首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The high reactivity of cholinesterases (ChEs) toward organophosphorus (OP) compounds has led to propose recombinant ChEs as bioscavengers of nerve agents. The bioscavenging potential of recombinant ChEs can be enhanced by conjugation of polyethylene glycol (PEG) moieties, to extend their circulatory residence. However, the ability of exogenously administered ChEs to confer long-term protection against repeated exposures to nerve agents is still limited due to the aging process, whereby organophosphate-ChE adducts undergo irreversible dealkylation, which precludes oxime-mediated reactivation of the enzyme. To generate an optimal acetylcholinesterase (AChE)-based OP bioscavenger, the F338A mutation, known to decelerate the rate of aging of AChE-OP conjugates, was incorporated into polyethylene glycol-conjugated (PEGylated) human AChE. The PEGylated F338A-AChE displayed unaltered rates of hydrolysis, inhibition, phosphylation, and reactivation and could effectively protect mice against exposure to soman (pinacolylmethyl phosphonofluoridate), sarin (O-isopropyl methylphosphonofluoridate), or O-ethyl-S-(2-isopropylaminoethyl) methylphosphonothioate (VX). Unlike PEGylated wild-type (WT)-AChE, the PEGylated F338A-AChE exhibits significantly reduced aging rates after soman inhibition and can be efficiently reactivated by the 1-[[[4(aminocarbonyl)-pyridinio]methoxy]methyl]-2(hydroxyimino)methyl]pyridinium dichloride (HI-6) oxime, both in vitro and in vivo. Accordingly, oxime administration to PEG-F338A-AChE-pretreated mice enabled them to withstand repeated soman exposure (5.4 and 4 LD(50)/dose), whereas same regime treatment of non-PEGylated F338A-AChE- or PEGylated WT-AChE-pretreated mice failed to protect against the second challenge, due to rapid clearance or irreversible aging of the latter enzymes. Thus, judicious incorporation of selected mutations into the AChE mold in conjunction with its chemical modification provides means to engineer an optimal ChE-based OP bioscavenger in terms of circulatory longevity, resistance to aging, and reduced doses required for protection, even against repeated exposures to nerve agents, such as soman.  相似文献   

2.
The treatment of poisoning by highly toxic organophosphorus compounds (nerve agents) is unsatisfactory. Until now, the efficacy of new potential antidotes has primarily been evaluated in animals. However, the extrapolation of these results to humans is hampered by species differences. Since oximes are believed to act primarily through reactivation of inhibited acetylcholinesterase (AChE) and erythrocyte AChE is regarded to be a good marker for the synaptic enzyme, the reactivating potency can be investigated with human erythro‐cyte AChE in vitro. The present study was undertaken to evaluate the ability of various oximes at concentrations therapeutically relevant in humans to reactivate human erythrocyte AChE inhibited by different nerve agents. Isolated human erythrocyte AChE was inhibited with soman, sarin, cyclosarin, tabun or VX for 30?min and reactivated in the absence of inhibitory activity over 5–60?min by obidoxime, pralidoxime, HI 6 or HLö 7 (10 and 30?μM). The AChE activity was determined photometrically. The reactivation of human AChE by oximes was dependent on the organophosphate used. After soman, sarin, cyclosarin, or VX the reactivating potency decreased in the order HLö 7 > HI 6 > obidoxime > pralidoxime. Obidoxime and pralidoxime were weak reactivators of cyclosarin-inhibited AChE. Only obidoxime and HLö 7 reactivated tabun-inhibited AChE partially (20%), while pralidoxime and HI 6 were almost ineffective (5%). Therefore, HLö 7 may serve as a broad-spectrum reactivator in nerve agent poisoning at doses therapeutically relevant in humans.  相似文献   

