首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
Sirtuins (SIRTs) are NAD+-dependent enzymes that catalyze deacylation of protein lysine residues. In mammals, seven sirtuins have been identified, SIRT1–7. SIRT3–5 are mainly or exclusively localized within mitochondria and mainly participate in the regulation of energy metabolic pathways. Since mitochondrial ATP regeneration is inevitably linked to the maintenance of cardiac pump function, it is not surprising that recent studies revealed a role for mitochondrial sirtuins in the regulation of myocardial energetics and function. In addition, mitochondrial sirtuins modulate the extent of myocardial ischemia reperfusion injury and the development of cardiac hypertrophy and failure. Thus, targeting mitochondrial sirtuins has been proposed as a novel approach to improve myocardial mitochondrial energetics, which is frequently impaired in cardiac disease and considered an important underlying cause contributing to several cardiac pathologies, including myocardial ischemia reperfusion injury and heart failure. In the current review, we present and discuss the available literature on mitochondrial sirtuins and their potential roles in cardiac physiology and disease.  相似文献   

3.
4.
Aging is associated with various metabolic disorders that may have their origin in the liver, including non-alcoholic fatty liver disease, obesity, type 2 diabetes mellitus, and atherosclerosis. Although well-characterized in models of caloric restriction, relatively little is known about the role of sirtuins and acetylation under conditions of caloric excess. Sirtuins are NAD (+)-dependent protein deacetylases that mediate adaptive responses to a variety of stresses, including calorie restriction and metabolic stress. Sirtuin 3 (SIRT3) is localized within the mitochondrial matrix, where it regulates acetylation levels of a diverse set of metabolic enzymes. When normal mice are fed a high fat diet they demonstrate reduced SIRT3 activity, impaired mitochondrial function, and hyperacetylation of a diverse set of proteins in their livers. Furthermore, SIRT3 knockout mice have signs of accelerated aging and cancer. Understanding SIRT3?s biochemical function and regulation in the liver under conditions of caloric excess may potentially increase our understanding of the normal aging process and diseases associated with aging, such as diabetes, fatty liver disease, or cancer.  相似文献   

5.
Emerging beneficial roles of sirtuins in heart failure   总被引:1,自引:0,他引:1  
Sirtuins are a highly conserved family of histone/protein deacetylases whose activity can prolong the lifespan of model organisms such as yeast, worms and flies. In mammalian cells, seven sirtuins (SIRT1-7) modulate distinct metabolic and stress-response pathways, SIRT1 and SIRT3 having been most extensively investigated in the cardiovascular system. SIRT1 and SIRT3 are mainly located in the nuclei and mitochondria, respectively. They participate in biological functions related to development of heart failure, including regulation of energy production, oxidative stress, intracellular signaling, angiogenesis, autophagy and cell death/survival. Emerging evidence indicates that the two sirtuins play protective roles in failing hearts. Here, we summarize current knowledge of sirtuin functions in the heart and discuss its translation into therapy for heart failure.  相似文献   

6.
Mammalian sirtuins are seven members belonging to the silent information regulator 2 family, a group of Class Ⅲ histone/protein deacetylases. Sirtuins(SIRT 1-7) have different subcellular localization and function and they regulate cellular protein function through various posttranslational modifications. SIRT1 and 3, the most studied sirtuins, use the product of cellular metabolism nicotinamide adenine dinucleotide as a cofactor to post-translationally deacetylate cellular proteins and consequently link the metabolic status of the cell to protein function. Sirtuins have been shown to play a key role in the development and rescue of various metabolic diseases including non-alcoholic fatty liver disease(NAFLD). NAFLD is currently the most chronic liver disease due mainly to high-calorie consumption and lower physical activity. No pharmacological approach is available to treat NAFLD, the current recommended treatment are lifestyle modification such as weight loss through calorie restriction and exercise. Recent studies have shown downregulation of sirtuins in human as well as animal models of NAFLD indicating an important role of sirtuins in the dynamic pathophysiology of NAFLD. In this review, we highlight the recent knowledge on sirtuins, their role in NAFLD and their unique potential role as novel therapeutic target for NAFLD treatment.  相似文献   

