizontal canal to vertical oculomotor neurons suggests that reciprocal excitation and inhibition are a fundamental, developmentally linked trait of compensatory eye movement circuits in vertebrates.  相似文献   

20.
It is well established that, during rapid eye movement (REM) sleep, somatic motoneurons are subjected to a barrage of inhibitory synaptic potentials that are mediated by glycine. However, the source of this inhibition, which is crucial for the maintenance and preservation of REM sleep, has not been identified. Consequently, the present study was undertaken to determine in cats the location of the glycinergic neurons, that are activated during active sleep, and are responsible for the postsynaptic inhibition of motoneurons that occurs during this state. For this purpose, a pharmacologically-induced state of active sleep (AS-carbachol) was employed. Antibodies against glycine-conjugated proteins were used to identify glycinergic neurons and immunocytochemical techniques to label the Fos protein were employed to identify activated neurons. Two distinct populations of glycinergic neurons that expressed c-fos were distinguished. One population was situated within the nucleus reticularis gigantocellularis (NRGc) and nucleus magnocellularis (Mc) in the rostro-ventral medulla; this group of neurons extended caudally to the ventral portion of the nucleus paramedianus reticularis (nPR). Forty percent of the glycinergic neurons in the NRGc and Mc and 25% in the nPR expressed c-fos during AS-carbachol. A second population was located in the caudal medulla adjacent to the nucleus ambiguus (nAmb), wherein 40% of the glycinergic cells expressed c-fos during AS-carbachol. Neither population of glycinergic cells expressed c-fos during quiet wakefulness or quiet (non-rapid eye movement) sleep. We suggest that the population of glycinergic neurons in the NRGc, Mc, and nPR participates in the inhibition of somatic brainstem motoneurons during active sleep. These neurons may also be responsible for the inhibition of sensory and other processes during this state. It is likely that the group of glycinergic neurons adjacent to the nucleus ambiguus (nAmb) is responsible for the active sleep-selective inhibition of motoneurons that innervate the muscles of the larynx and pharynx.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号