3.
Nerve agents (sarin, soman, cyclosarin, tabun and VX agent) and pesticides (paraoxon, chlorpyrifos, TEPP) represent extremely toxic group of organophosphorus compounds (OPCs). These compounds inhibit enzyme acetylcholinesterase (AChE, EC 3.1.1.7) via its phosphorylation or phosphonylation at the serine hydroxy group in its active site. Afterwards, AChE is not able to serve its physiological function and intoxicated organism is died due to overstimulation of cholinergic nervous system. The current standard treatment of poisoning with highly toxic OPCs usually consists of the combined administration of anticholinergic drugs (preferably atropine) and AChE reactivators (called "oximes"). Anticholinergic drugs block effects of accumulated neurotransmitter acetylcholine at nicotinic and muscarinic receptor sites, while oximes reactivate AChE inhibited by OPCs. Unfortunately, none from the currently used oximes is sufficiently effective against all known nerve agents and pesticides. Therefore, to find new oximes able to sufficiently reactivate inhibited AChE (regardless of the type of OPCs) is still very important task for medicinal chemistry with the aim to improve the efficacy of antidotal treatment of the acute poisonings mentioned. In this paper, the relationship between chemical structure of AChE reactivators and their ability to reactivate AChE inhibited by several nerve agents and pesticides is summarized. It is shown that there are several structural fragments possibly involving in the structure of proposed AChE reactivators. Finally, an attempt of a future course of new AChE reactivators development is discussed.  相似文献   

4.
Highly toxic organophosphorus (OP) nerve agents, sarin and soman act by inhibiting acetylcholinesterase (AChE) function at neuronal synapses and cause many toxic effects including death within minutes. The effect of nerve agents on protein oxidation, calpain, and cytoskeletal protein levels was not well known. In the present study we investigated these parameters after subcutaneous injection of sarin (120 μg/kg) and soman (80 μg/kg) in the rat brain. Results indicate that several rat brain proteins were intensely oxidized after nerve agent poisoning. Immunoreactivity levels of μ-calpain were significantly elevated in cerebral cortex and cerebellum regions of rat brain from 2.5 h to 30 days. Alpha tubulin levels reduced from 1 to 7 days in the supernatant and 1 to 3 days in the pellet fractions of cerebellum and cerebral cortex, where as phosphorylation of high molecular weight neurofilament (pNF-H) was increased significantly in nerve agent intoxicated rat brains as compared to control rats. AChE activity was inhibited up to 3 days after nerve agent exposure in plasma and brain. Results suggest that altered protein oxidation, calpain and cytoskeletal protein levels are due to multiple mechanisms of nerve agents actions and these changes might be involved in nerve agent induced complex neurotoxicity.  相似文献   

5.
An important factor for successful therapy of poisoning with organophosphorus compounds (OP) is the rapid restoration of blocked respiratory muscle function. To achieve this goal, oximes are administered for reactivation of inhibited acetylcholinesterase (AChE). Unfortunately, clinically used oximes, e.g. obidoxime and pralidoxime, are of limited effectiveness in poisoning with different OP nerve agents requiring the search for alternative oximes, e.g. HI 6. In view of substantial species differences regarding reactivation properties of oximes, the effect of HI 6 was investigated with sarin, tabun and soman exposed human intercostal muscle. Muscle force production by indirect field stimulation and the activity of the human muscle AChE was assessed. 30 μM HI 6 resulted in an almost complete recovery of sarin blocked muscle force and in an increase of completely inhibited muscle AChE activity to approx. 30% of control. In soman or tabun exposed human intercostal muscle HI 6 (50 and 100 μM) had no effect on blocked muscle force or on inhibited human muscle AChE activity. In addition, HI 6 up to 1000 μM had no effect on soman blocked muscle force indicating that this oxime has no direct, pharmacological effect in human tissue. These results emphasize that sufficient reactivation of AChE is necessary for a beneficial therapeutic effect on nerve agent blocked neuromuscular transmission.  相似文献   