7.
Van Meter M  Mao Z  Gorbunova V  Seluanov A 《Aging》2011,3(9):829-835
The sirtuin gene family comprises an evolutionarily ancient set of NAD+ dependent protein deacetylase and mono-ADP ribosyltransferase enzymes. Found in all domains of life, sirtuins regulate a diverse array of biological processes, including DNA repair, gene silencing, apoptosis and metabolism. Studies in multiple model organisms have indicated that sirtuins may also function to extend lifespan and attenuate age-related pathologies. To date, most of these studies have focused on the deacetylase activity of sirtuins, and relatively little is known about the other biochemical activity of sirtuins, mono-ADP ribosylation. We recently reported that the mammalian sirtuin, SIRT6, mono-ADP ribosylates PARP1 to promote DNA repair in response to oxidative stress. In this research perspective we review the role of SIRT6 in DNA repair and discuss the emerging implications for sirtuin directed mono-ADP ribosylation in aging and age-related diseases.  相似文献   

8.
Ischemia-reperfusion injury(IRI)remains an unresolved and complicated situation in clinical practice,especially in the case of organ transplantation.Several factors contribute to its complexity;the depletion of energy during ischemia and the induction of oxidative stress during reperfusion initiate a cascade of pathways that lead to cell death and finally to severe organ injury.Recently,the sirtuin family of nicotinamide adenine dinucleotide-dependent deacetylases has gained increasing attention from researchers,due to their involvement in the modulation of a wide variety of cellular functions.There are seven mammalian sirtuins and,among them,the nuclear/cytoplasmic sirtuin 1(SIRT1)and the mitochondrial sirtuin 3(SIRT3)are ubiquitously expressed in many tissue types.Sirtuins are known to play major roles in protecting against cellular stress and in controlling metabolic pathways,which are key processes during IRI.In this review,we mainly focus on SIRT1 and SIRT3 and examine their role in modulating pathways against energy depletion during ischemia and their involvement in oxidative stress,apoptosis,microcirculatory stress and inflammation during reperfusion.We present evidence of the beneficial effects of sirtuins against IRI and emphasize the importance of developing new strategies by enhancing their action.  相似文献   

9.
沉默信息调节因子(SIRT)3是哺乳动物类NAD+依赖性组蛋白去乙酰化酶家族中的一员.研究表明,SIRT3可以改善胰岛素抵抗、增加胰岛素敏感性.其通过保护胰岛β细胞、促进骨骼肌葡萄糖摄取、调节骨骼肌代谢、减轻氧化应激、抵抗高糖诱导的细胞毒性等途径发挥作用.SIRT3为治疗2型糖尿病、肥胖、线粒体功能障碍等疾病带来了新的研究方向.  相似文献   

10.
11.
细胞生物学的最新进展表明沉默信息调节因子2(SIR2)相关酶类在心脏应激条件下的病理生理机制中扮演着重要角色。目前大部分物种均存在SIR2同源基因,统称为sirtuins(SIRT)家族,其中研究最广泛的是沉默信息调节因子T1(SIRT1),它是许多心血管疾病发生和发展的关键调节因子。本文综述了SIRT1的基本特征以及其在心血管疾病中的作用及可能机制,为心血管疾病的预防、诊断和治疗提供了新的思路。  相似文献   

12.
Sirtuins (SIRT), first described as nicotinamide adenine dinucleotide (NAD+)-dependent type III histone deacetylases, are produced by cells to support in the defense against chronic stress conditions such as metabolic syndromes, neurodegeneration, and cancer. SIRT-3 is one of the most studied members of the mitochondrial sirtuins family. In particular, its involvement in metabolic diseases and its dual role in cancer have been described. In the present review, based on the evidence of SIRT-3 involvement in metabolic dysfunctions, we aimed to provide an insight into the multifaceted role of SIRT-3 in many solid and hematological tumors with a particular focus on hepatocellular carcinoma (HCC). SIRT-3 regulatory effect and involvement in metabolism dysfunctions may have strong implications in HCC development and treatment. Research literature widely reports the relationship between metabolic disorders and HCC development. This evidence suggests a putative bridge role of SIRT-3 between metabolic diseases and HCC. However, further studies are necessary to demonstrate such interconnection.  相似文献   

13.
SIRT6, a protein with many faces   总被引:1,自引:0,他引:1  
Sirtuins are NAD+ dependent deacylases enzymes. There are seven mammalian sirtuins, SIRT1–SIRT7, which are localized to different cellular compartments and are capable of diverse catalytic activities. SIRT6 is a key regulator of healthy ageing. In the past decade our understanding of SIRT6 significantly increased in many different aspects. We know its cellular localization, catalytic activities, substrates and the pathways it is involved in. This review discusses the recent discoveries regarding the SIRT6 enzyme.  相似文献   