6.
The potent human toxicity of organophosphorus (OP) nerve agents calls for the development of effective antidotes. Standard treatment for nerve agent poisoning with atropine and an oxime has a limited efficacy. An alternative approach is the development of catalytic bioscavengers using OP-hydrolyzing enzymes such as paraoxonases (PON1). Recently, a chimeric PON1 mutant, IIG1, was engineered toward the hydrolysis of the toxic isomers of soman and cyclosarin with high in vitro catalytic efficiency. In order to investigate the suitability of IIG1 as a catalytic bioscavenger, an in vivo guinea pig model was established to determine the protective effect of IIG1 against the highly toxic nerve agent cyclosarin. Prophylactic i.v. injection of IIG1 (1 mg/kg) prevented systemic toxicity in cyclosarin (~2LD50)-poisoned guinea pigs, preserved brain acetylcholinesterase (AChE) activity, and protected erythrocyte AChE activity partially. A lower IIG1 dose (0.2 mg/kg) already prevented mortality and reduced systemic toxicity. IIG1 exhibited a high catalytic efficiency with a homologous series of alkylmethylfluorophosphonates but had low efficiency with the phosphoramidate tabun and was virtually ineffective with the nerve agent VX. This quantitative analysis validated the model for predicting in vivo protection by catalytic bioscavengers based on their catalytic efficiency, the level of circulating enzyme, and the dose of the intoxicating nerve agent. The in vitro and in vivo results indicate that IIG1 may be considered as a promising candidate bioscavenger to protect against the toxic effects of a range of highly toxic nerve agents.  相似文献   

7.
Comparative protection studies in mice demonstrate that on a molar basis, recombinant human acetylcholinesterase (rHuAChE) confers higher levels of protection than native human butyrylcholinesterase (HuBChE) against organophosphate (OP) compound intoxication. For example, mice challenged with 2.5 LD50 of O-isopropyl methylphosphonofluoridate (sarin), pinacolylmethyl phosphonofluoridate (soman), and O-ethyl-S-(2-isopropylaminoethyl) methylphosphonothiolate (VX) after treatment with equimolar amounts of the two cholinesterases displayed 80, 100, and 100% survival, respectively, when pre-treatment was carried out with rHuAChE and 0, 20, and 60% survival, respectively, when pretreatment was carried out with HuBChE. Kinetic studies and active site titration analyses of the tested OP compounds with acetylcholinesterases (AChEs) and butyrylcholinesterases (BChEs) from different mammalian species demonstrate that the superior in vivo efficacy of acetyl-cholinesterases is in accordance with the higher stereoselectivity of AChE versus BChE toward the toxic enantiomers comprising the racemic mixtures of the various OP agents. In addition, we show that polyethylene glycol-conjugated (PEGy-lated) rHuAChE, which is characterized by a significantly extended circulatory residence both in mice and monkeys ( Biochem J 357: 795-802, 2001 ; Biochem J 378: 117-128, 2004 ), retains full reactivity toward OP compounds both in vitro and in vivo and provides a higher level of protection to mice against OP poisoning, compared with native serum-derived HuBChE. Indeed, PEGylated rHuAChE also confers superior prophylactic protection when administered intravenously or intramuscularly over 20 h before exposure of mice to a lethal dose of VX (1.3-1.5 LD50). These findings together with the observations that the PEGylated rHuAChE exhibits unaltered biodistribution and high bioavailability present a case for using PEGylated rHuAChE as a very efficacious bioscavenger of OP agents.  相似文献   

8.
Extensive pharmacokinetic studies in both mice and rhesus macaques, with biochemically well defined forms of native and recombinant AChEs from bovine, rhesus and human origin, allowed us to determine an hierarchical pattern by which post-translation-related factors and specific amino-acid epitopes govern the pharmacokinetic performance of the enzyme molecule. In parallel, we demonstrated that controlled conjugation of polyethylene-glycol (PEG) side-chains to lysine residues of rHuAChE also results in the generation of active enzyme with improved pharmacokinetic performance. Here, we show that equally efficient extension of circulatory residence can be achieved by specific conditions of PEGylation, regardless of the post-translation-modification state of the enzyme. The masking effect of PEGylation, which is responsible for extending circulatory lifetime, also contributes to the elimination of immunological responses following repeated administration of AChE. Finally, in vivo protection studies in mice allowed us to determine that the PEGylated AChE protects the animal from a high lethal dose (2.5 LD(50)) of soman. On a mole basis, both the recombinant AChE and its PEGylated form provide higher levels of protection against soman poisoning than the native serum-derived HuBChE. The findings that circulatory long-lived PEGylated AChE can confer superior protection to mice against OP-compound poisoning while exhibiting reduced immunogenicity, suggest that this chemically modified version of rHuAChE may serve as a highly effective bioscavenger for prophylactic treatment against OP-poisoning.  相似文献   

9.
The reactivation of organophosphate (OP)-inhibited acetylcholinesterase (AChE) by oximes results inevitably in the formation of highly reactive phosphyloximes (POX), which may re-inhibit the enzyme. An impairment of net reactivation by stable POX was found with 4-pyridinium aldoximes, e.g. obidoxime, and a variety of OP compounds. In this study the effect of organophosphorus hydrolase (OPH), organophosphorus acid anhydrolase (OPAA) and diisopropylfluorophosphatase (DFPase) on obidoxime-induced reactivation of human acetylcholinesterase (AChE) inhibited by different OPs was investigated. Reactivation of paraoxon-, sarin-, soman- and VX-inhibited AChE by obidoxime was impaired by POX-induced re-inhibition whereas no deviation of pseudo first-order kinetics was observed with tabun, cyclosarin and VR. OPH prevented (paraoxon) or markedly reduced the POX-induced re-inhibition (VX, sarin, soman), whereas OPAA and DFPase were without effect. Additional experiments with sarin-inhibited AChE indicate that the POX hydrolysis by OPH was concentration-dependent. The activity of OP-inhibited AChE was not affected by OPH in the absence of obidoxime. In conclusion, OPH may be a valuable contribution to the therapeutic regimen against OP poisoning by accelerating the degradation of both the parent compound, OP, and the reaction product, POX.  相似文献   

10.
Organophosphorus compounds (OPs) are used as pesticides and developed as warfare nerve agents such as tabun, soman, sarin, VX and others. Exposure to even small amounts of an OP can be fatal and death is usually caused by respiratory failure. The mechanism of OP poisoning involves inhibition of acetylcholinesterase (AChE) leading to inactivation of the enzyme which has an important role in neurotransmission. AChE inhibition results in the accumulation of acetylcholine at cholinergic receptor sites, producing continuous stimulation of cholinergic fibers throughout the nervous systems.  相似文献   

11.
The in vitro inhibitory potencies of several nerve agents and other organophosphorus compounds against acetylcholinesterase (AChE) and neurotoxic esterase (NTE) have been compared. Although the I50s against AChE were about 0.1–1.0 nM for the nerve agents the I50s against NTE for sarin, soman and tabun were two to four orders of magnitude higher and VX had negligible activity. A series of bis[(ω-phenyl-n-alkyl]phosphorofluoridates inhibited both enzymes at 1.0–100 nM while ω-phenyl-n-alkyl NN-dimethylphosphoramidofluoridates were active at 0.1–10 μM. From the in vitro data it was predicted that nerve agents would cause delayed neuropathy only at doses greatly exceeding the LD50. In hens protected against acute toxicity by pretreatment with physostigmine, atropine and the oxime P2S, delayed neuropathy associated with high inhibition of NTE was found at 30–60 × LD50 for sarin but not at 38 × LD50 for soman or 82 × LD50 for tabun. At the maximum doses tested of the latter two compounds the inhibition of NTE was 55% and 66% respectively. The minimum neuropathic doses were calculated to be about 100–150 × LD50 for soman and tabun. As expected from in vitro data, neuropathy, associated with a high level of inhibition of NTE, was caused by one of the bis-phenylalkyl phosphorofluoridates at doses causing negligible acute toxicity. The required dose was 9X that for DFP although the compound was 300X more active against NTE in vitro suggesting that such compounds are rapidly degraded in vivo. The phenylalkyl NN-dimethylphosphoramidofluoridates produced prolonged acute signs of poisoning but they were not neuropathic at the maximum tolerable doses nor was the NTE greatly inhibited contrary to the prediction from the in vitro data. It is possible that the enantiomer responsible for the inhibition of NTE is preferentially degraded in vivo. Several other phosphoramidofluoridates inhibit NTE in vitro at 1.0–100 μM and a number of bicyclic phosphates were inactive at 23 μM. None of these compounds was tested in vivo.  相似文献   