14.
The role of CNS fuel sensing in energy and glucose regulation   总被引:2,自引:0,他引:2  
Cota D  Proulx K  Seeley RJ 《Gastroenterology》2007,132(6):2158-2168
Individual cells must carefully regulate their energy flux to ensure nutrient levels are adequate to maintain normal cellular activity. The same principle holds in multicellular organisms. Thus, for mammals to perform necessary physiological functions, sufficient nutrients need to be available. It is more complex, however, to understand how the energy status of different cells impacts on the overall energy balance of the entire organism. We propose that the central nervous system is the critical organ for the coordination of intracellular metabolic processes that are essential to guarantee energy homeostasis at the organismal level. In particular, we suggest that in specific hypothalamic neurons, evolutionarily conserved fuel sensors, such as adenosine monophosphate-activated protein kinase and mammalian target of rapamycin (mTOR), integrate sensory input from nutrients, including those derived from recently ingested food or those that are stored in adipose tissue, to regulate effector pathways responsible for fuel intake and utilization. The corollary to this hypothesis is that dysregulation of these fuel-sensing mechanisms in the brain may contribute to metabolic dysregulation underlying diseases, such as obesity and type 2 diabetes.  相似文献   

15.
SIRT1 and SIRT3 are NAD+-dependent protein deacetylases that are evolutionarily conserved across mammals. These proteins are located in the cytoplasm/nucleus and mitochondria, respectively. Previous reports demonstrated that human SIRT1 deacetylates Acetyl-CoA Synthase 1 (AceCS1) in the cytoplasm, whereas SIRT3 deacetylates the homologous Acetyl-CoA Synthase 2 (AceCS2) in the mitochondria. We recently showed that 3-hydroxy-3-methylglutaryl CoA synthase 2 (HMGCS2) is deacetylated by SIRT3 in mitochondria, and we demonstrate here that SIRT1 deacetylates the homologous 3-hydroxy-3-methylglutaryl CoA synthase 1 (HMGCS1) in the cytoplasm. This novel pattern of substrate homology between cytoplasmic SIRT1 and mitochondrial SIRT3 suggests that considering evolutionary relationships between the sirtuins and their substrates may help to identify and understand the functions and interactions of this gene family. In this perspective, we take a first step by characterizing the evolutionary history of the sirtuins and these substrate families.  相似文献   

16.
17.
Fibroblast growth factor 21 (FGF21) has been identified as a potent metabolic regulator. Administration of recombinant FGF21 protein to rodents and rhesus monkeys with diet-induced or genetic obesity and diabetes exerts strong antihyperglycemic and triglyceride-lowering effects and reduction of body weight. Despite the importance of FGF21 in the regulation of glucose, lipid, and energy homeostasis, the mechanisms by which FGF21 functions as a metabolic regulator remain largely unknown. Here we demonstrate that FGF21 regulates energy homeostasis in adipocytes through activation of AMP-activated protein kinase (AMPK) and sirtuin 1 (SIRT1), resulting in enhanced mitochondrial oxidative function. AMPK phosphorylation levels were increased by FGF21 treatment in adipocytes as well as in white adipose tissue from ob/ob mice. FGF21 treatment increased cellular NAD+ levels, leading to activation of SIRT1 and deacetylation of its downstream targets, peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α) and histone 3. Activation of AMPK and SIRT1 by FGF21 in adipocytes enhanced mitochondrial oxidative capacity as demonstrated by increases in oxygen consumption, citrate synthase activity, and induction of key metabolic genes. The effects of FGF21 on mitochondrial function require serine/threonine kinase 11 (STK11/LKB1), which activates AMPK. Inhibition of AMPK, SIRT1, and PGC-1α activities attenuated the effects of FGF21 on oxygen consumption and gene expression, indicating that FGF21 regulates mitochondrial activity and enhances oxidative capacity through an AMPK–SIRT1–PGC1α–dependent mechanism in adipocytes.  相似文献   

18.
Cardiovascular Drugs and Therapy - Histone deacetylase 3 (HDAC3) and silent information regulator 1 (SIRT1) are histone deacetylases that regulate important metabolic pathways and play important...  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号