12.
The cholinesterase-inhibiting organophosphorus compounds referred to as nerve agents (soman, sarin, tabun, GF agent, and VX) are particularly toxic and are considered to be among the most dangerous chemical warfare agents. Included in antidotal medical countermeasures are oximes to reactivate the inhibited cholinesterase. Much experimental work has been done to better understand the properties of the oxime antidotal candidates including the currently available pralidoxime and obidoxime, the H oximes HI-6 and Hl?-7, and methoxime. There is no single, broad-spectrum oxime suitablefor the antidotal treatment of poisoning with all organophosphorus agents. If more than one oxime is available, the choice depends primarily on the identity of the responsible organophosphorus compound. The H oximes appear to be very promising antidotes against nerve agents because they are able to protect experimental animals from toxic effects and improve survival of animals poisoned with supralethal doses. They appear more effective against nerve agent poisoning than the currently used oximes pralidoxime and obidoxime, especially in the case of soman poisoning. On the other hand, pralidoxime and especially obidoxime seem sufficiently effective to treat poisonings with organophosphorus insecticides that have relatively less toxicity than nerve agents.  相似文献   

13.
Standard treatment of organophosphorus (OP) poisoning includes administration of an antimuscarinic (e.g., atropine) and of an oxime-based reactivator. However, successful oxime treatment in soman poisoning is limited due to rapid aging of phosphylated acetylcholinesterase (AChE). Hence, the inability of standard treatment procedures to counteract the effects of soman poisoning resulted in the search for alternative strategies. Recently, results of an in vivo guinea pig study indicated a therapeutic effect of physostigmine given after soman. The present study was performed to investigate a possible pre- and post-treatment effect of physostigmine on soman-inhibited human AChE given at different time intervals before or after perfusion with soman by using a well-established dynamically working in vitro model for real-time analysis of erythrocyte and muscle AChE. The major findings were that prophylactic physostigmine prevented complete inhibition of AChE by soman and resulted in partial spontaneous recovery of the enzyme by decarbamylation. Physostigmine given as post-treatment resulted in a time-dependent reduction of the protection from soman inhibition and recovery of AChE. Hence, these date indicate that physostigmine given after soman does not protect AChE from irreversible inhibition by the OP and that the observed therapeutic effect of physostigmine in nerve agent poisoning in vivo is probably due to other factors.  相似文献   

14.
Acetylcholinesterase (AChE; EC 3.1.1.7.) is an extremely active enzyme necessary for terminating the action of acetylcholine in cholinergic synapses. The aim of this study was to evaluate the efficacy of four mono-pyridinium compounds 1-phenacylpyridinium chloride (I), 1-phenacyl-2-methylpyiridinium chloride (II), 1-benzoylethylpyridinium chloride (III), and 1-benzoylethylpyridinium-4-aldoxime chloride (IV) in the therapy of soman poisoning. Their effect was compared with HI-6 and TMB-4 oximes. The inhibitory potency (IC50) of compounds as well as reactivating (%R) and protective potency (P50) with respect to soman-inhibited AChE were determined for each of the compounds. Their acute intraperitoneal toxicity (LD50 with 95% confidence limits) was tested in mice and observed for 24 hr. The therapeutic effect was expressed as the protective index and as the therapeutic dose. The tested compounds were found to be reversible inhibitors of AChE. In vivo results show that the tested compounds are relatively toxic (their LD50 was from 74.9 to 210.0 mg/kg body weight). The best antidotal efficacy was obtained with compound II, which had the highest affinity for AChE (IC50 was 1.9 x 10(-5) mol l(-1)) and seems to be an adequate antidote in soman poisoning (its protective index and therapeutic dose were 2.8 and 2, respectively). Our results indicate that its antidotal effect is related to the reactivation or protection of AChE. The type of the substituent in the pyridinium ring generally has a significant influence on toxicity in vitro and in vivo, and on the antidotal efficacy of all new tested compounds.  相似文献   

15.
To explore the efficacy of paraoxonase 1 (PON1) as a catalytic bioscavenger, we evaluated human recombinant PON1 (rePON1) expressed in Trichoplusia ni larvae against sarin and soman toxicity using microinstillation inhalation exposure in guinea pigs. Animals were pretreated intravenously with catalytically active rePON1, followed by exposure to 1.2 X LCt50 sarin or soman. Administration of 5 units of rePON1 showed mild increase in the blood activity of the enzyme after 30 min, but protected the animals with a significant increase in survival rate along with minimal signs of nerve agent toxicity. Recombinant PON1 pretreated animals exposed to sarin or soman prevented the reduction of blood O2 saturation and pulse rate observed after nerve agent exposure. In addition, rePON1 pretreated animals showed significantly higher blood PON1, acetylcholinesterase (AChE), and butyrylcholinesterase activity after nerve agent exposure compared to the respective controls without treatments. AChE activity in different brain regions of rePON1 pretreated animals exposed to sarin or soman were also significantly higher than respective controls. The remaining activity of blood PON1, cholinesterases and brain AChE in PON1 pretreated animals after nerve agent exposure correlated with the survival rate. In summary, these data suggest that human rePON1 protects against sarin and soman exposure in guinea pigs.  相似文献   

16.
The increased concern about terrorist use of nerve agents prompted us to search for new more effective oximes against tabun and soman poisoning. We investigated the interactions of five bispyridinium oximes: K027 [1-(4-hydroxyiminomethylpyridinium)-3-(4-carbamoylpyridinium) propane dibromide], K048 [1-(4-hydroxyiminomethylpyridinium)-4-(4-carbamoylpyridinium) butane dibromide], K033 [1,4-bis(2-hydroxyiminomethylpyridinium) butane dibromide], TMB-4 [1,3-bis(4-hydroxyiminomethylpyridinium) propane dibromide] and HI-6 [(1-(2-hydroxyiminomethylpyridinium)-3-(4-carbamoylpyridinium)-2-oxapropane dichloride)] with human erythrocyte acetylcholinesterase (AChE; E.C. 3.1.1.7) and their effects on tabun- and soman-poisoned mice. All the oximes reversibly inhibited AChE, and the enzyme-oxime dissociation constants were between 17 and 180 microM. Tabun-inhibited AChE was completely reactivated by TMB-4, K027 and K048, with the overall reactivation rate constants of 306, 376 and 673 min(-1)M(-1), respectively. The reactivation of tabun-inhibited AChE by K033 reached 50% after 24h, while HI-6 failed to reactivate any AChE at all. Soman-inhibited AChE was resistant to reactivation by 1mM oximes. All studied oximes protected AChE from phosphorylation with both soman and tabun. In vivo experiments showed that the studied oximes were relatively toxic to mice; K033 was the most toxic (LD50=33.4 mg/kg), while K027 was the least toxic (LD50=672.8 mg/kg). The best antidotal efficacy was obtained with K048, K027 and TMB-4 for tabun poisoning, and HI-6 for soman poisoning. Moreover, all tested oximes showed no cytotoxic effect on several cell lines in concentrations up to 0.8mM. The potency of the oximes K048 and K027 to protect mice from five-fold LD50 of tabun and their low toxicity make these compounds leading in the therapy of tabun poisoning. The combination of HI-6 and atropine is the therapy of choice for soman poisoning.  相似文献   

17.
Abstract: The effects of low–dose administration of the organophosphate cholinesterase inhibitors, soman, sarin and tabun, on growth rates over 85 days were studied in rats. Acetylcholinesterase (AChE) activity was determined in the striatum and the remainder of the brain 24 hrs following the last exposure to these agents. Further, the cumulative mortality of daily administration of several doses of soman, sarin and tabun for 25 days was studied. The animals treated with 25 μg/kg of soman or sarin for 85 days demonstrated reduced growth rates which returned to control levels after 30 days. The animals which received 50 μg/kg of sarin also grew at reduced rates which returned to control levels after 35 days, while the tabun–treated (100 μg/kg) animals required 38 days to return to control growth rates. The striatal AChE activity of the soman–treated group was reduced to 36% of control while the AChE activities of the high–dose sarin–treated group were reduced to 66% of control. The striatal AChE activity of the tabun–treated group was only 13% of control. It is suggested that growth rates may be used to monitor the development of tolerance to lowdose administration of organophosphate cholinesterase inhibitors  相似文献   

18.
There are important differences between on-target military attacks against relatively well protected Armed Forces and nerve agent attacks initiated by terrorists against a civilian population. In contrast to military personnel, civilians are unlikely to be pre-treated with pyridostigmine and protected by personal protective equipment. Furthermore, the time after exposure when specific therapy can first be administered to civilians is likely to be delayed. Even conservative estimates suggest a delay between exposure and the first administration of atropine/oxime of at least 30 minutes. The organophosphorus nerve agents are related chemically to organophosphorus insecticides and have a similar mechanism of toxicity, but a much higher mammalian acute toxicity, particularly via the dermal route. Nerve agents phosphonylate a serine hydroxyl group in the active site of the enzyme, acetylcholinesterase (AChE), which results in accumulation of acetylcholine and, in turn, causes enhancement and prolongation of cholinergic effects and depolarisation blockade. The rate of spontaneous reactivation of AChE is variable, which partly accounts for differences in acute toxicity between the nerve agents. With soman in particular, an additional reaction occurs known as 'aging'. This consists of monodealkylation of the dialkylphosphonyl enzyme, which is then resistant to spontaneous hydrolysis and reactivation by oximes. Monodealkylation occurs to some extent with all dialkylphosphonylated AChE complexes; however, in general, is only of clinical importance in relation to the treatment of soman poisoning, where it is a very serious problem. With soman, aging occurs so fast that no clinically relevant spontaneous reactivation of AChE occurs before aging has taken place. Hence, recovery of function depends on resynthesis of AChE. As a result, it is important that an oxime is administered as soon after soman exposure as possible so that some reactivation of AChE occurs before all the enzyme becomes aged. Even though aging occurs more slowly and reactivation occurs relatively rapidly in the case of nerve agents other than soman, early oxime administration is still clinically important in patients poisoned with these agents. Experimental studies on the treatment of nerve agent poisoning have to be interpreted with caution. Some studies have used prophylactic protocols, whereas the drugs concerned (atropine, oxime, diazepam) would only be given to a civilian population after exposure. The experimental use of pyridostigmine before nerve agent exposure, although rational, is not of relevance in the civilian context. With the possible exception of the treatment of cyclosarin (GF) and soman poisoning, when HI-6 might be preferred, a review of available experimental evidence suggests that there are no clinically important differences between pralidoxime, obidoxime and HI-6 in the treatment of nerve agent poisoning, if studies employing pre-treatment with pyridostigmine are excluded.  相似文献   

19.
The production of antibodies against the organophosphorus hapten soman has been undertaken in vivo in rabbits and in vitro by employing monoclonal techniques. The polyclonal rabbit antibodies did not cross-react with soman but were inhibited by soman analogs in a competitive inhibition enzyme immunoassay (CIEIA). In contrast the monoclonal antisoman antibodies were inhibited specifically by soman in the CIEIA but not by sarin nor the hydrolysis products of soman. The monoclonal antibodies were able to compete with acetylcholinesterase (AChE) for soman when the antibody was present in a molar concentration equal to the antibody-soman dissociation constant, resulting in a retardation of the rate of inhibition of AChE by soman. When monoclonal antibodies were administered to mice in a passive immunization regimen, the times-to-death increased twofold at an LD70 or LD90 dose level. These results suggest that the monoclonal antibodies have proper characteristics for use as an immunocytochemical reagent of high specificity. The ability of the antisoman monoclonal antibodies to compete with AChE for soman in vitro and the preliminary in vivo data indicate that selected monoclonal antibodies may prove useful in a therapeutic or prophylactic mode for organophosphorus poisoning.  相似文献   

20.
Such organophosphorous (OP) nerve agents as sarin (isopropyl methylphosphonofluoridate) and soman (pinacolyl methylphosphonofluoridate) are effective inhibitors of acetylcholinesterases (AChE), butyrylcholinesterases (BChE) and carboxylesterases (CaE). The acute toxicity of these compounds in mammals is known to be mediated through inhibition of AChEs, which leads to increased acetylcholine (ACh) levels. The aim of this study was to compare the significance of the plasma CaEs, microsomal CaEs and CYP450 enzymes in detoxification of soman with and without physostigmine treatment. The mice received physostigmine (0.1 mg/kg body wt) intravenously (i.v.) 10 min prior to the intraperitoneal (i.p.) injection of soman (0.400-0.650 mg/kg body wt in olive oil). To avoid possible signs of poisoning, the animals received atropine sulfate (37.5 mg/kg body wt in saline) subcutaneously (s.c.) immediately after the soman administration. In the present study, the inhibitory effect of soman was greater in plasma CaE than in hepatic microsomal CaE fraction. In addition, soman or the combination of soman-physostigmine had no remarkable effect on the microsomal CaE or P4502B activities. In spite of this, however, the microsomal CaEs might offer more protection against multiple LD50s of soman.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号